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Abstract. A survey of the interrelationships between matrix models and field the-
ories on the noncommutative torus is presented. The discretization of noncommu-
tative gauge theory by twisted reduced models is described along with a rigorous
definition of the large N continuum limit. The regularization of arbitrary noncom-
mutative field theories by means of matrix quantum mechanics and its connection
to noncommutative solitons is also discussed.

1. Introduction

Two of the most novel aspects of noncommutative field theories (see [7, 15] and
[22] for reviews) which are not seen in ordinary quantum field theories are the
properties that (a) They can be regularized and analysed by means of matrix mod-
els, and (b) In some instances they admit novel soliton solutions with no commu-
tative counterparts. Property (a) stems from the fact that noncommutative fields
are most conveniently understood and analysed as operators acting on separable
Hilbert spaces. Property (b) instead is due to the fact that noncommutative field
theories behave in many respects like string theory, rather than conventional quan-
tum field theory, and noncommutative solitons correspond to D-branes in open
string field theory of tachyon dynamics (see [13] for a review). In this survey we
will describe some aspects of the interrelationship between matrix models, non-
commutative solitons and field theory on the noncommutative torus. The first half
of the article deals with the finite-dimensional regularization of Yang-Mills theory
on a two-dimensional noncommutative torus [1] and the precise definition of the
large N limit of this matrix model [16]. The second half demonstrates that the two
novel properties (a) and (b) above are in fact intimately related through a regular-
ization of noncommutative field theory by means of matrix quantum mechanics
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which has a much simpler and tractable large N limit than its zero-dimensional
counterpart [17].

2. Matrix Models and Gauge Theory on the Noncommutative Torus

We begin with an account of how the large N limit of a particular matrix model
naturally leads to considerations of gauge theory on a noncommutative torus. This
is the classic Connes-Douglas-Schwarz formalism [6] which was the original link
between open string theory in background fields and noncommutative geometry
through compactifications of Matrix Theory.

2.1. The IKKT Matrix Model

Consider the statistical mechanics of d ≥ 2 complex N × N matrices Xi ∈
MN (C), i = 1, . . . , d which is defined by the integral

Z =

∫
MN (C)⊗Cd

dX e−S(X) (1)

where dXi for each i = 1, . . . , d is the translationally invariant Haar measure on
the Lie algebra MN (C) and the action

S(X) = −
1

g2

d∑
i,j=1

Tr
[
Xi , Xj

]2 (2)

is a holomorphic function on the space C
d ×MN (C). The symbol Tr is the usual

matrix trace and g2 > 0 is a coupling constant. Note that the Lie algebra MN (C)
is also an associative ∗-algebra.

The zero-dimensional matrix model (1) is simply the dimensional reduction to a
point of Yang-Mills gauge theory on R

d with structure group GL(N, C), i.e., we
restrict the usual Yang-Mills action functional to constant gauge fields. It pos-
sesses two fundamental symmetries. Regard X ∈ MN (C)⊗C

d with components
X1, . . . , Xd in a fixed basis of the vector space C

d. Then the function (2) is in-
variant under the action of the complex orthogonal group SO(d, C) under which
X transforms as a vector. This symmetry is just Lorentz invariance. The action is
also invariant under the transformations

Xi �−→ U Xi U
−1 , U ∈ GL(N, C) . (3)
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This symmetry is gauge invariance. We will restrict the integral (1) over a real
slice of the space C

d × MN (C) by truncating to hermitian N ×N matrices Xi ∈
u(N). Then the hermitian matrix integral (1) defines the IKKT matrix model [14].
The gauge symmetry (3) in this instance restricts to unitary matrices U ∈ U(N).

This matrix model has many interesting applications which all require some for-
mal N → ∞ limit to be taken. Firstly, identify M∞(C) as the ∗-algebra of
operators of the form D + A with D a first order differential operator with con-
stant coefficients and A an operator of multiplication on a function which de-
creases rapidly at infinity in R

d. The matrix model then reduces to ordinary
gauge theory on R

d. Secondly, let C∞(Σ) be the algebra of smooth complex-
valued functions on a compact Riemann surface Σ equipped with a symplec-
tic structure ω ∈ S(Σ). Then one can construct a sequence of “quantization”
maps σN : C∞(Σ) → MN (C) such that N [σN (f), σN (g)] → σN ({f, g}ω) and
N TrσN (f) →

∫
Σ

ω f in the limit N → ∞. Let X : Σ → R
d be an embedding

of the surface in flat space. Then the extrema of the action S(X) − λ volω(Σ) re-
garded as a functional on C∞(Σ)×C

d×S(Σ) coincide with those of the Nambu-
Goto action which computes the area of the embedded surface Σ. This connects
the IKKT matrix model to the Green-Schwarz string [10]. Finally, the action (2)
itself has a general set of classical vacuum states provided by configurations Xi

with [Xi, Xj ] = i Bij 11, where Bij = −Bji are real constants. For Bij �= 0 these
equations only have a solution when N → ∞ whereby M∞(C) is regarded as the
C∗-algebra K of compact operators acting on a separable Hilbert space.

These realizations all form part of the circumstantial evidence which has led to
the conjecture [14] that the large N limit of the matrix model (1) provides a non-
perturbative definition of Type IIB string theory. The vacua described above cor-
respond to position coordinates of D-branes and these considerations immediately
lead to noncommutative spacetime geometries [3, 24]. The rigorous definition of
the large N limit here along with the precise meaning of convergence will be
described later on.

2.2. Toroidal Compactification

We will now make the heuristic appearance of noncommutative geometry de-
scribed above more precise [6]. Let us compactify the space R

d along the (12)-
plane to T

2 × R
d−2, where T

2 is a square two-torus of sides R1 and R2. Since
we interpret the N × N hermitian matrices Xi above as “coordinates” in R

d,
we would like to define the toroidal compactification of the IKKT matrix model.



88 Richard Szabo

This means that we should define a restriction of the action (2) to a subspace of
u(N)⊗R

d where an equivalence relation Xi ∼ Xi +2πRi11, i = 1, 2 is satisfied,
i.e., S(Xi + 2πRi11) = S(Xi) for i = 1, 2. Using the gauge symmetry (3), we
define this equivalence relation as unitary gauge equivalence and hence consider
the quotient conditions

Xi + 2πRi11 = UiXiU
−1
i , i = 1, 2

Xj = Ui Xj U−1
i , for all j �= i, j = 1, . . . , d, i = 1, 2

(4)

where U1 and U2 are unitary, U−1
i = U †

i .

Taking the trace on both sides of the first equation in (2.2) shows that these con-
ditions cannot be satisfied by finite-dimensional matrices unless R1 = R2 = 0.
Thus we take the formal large N limit again and search for solutions to these equa-
tions in terms of operators Xj , Ui on a separable Hilbert space H. Consistency
of the quotient conditions requires that the object U1 U2 U−1

1 U−1
2 commutes with

all Xj , j = 1, . . . , d. A natural choice is then to set it equal to a scalar operator
on H, U1 U2 U−1

1 U−1
2 = λ 11. Unitarity restricts λ = ei2πθ for some θ ∈ R. We

thereby find that the unitary operators U1 and U2 obey the relation

U1 U2 = ei2πθ U2 U1 . (5)

With the relation (5), U1 and U2 generate a noncommutative, associative unital ∗-
algebra Aθ with trace called the noncommutative torus [5]. A typical “smooth”
element f ∈ Aθ is of the form

f =
∑

n∈Z2

fn Un1

1 Un2

2 (6)

where {fn} ∈ S(Z2) is a Schwartz sequence. The trace on Aθ is then defined by

Tr(f) :=

∫
− f = f0 . (7)

2.3. Solution Space

To determine the structure of the solutions Xi to the quotient conditions (2.2), let
us momentarily set θ = 0. In this case we can take H = L2(T2, E) to be the
Hilbert space of square-integrable sections of a hermitian vector bundle E → T

2.
The operators Ui, i = 1, 2 may be represented on H as pointwise multiplication by
the functions ei σi where σi ∈ [0, 2π) are angular coordinates on the torus. Thus
the Ui generate (via Fourier expansion) the commutative algebra of functions f
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on a two-torus dual to T
2. The first equation in (2.2) is then simply the Leibnitz

rule for a connection on the bundle E given by Xi = i∇i + Ai, i = 1, 2 and
Xj = Aj for j > 2, where ∇1,∇2 specify a constant curvature connection and
Ai ∈ C∞(T2, End(E)). This solution is unique up to unitary equivalence.

For θ �= 0, the quotient conditions imply that X1, X2 are connections on a module
E over the algebra Aθ, while Xj ∈ EndAθ

(E) for all j �= 1, 2. To describe these
solutions explicitly, fix q ∈ Z and p ∈ Z/q Z with p, q coprime. Set

E = Ep,q := L2(R) ⊗ C
q (8)

and let ∇i, i = 1, 2 be connections on Ep,q of constant curvature

[
∇1 , ∇2

]
=

i2π

p − q θ
11 . (9)

The separable Hilbert space L2(R) is the Schrödinger representation of the Heisen-
berg algebra (9), which by the Stone-von Neumann theorem is the unique irre-
ducible module. The finite-dimensional Hilbert space C

q is the irreducible q × q
representation of the Weyl algebra

Γ1 Γ2 = ei2πp/q Γ2 Γ1 (10)

which is uniquely solved (up to unitary equivalence) by SU(q) clock and shift
matrices Γ1 and Γ2. Acting on (8), we then take

Ui = exp
(

i2π
q

(p − q θ)∇i

)
⊗ Γi , i = 1, 2 . (11)

This construction stems from the property that projective modules over the algebra
Aθ are classified by the K-theory group K0(Aθ) = Z ⊕ Z. If θ is an irrational
number, then the trace (7) determines an isomorphism Tr : K0(Aθ) → Z+Z θ as
ordered subgroups of R [5,17]. Stable modules are classified by the positive cone
K+

0 (Aθ) defined by positivity of the Murray-von Neumann dimension

dim(Ep,q) = TrE(Pp,q) = p − q θ > 0 (12)

where Pp,q is a hermitian projector (P2
p,q = Pp,q = P

†
p,q) such that Ep,q = Pp,qA

N
θ

for some N . The finitely-generated projective module Ep,q is called a Heisenberg
module.
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2.4. Noncommutative Gauge Theory

From the considerations above, we have thus shown that the general solutions of
the quotient conditions (2.2) on a Heisenberg module E = Ep,q are given by

Xi = i∇i + Ai, i = 1, 2
(13)

Xj = Aj , j > 2

where Ai ∈ EndAθ
(Ep,q) are elements of the commutant of Aθ in Ep,q, i.e., the

set of operators on Ep,q which commute with the irreducible representation (11).
A straightforward computation shows that any such element admits an expansion

Ai =
∑

n∈Z2

Ai(n) Zn1

1 Zn2

2 (14)

where the endomorphisms Z1, Z2 are defined by

(Z1fk)(s) = ei2πs/q fk−1(s)

(Z2fk)(s) = ei2πk a/q fk

(
s + 1

p−q θ

) (15)

for (f1, . . . , fq) ∈ Ep,q = L2(R) ⊗ C
q. We have chosen a, b ∈ Z to satisfy the

first order Diophantine equation

a p + b q = 1 . (16)

One easily computes that Z1, Z2 generate another noncommutative torus Aθ′
∼=

EndAθ
(Ep,q) since

Z1 Z2 = e−i2πθ′ Z2 Z1 (17)

where

θ′ =
a θ + b

p − q θ
(18)

lies in the SL(2, Z) Möbius orbit of θ ∈ R. This means that Aθ′ is Morita equiv-
alent to the algebra Aθ, with Ep,q the equivalence bimodule. Finally, setting the
j > 2 components to 0 we find by substituting (14) into the matrix model action
(2) the functional

S(X) = YM(A) := − 1
g2 TrE

[
i∇1 + A1 , i∇2 + A2

]2
. (19)

The noncommutative field theory defined by this action is just Yang-Mills theory
on the Heisenberg module E = Ep,q.
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3. Matrix Models and Gauge Theory on the Fuzzy Torus

In the previous Section we began with a matrix model given by a perfectly well-
defined integral over the finite-dimensional space u(N) ⊗ R

d. However, for the
toroidal compactification of the model it was necessary to pass to a formal limit
whereby the matrix rank N → ∞ and rewrite objects in terms of (compact) op-
erators on a separable Hilbert space. We would now like to understand the origin
of this large N limit better and to make it more rigorous. We will examine how
and to what extent the noncommutative torus algebra Aθ admits representations
in terms of finite-dimensional matrix algebras. This will unveil precisely how a
non-perturbative regularization of noncommutative gauge theory can be obtained
and how the large N continuum limit which removes the regulator N must be
taken.

3.1. The Eguchi-Kawai Model

Let us begin by sketching the basic idea behind the finite-dimensional approxi-
mations that we shall construct. If θ = M

N
is a rational number with M, N ∈ N

coprime, then there exists a surjective algebra ∗-morphism π : AM/N → MN (C)
defined on generators by

π(Ui) = Γi, i = 1, 2 (20)

where Γ1 and Γ2 obey the Weyl algebra Γ1 Γ2 = ei2πM/N Γ2 Γ1, and thus gener-
ate the finite-dimensional matrix algebra MN (C). In this context the associative
∗-algebra generated by the Weyl algebra is sometimes called the fuzzy torus.
Since any irrational number θ can be written as the limit of a sequence of ratio-
nal numbers, we can anticipate that some sort of limiting procedure also works at
the level of the corresponding algebras. This issue will be addressed in the next
section.

A compact version of the IKKT matrix model (1,2) can be defined by exponentiat-
ing everything from the Lie algebra to the Lie group. Hence we define the matrix
integral

Z =

∫
U(N)⊗(S1)d

dU e−S(U) (21)

where dUi for each i = 1, . . . , d is the left-right invariant Haar measure on the
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N × N unitary group U(N) and

S(U) = −
1

g2

∑
1≤i�=j≤d

Tr
(
Ui Uj U †

i U †

j

)
. (22)

This unitary matrix model is called the Eguchi-Kawai model [8]. For “infinites-
imal” values Ui = 11 + i Xi, Xi ∈ u(N) it reduces to the IKKT matrix model.
It is the reduction of U(N) Wilson lattice gauge theory on Z

d to a single pla-
quette. The matrix model possesses the gauge symmetry Ui �→ ΩUi Ω−1 with
Ω ∈ U(N).

3.2. Compact Quotient Conditions

In the Eguchi-Kawai model there is a perfectly well-defined finite-dimensional
version of the quotient conditions for toroidal compactification which are obtained
via exponentiation of the constraints (2.2) [1]. They are given by

ΩiUiΩ
−1
i = ei2πri/N Ui, ri ∈ Z, i = 1, 2

ΩiUjΩ
−1
i = Uj , for all j �= i, j = 1, . . . , d, i = 1, 2

(23)

where Ω1, Ω2 ∈ U(N). Taking the trace of both sides of the first equation in
(23) now only requires that Tr(Ui) = 0 for i = 1, 2. This truncates the matrix
integral (21) to traceless unitary matrices, but the equations are still consistent for
finite-dimensional matrices. Similarly to the non-compact case, the consistency
condition generated by the quotient conditions (23) can be chosen to be given by
Ω1 Ω2 = ei2πl/N Ω2 Ω1 for some l ∈ N.

We can solve these quotient conditions by introducing discrete versions of the
gauge connections described before acting on finite-dimensional modules over
the matrix algebra MN (C). Let N = M q, M = mnq, and represent the non-
commutative torus algebra Aθ in MM (C) ⊗ Mq(C) ∼= MN (C) through

Ω1 =
(
Γ2

)m
⊗
(
Γ̃†

1

)p
, Ω2 =

(
Γ1

)m
⊗ Γ̃†

2 (24)

where Γ1 Γ2 = ei2π/M Γ2 Γ1 and Γ̃1 Γ̃2 = ei2π/q Γ̃2 Γ̃1. Then one has Ω1 Ω2 =
ei2πθ Ω2 Ω1 with

θ =
p

q
−

m

nq
. (25)

The commutant of Aθ in C
M ⊗ C

q ∼= C
N is easily seen to be generated by the

matrices [1]
Z1 =

(
Γ2

)n
⊗ Γ̃†

1 , Z2 =
(
Γ†

1

)n
⊗
(
Γ̃2

)a (26)



Matrix Models, Large N Limits and Noncommutative Solitons 93

which obey Z1 Z2 = ei2πθ′ Z2 Z1 and thereby generate another noncommutative
torus representation of Aθ′ in MN (C) with

θ′ =
n

mq
−

a

q
=

a θ + b

p − q θ
. (27)

3.3. Discrete Noncommutative Gauge Theory

We can introduce a fixed discrete gauge “connection” on the module C
N by set-

ting r1 = r2 = mq and defining

D1 = Γ†

1 ⊗ 11q , D2 = Γ2 ⊗ 11q . (28)

It has constant curvature given by

D1D2 = exp
( i2πq

p−qθ
r1r2

)
D2D1. (29)

Setting Uj = 11N for j > 2, the most general solutions to the compact quotient
conditions (23) are then given by

Ui = Ũi Di, i = 1, 2 (30)

where Ũi ∈ Aθ′ are elements of the commutant of Aθ, i.e., Ωj Ũi Ω†

j = Ũi for
i, j = 1, 2. Substituting (30) into the matrix model action (22) thereby leads to a
discrete version of Yang-Mills gauge theory with action

S
(
Ũ D
)

= W
(
Ũ
)

:= − 2
g2 � Tr

[
e−i2π/M Ũ1

(
D1 Ũ2 D†

1

)(
D2 Ũ †

1 D†

2

)
Ũ †

2

]
. (31)

The exact solution of this matrix model for n = 1 is given in [19].

A basis for the solution space Aθ′ is provided by the matrices

Jm = (Z2)
m1 (Z1)

m2 eiπθ′ m1 m2 (32)

with m ∈ (Z/mq Z)2. In terms of this basis we may expand the discrete gauge
fields as

Ũi =
1

(mq)2

∑
x

Ui(x)
∑
m

Jm e
− i2π

m q
m∧x (33)

where x = (x1, x2) with xi = 0, 1, . . . ,m q − 1. This maps the discrete gauge
theory defined by the action (31) onto a noncommutative version of Wilson lattice
gauge theory on T

2 ∩ Z
2 [1, 2].
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4. Large N Limit

We will now describe precisely the large N limit of the finite-dimensional ap-
proximation of Section 3 which leads back to the original noncommutative gauge
theory constructed in Section 2. We will focus on how to do this at a purely alge-
braic level, and then discuss some of the important topological consequences of
the construction.

4.1. AF-Algebras

The idea behind the construction of this section is to take the “large N limit”
by embedding the noncommutative torus algebra Aθ into an approximately finite-
dimensional (AF) algebra

A∞ = lim
−→

n∈N0

An (34)

defined as the norm closure of the inductive limit of an inductive system

A0
ρ1

−→ A1
ρ2

−→ A2
ρ3

−→ · · · An
ρn+1

−→ · · · (35)

where each An is a finite-dimensional C∗-algebra with the usual operator norm
‖ − ‖An

, and ρn are injective ∗-morphisms. The inductive limit (34) is a C∗-
algebra with norm given by∥∥(fn)n∈N0

∥∥
A∞

:= lim
n→∞

∥∥fn

∥∥
An

(36)

with fn ∈ An. We can use the embeddings (35) to identify An with a subalgebra
of An+1 as

An =

ln⊕
j=1

M
d
(n)

j

(C) ∼=

ln+1⊕
k=1

ln⊕
j=1

M
d
(n)

j

(C) ⊗ C
Nkj (37)

with
⊕ln

j=1 M
d
(n)

j

(C) ⊗ C
Nkj ⊂ M

d
(n+1)

k

(C). The non-negative integers Nkj

must obey the consistency conditions

ln∑
j=1

Nkj d
(n)
j = d

(n+1)
k (38)

which define a collection of partial embeddings d
(n)
j ↘Nkj d

(n+1)
k .
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The important point is that the algebra Aθ is not an AF-algebra. This can be
seen, for instance, at the level of K-theory. The degree 1 K-theory group of any
finite-dimensional algebra is always trivial, and since K-theory is covariant under
inductive limits one has K1(A∞) = 0. On the other hand, the noncommutative
torus has non-trivial K-theory group K1(Aθ) = Z⊕Z, with generators the unitary
equivalence classes of U1 and U2. Thus, at the level of zero-dimensional matrix
models, the large N limit can at best be defined by an embedding Aθ ↪→ A∞. This
has the consequence of making the large N limit rather complex, a property also
witnessed of the complicated double-scaling continuum limit of the noncommu-
tative lattice gauge theory of the previous section [1,2]. We will see a cleaner way
to treat the large N limit later on via one-dimensional matrix models. An approx-
imation of the noncommutative torus by fuzzy tori with respect to the quantum
Gromov-Hausdorff metric has been recently constructed in [18].

4.2. Rational Approximation

To realize this construction explicitly [16, 20], we expand the irrational number
θ ∈ R \ Q into simple continued fractions as [12]

θ = lim
n→∞

θn (39)

with the n-th convergent of the expansion given by

θn =
pn

qn

:= c0 +
1

c1 +
1

c2 +
1

. . . cn−1 +
1

cn

(40)

where ck ∈ N for k ≥ 1, c0 ∈ Z, and the coprime integers pn, qn can be computed
from the recursion relations

p0 = c0, p1 = c0c1 + 1, pn = cnpn−1 + pn−2
(41)

q0 = 1, q1 = c1, qn = cnqn−1 + qn−2

for n ≥ 2. It follows from these relations that the positive sequences {qn}
and {|pn|} are increasing with qn, |pn| → ∞ as n → ∞. The desired finite-
dimensional algebra An at level n ∈ N0 is then given by

An := Mqn
(C) ⊕ Mqn−1

(C) (42)
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with the embeddings ρn : An−1 ↪→ An defined by

M ⊕ N
ρn

�−→
(
M⊕cn ⊕ N

)
⊕ M (43)

for M ∈ Mqn−1
(C) and N ∈ Mqn−2

(C). At each finite level n, let U
(n)
1 , U

(n)
2 be

the generators of the noncommutative torus algebra Aθn
obeying

U
(n)
1 U

(n)
2 = ei2πθn U

(n)
2 U

(n)
1 . (44)

4.3. Matrix Approximation

We can finally derive the matrix approximation to the algebra Aθ which rigorously
accomplishes the desired large N limit of the unitary matrix model. As mentioned
in the previous section, for each n there is a surjective algebra homomorphism
πn : Aθn

→ Mqn
(C) given by

πn

(
U

(n)
i

)
= Γ

(n)
i , i = 1, 2 (45)

with Γ
(n)
1 , Γ

(n)
2 the qn × qn clock and cyclic shift matrix generators of Mqn

(C)
which obey the Weyl algebra

Γ
(n)
1 Γ

(n)
2 = ei2πpn/qn Γ

(n)
2 Γ

(n)
1 . (46)

Then the subalgebra πn(Aθn
) ⊕ πn−1(Aθn−1

) ⊂ An is a finite-dimensional ap-
proximation of Aθ in the following sense [16]. Since [20]

lim
n→∞

∥∥ρn

(
Γ

(n−1)
i ⊕ Γ

(n−2)
i

)
− Γ

(n)
i ⊕ Γ

(n−1)
i

∥∥
An

= 0 (47)

for i = 1, 2, it follows that there exist unitary operators Ui ∈ A∞ which are
limits of sequences of finite-rank operators in the inductive limit (34) with respect
to the induced operator norm (36) on A∞, and which obey the defining relation
(5) of the noncommutative torus. Thus there exists a unital injective ∗-morphism
ρ : Aθ → A∞.

It is in this sense that the elements of the algebra Aθ may be “approximated”
by sufficiently large finite-dimensional matrices and the large N limit thus taken,
since for n sufficiently large the generators Γ

(n)
i are well approximated by the

images under the injection ρn of the matrices Γ
(n−1)
i generating Aθn−1

. The em-
beddings ρn : An−1 → An above are completely characterized by the sequence
of partial embeddings {cn}n∈N0

associated with the positive maps ϕn : Z
2 → Z

2

given by (
qn

qn−1

)
= ϕn

(
qn−1

qn−2

)
ϕn =

(
cn 1
1 0

)
. (48)
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It follows that the K-theory group K0(A∞) can be obtained as the inductive limit
of the inductive system of ordered groups {ϕn : K0(An−1) → K0(An)}n∈N0

.
Since K0(An) = Z ⊕ Z (with the canonical ordering K+

0 (An) = N ⊕ N) for
all n ≥ 0, there is an isomorphism of ordered groups K0(A∞) ∼= Z + Z θ with
positive cone K+

0 (A∞) = {(p, q) ∈ Z
2 ; p − q θ > 0}. This coincides with the

K-theory of the noncommutative torus algebra Aθ.

The sets Z + Z θ and Z + Z θ′ are isomorphic as ordered groups if and only if
the irrational numbers θ, θ′ lie in the same SL(2, Z) orbit as in (18) [12], i.e.,
the algebras Aθ and Aθ′ are Morita equivalent. Equivalently, the continued frac-
tion expansions of θ and θ′ have the same “tails”. This has two important con-
sequences [16]. Firstly, Morita equivalent tori have the same K-theory group.
Secondly, Morita equivalent noncommutative tori can be embedded in the same
AF-algebra A∞ (up to isomorphism), because their sequences of embeddings are
the same up to a finite number of terms.

5. Noncommutative Solitons

Given the complexity of the large N limit required of the zero-dimensional ma-
trix models of noncommutative gauge theory, it is desirable both physically and
mathematically to seek alternative matrix regularizations for which a simpler con-
tinuum limit exists. We will now describe precisely how to do this using one-
dimensional matrix models, i.e., matrix quantum mechanics. The large N limit of
these matrix models does not require a complicated double-scaling, nor is it the
conventional ’t Hooft planar limit. The matrix approximation is intimately related
to the regularization of generic noncommutative field theories by means of soli-
tons on the noncommutative torus, to which the present section is devoted. This
formalism also has the virtue of making contact with the relationship between
noncommutative field theory and the dynamics of D-branes in string theory.

5.1. D-Branes and Solitons

Let us begin by briefly describing the somewhat simpler situation of solitons
on the noncommutative plane, viewed in terms of operators on the Fock mod-
ule (Schrödinger representation) over the Heisenberg algebra. Open string field
theory on this module is described by a potential energy functional V . Restrict
to static solutions of the equations of motion. Suppose that V = V (T2) is an
even functional of hermitian elements T corresponding to tachyon fields. Then
the equations of motion are TV ′(T2) = 0, which for polynomial functions V can
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be solved in terms of projections T = T2. Let {|n〉}n∈N0
be the standard ortho-

normal number basis for the Fock space. Then the basic rank N projector TN ,
having Tr(TN ) = N , is given by

TN =
N−1∑
n=0

|n〉〈n| (49)

and it describes N D0-branes sitting inside a D2-brane. In deformation quanti-
zation [22], the Wigner function corresponding to the operator T1 is a gaussian
field on R

2 centered about the origin with width proportional to θ−1/2, and hence
corresponds to a solitonic “lump”. This is the basic GMS soliton [11]. More
generally, if V = V (TT† − 11) + V (T† T − 11) is a functional of generically
complex operators T, then the static equations of motion are solved by partial
isometries T = TT† T. Equivalently, the operators T† T and TT† are projec-
tions. Such tachyon fields describe brane-antibrane systems and the basic partial
isometry T = S of the Fock module is provided by the standard shift operator

S =
∑
n∈N0

|n + 1〉〈n| . (50)

The analogous quantities on the noncommutative torus are much richer and in-
tricate, and it is the purpose of the remainder of this section to demonstrate how
they are constructed. In the next section we will then show that fields on the non-
commutative torus Aθ are expandable in a basis of projection and partial isome-
try solitons. The solitons generate subalgebras An ⊂ Aθ which are isomorphic
to two copies of the algebra of matrix-valued functions on a circle of the form
An

∼= Mq2n
(S1) ⊕ Mq2n−1

(S1), and for which the convergence to Aθ as n → ∞
is “exact” in the sense that Aθ is the inductive limit [9, 17]

Aθ = lim
−→

n∈N0

An . (51)

It follows that any field theory on Aθ is a matrix quantum mechanics with a
much simpler large N limit than before.

5.2. Powers-Rieffel Projections

Given the generators U1, U2 of Aθ obeying (5) and the continued fraction expan-
sion (39,40), we define two towers of projections

Pn = U
−q2n−1

1 ĝn + f̂n + ĝnU
q2n−1

1

P
′
n = U q2n

2 ĝ′n + f̂ ′
n + ĝ′nU−q2n

2 .
(52)
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To ease notation, we will drop the sequence labels n ∈ N0 until we look at the
n → ∞ limits explicitly, and denote q := q2n and q′ := q2n−1. Then q, q′ → ∞
in the limit we are interested in. The algebra element f̂ = ρ(f) is in corre-
spondence with a function f ∈ C∞(S1) through the map ρ : C∞(S1) → Aθ

defined on generators by ρ(z) := U1, where z is the coordinate of the circle S
1.

Similarly, f̂ ′ = ρ′(f ′ ) corresponds to a function f ′ on S
1 through the dual map

ρ′ : C∞(S1) → Aθ given by ρ′(z) := U2, and analogous statements are true of
ĝ, ĝ′. The traces of these elements are given by

∫
− f̂ = f(1), and so on.

The functions f, g, f ′, g′ ∈ C∞(S1) take values in the interval [0, 1] and are called
bump functions because they are zero almost everywhere on S

1 [17]. They are
chosen so that the elements (52) satisfy three basic requirements: (a) They are
projectors, P2 = P and P′ 2 = P′; (b) They have ranks

∫
− P = p′ − q′ θ =: β

and
∫
− P′ = −(p − q θ) =: β′; and (c) They have Chern numbers c1(P) = −q′

and c1(P
′ ) = q. This fixes the K-theory classes of the projectors (52) which are

interpreted as (D2, D0)-brane charges (p′,−q′) and (−p, q) respectively in open
string field theory [4]. The non-trivial generator of K0(Aθ) has charge (0, 1) and
is called the Powers-Rieffel projector [21].

5.3. Orthogonal Projections

Let us focus for the moment on the first tower of projectors P in (52). In defor-
mation quantization [22], the Wigner function corresponding to P is not a lump
as in the case of the noncommutative plane, but rather exhibits stripe patterns on
the torus T

2 with area proportional to β [17]. One set of stripes displays periodic
lumps with period q′, which is a manifestation of the UV/IR mixing phenomenon
in noncommutative field theory since the size of the soliton grows with its oscil-
lation period. We can now “translate” the projector P along the first cycle of T

2

through the outer automorphism α : Aθ → Aθ defined by

α(U2) = ei2πp/q U2, α(U1) = U1. (53)

Iterating, we may then define a new set of projections for i = 1, . . . , q by

P
ii := αi−1(P) . (54)

They form a system of mutually orthogonal projection operators with

P
ii

P
jj = δij P

ii . (55)

It is convenient in this construction to represent the algebra on the GNS repre-
sentation space H := L2(Aθ ,

∫
− ). The images of the projectors (54) then define
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the Chan-Paton subspaces Hi := im(Pii) ⊂ H with End(Hi) = Pii Aθ Pii the
algebra of open string modes ending on the D-brane state determined by Pii. One
has Pii|Hi

= 11 and Hi ⊂ ker(Pjj) for j �= i.

5.4. Partial Isometries

Let us define the operator

Π21 := P
22 U1 P

11 . (56)

It can be regarded as a closed bounded operator Π21 : H1 → H2, but it is not
an isometry since (Π21)† Π21 �= 11. On H it admits a polar decomposition given
by [23]

Π21 := P
21
∣∣Π21
∣∣ (57)

where |Π21| is a hermitian operator and P21 ∈ Aθ is a partial isometry with [9]

lim
n→∞

∥∥Π21
n − P

21
n

∥∥
H

= 0 . (58)

For i = 1, . . . , q − 2 the translated partial isometries

P
i+2,i+1 := αi

(
P

21
)

, P
ji :=

(
P

ij
)† (59)

satisfy the matrix unit relations

P
ij

P
kl = δjk P

il . (60)

These relations can be used to generate a set of q2 operators Pij : Hj → Hi, i.e.,
Pij ∈ Pii Aθ Pjj . In a similar fashion, from the second tower we can construct
q′ 2 matrix units P′ i′j′ which are orthogonal to Pij .

6. Noncommutative Field Theory as Matrix Quantum Mechanics

We will now use the systems of projections and partial isometries above to con-
struct the desired one-dimensional matrix model [17]. We will first build the sub-
algebras An and state the basic matrix approximation theorem at the algebraic
level. Then we demonstrate how to transcribe generic field theory actions on Aθ

into matrix quantum mechanics which can serve as precise non-perturbative reg-
ularizations of the continuum field theories with tractable large N limits.
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6.1. The Matrix Approximation

The collection of operators {Pij} do not quite close a q×q matrix algebra, because

P
1q := P

12
P

23 · · ·Pq−1,q �= αq−1
(
P

21
)

. (61)

However, both operators in (61) are isometries on Hq → H1 and consequently
are related as

αq−1
(
P

21
)

= z P
1q (62)

where z is a unitary operator on H1, i.e., a partial isometry on the whole of the
Hilbert space H. We may regard z as the generator of the algebra C∞(S1). Then
the operators {Pij , z} close a subalgebra of Aθ which is naturally isomorphic to
the algebra Mq(S

1) of q × q matrix-valued functions on a circle. An analogous
construction in the second tower gives a collection {P′ i′j′ , z′ }, and combining the
two towers thus gives the matrix subalgebras

An
∼= Mq

(
S

1
)
⊕ Mq′

(
S

1
)
⊂ Aθ . (63)

The important point here is that An is a subalgebra of Aθ.

By using the continued fraction expansion (39,40) it is possible to define a system
of embeddings on the sequence of subalgebras {An}n∈N0

and realize the non-
commutative torus algebra Aθ as an inductive limit (51) [17]. To describe the
convergence theorem explicitly, we define the operators

U1 = Γ
(q)
1 ⊕ Γ

(q′ )
2 (z′ ) , U2 = Γ

(q)
2 (z) ⊕ Γ

(q′ )
1 . (64)

The operator Γ
(q)
1 is, with respect to the system of matrix units Pij ∈ Aθ, the

standard q × q clock matrix in the q-th root of unity ei2πθ2n . The operator Γ
(q)
2 (z)

is the same as the standard shift matrix except that its component multiplying the
matrix unit Pq1 is z. It coincides with the standard cyclic shift matrix Γ

(q)
2 =

Γ
(q)
2 (1) at z = 1. One still has the usual Weyl algebra (46), and also

(
Γ

(q)
1

)q
=

11q,
(
Γ

(q)
2 (z)

)q
= z 11q. Completely analogous relations hold for the second tower,

and it follows that the elements U 1, U2 generate the matrix subalgebra (63). We
may define a restriction map γn : Aθ → An on generators by

γn(Ui) = U i , i = 1, 2 . (65)

Then for any element f ∈ Aθ the image γn(f) := f ⊕ f ′ ∈ An converges to f
in the sense that [17]

lim
n→∞

∥∥f − γn(f)
∥∥
H

= 0 . (66)

The mapping γn, which is not an algebra homomorphism, defines the soliton ex-
pansion of noncommutative fields.
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6.2. The One-Dimensional Matrix Model

We will now describe how to construct matrix model actions which approximate
generic field theories on the noncommutative torus [17]. Let ∂i : Aθ → Aθ be the
outer derivations representing the action of the translation group of T

2 which are
defined on generators by

∂i(Uj) = i2πδij Uj , i, j = 1, 2 . (67)

Let Φ be a collection of fields in Aθ with lagrangian L(Φ, ∂i(Φ)) ∈ Aθ. Field
theory on Aθ is then defined by the action

S(Φ) =

∫
− L
(
Φ , ∂i(Φ)

)
. (68)

In the setting of Sections 3 and 4, we use the map πn : Aθ → Mqn
(C) defined by

πn(Ui) = Γ
(qn)
i (c.f. equation (45)) and the discrete derivatives (28) to approxi-

mate this field theory by a zero-dimensional matrix model with action [2]

S(0)
n (Φ) = TrL

(
πn(Φ) , Di πn(Φ)D†

i − πn(Φ)
)

. (69)

We will now find a matrix quantum mechanics action S
(1)
n (Φ) corresponding to

the approximation γn : Aθ → An defined by (65).

Let us begin by describing how to transcribe the trace in (68). On Aθ it is defined
on generic elements (6) by

∫
− Un1

1 Un2

2 = δn1,0 δn2,0. On the matrix subalgebra
An, it is possible to work out

∫
− Un1

1 Un2

2 using the trace properties
∫
− Pij = β δij

of the matrix units. Using the rapid decay property of Schwartz sequences, in
the limit n → ∞ one finds that a good approximation is given by the expected
definition ∫

− γn(f) = β

1∫
0

Trf(τ)dτ + β′

1∫
0

Trf ′(τ ′ )dτ ′ (70)

where we have parametrized the circles in the two towers by z = ei2πτ and z′ =
ei2πτ ′

with τ, τ ′ ∈ [0, 1).

The approximation of the derivations (67) is much more involved. Let us focus
on the first tower in (63) and expand the component of γn(f) in this tower as

f =

q∑
l,m=1

∑
k∈Z

φlm;k zk Γl
1 Γ2(z)m (71)
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with φlm;k :=
∑

r∈Z
f(l+r q,m+k q). By considering the projection γn(∂i(f)) on

Aθ → An and using the Schwartz property in the limit q → ∞, we define the
operators

∆1f(z) := i2π

q∑
l,m=1

∑
k∈Z

l φlm;k zk Γl
1 Γ2(z)m

∆2f(z) := i2π

q∑
l,m=1

∑
k∈Z

(m + k q)φlm;k zk Γl
1 Γ2(z)m .

(72)

These operators converge to the derivations ∂i in the limit n → ∞. At finite n
they satisfy an “approximate” Leibnitz rule, in the sense that they only become
derivations at n → ∞. To write these as operators acting on the expansion of
f in the system of matrix units Plm, one now needs to compute the change of
orthogonal bases between Plm and Γl

1 Γ2(z)m [17].

By performing an identical analysis in the second tower, in this way one finds that
the action functional (68) is well approximated by the one-dimensional matrix
model with action

S(1)
n (Φ)=β

1∫
0

TrL
(
Φ(τ), ∆iΦ(τ)

)
dτ +β′

1∫
0

TrL
(
Φ

′(τ ′), ∆iΦ
′(τ ′ )

)
dτ ′

(73)
where γn(Φ) := Φ(τ) ⊕ Φ

′(τ ′ ) and

∆1Φ(τ) = ΣΦ(τ), ∆1Φ
′(τ ′ ) = q′Φ̇′(τ ′) +

[
Ξ′,Φ′(τ ′)

]
∆2Φ(τ) = qΦ̇(τ) +

[
Ξ,Φ(τ)

]
, ∆2Φ

′(τ ′) = Σ′
Φ

′(τ ′)
(74)

with the dots denoting a derivative with respect to τ or τ ′. The q × q matrix

Ξlm = i2πm δlm, 1 ≤ l, m ≤ q (75)

is an “infinitesimal” version of the clock matrix
(
Γ

(q)
1

)†. The antihermitian oper-
ator Σ is defined by (Σf)(τ)lm =

∑
s,t Σ(τ)lm,st f(τ)st with

Σ(τ)lm,st =−
i2π

q

q∑
s′=1

s′ei2πs′(l−s)θ2n

{
δt,s+l−m, m≤l, 1≤s≤q+m−l

δt,s+l−m−qe−i2πτ , j<i, q+m−l+1≤s≤q
(76)

and it can be regarded as an “infinitesimal” version of the shift matrix Γ
(q)
2 .

The forms (74) (along with (64)) of the derivation ∆ illustrate the role of the
two towers in this matrix approximation. The roles of the components of ∆ are
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interchanged between the two towers, and acting on Schwartz sequences they
“compensate” each other in the n → ∞ limit. Because of the inductive limit
property (51), the convergence of (73) to the original continuum action (68) is
“exact” and the large n limit may be taken directly. This is in marked contrast to
the large n limit required of (69) which involves a complex double scaling limit
via an embedding of the noncommutative torus into a homotopically equivalent
AF-algebra A∞. The zero-dimensional matrix model has a clear geometric origin
through toroidal compactification, while the one-dimensional matrix model has
a nice physical interpretation. The mapping f �→ γn(f) truncates the infinite
number of image D-branes living on the covering space of T

2 = R
2/Z

2 to a finite
number q q′, corresponding to the physical open string modes which are invariant
under the action of the truncated momentum lattice (Z/q q ′ Z)2.
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