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Abstract. We consider an integrable model which describes light beams propa-
gating in nonlocal nonlinear media of Cole-Cole type. The model is derived as high
frequency limit of both Maxwell equations and the nonlocal nonlinear Schrödinger
equation. We demonstrate that for a general form of nonlinearity there exist self-
guided light beams. In high frequency limit nonlocal perturbations can be seen as
a class of phase deformation along one direction. We study in detail nonlocal per-
turbations described by the dispersionless Veselov-Novikov (dVN) hierarchy. The
dVN hierarchy is analyzed by the reduction method based on symmetry constraints
and by the quasiclassical ∂̄−dressing method. Quasiclassical ∂̄−dressing method
reveals a connection between nonlocal nonlinear geometric optics and the theory
of quasiconformal mappings of the plane.

1. Introduction

The optics studies phenomena of the propagation of the electromagnetic waves
through a dielectric medium in absence of currents and charges [9]. In such a
case the Maxwell equations assume the form

∇∧ H − ∂D

∂t
= 0 (1a)

∇∧ E +
∂B

∂t
= 0 (1b)

∇ · D = 0 (1c)

∇ · B = 0 (1d)

where x, y, z are the spatial coordinates, ∇ = (∂x, ∂y, ∂z) is the gradient and
t is the time. For sake of simplicity we have set the light speed c = 1. The
vectors E and B are the electric and magnetic fields respectively, while the dis-
placement vector D and the magnetic induction H contain the information about
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the response of the medium when an external electromagnetic field is applied. In
general, D and H are certain functions of E and B and they are specified by the
so-called constitutive relations. In several physically meaningful cases they can
be written down as follows

D = εE, B = µH (2)

where electric permittivity ε and the magnetic permeability µ depend on the co-
ordinates and on the fields. In the case in which ε and µ depend at most on the
coordinates, the Maxwell equations are linear and provides us with an exhaustive
description of a very broad class of phenomena in physics [9, 26, 42].

The nonlinear optics deals with the class of media such that ε and µ depend on
the fields. In this case, the Maxwell equations are nonlinear and construction of
their solutions is, in general, a very challenging problem. In the following, we will
focus only on the electric part of the field, assuming the magnetic response to be
negligible, i.e., µ = 1. This condition is realized in many experimental situations.

By definition, a dielectric medium is referred to as nonlinear if the dielectric func-
tion ε is a certain function of the electric field ε = ε (E).

The solution of the Maxwell equations for an arbitrary form of the function ε is,
of course, a hard problem. Nevertheless, several very interesting cases, such as
quadratic and cubic nonlinearities, are amenable by exact methods. Moreover,
they are connected with a relevant phenomenology such as the higher harmonic
generation (quadratic nonlinearity) and the soliton production (cubic nonlinear-
ity) [10].

In the present paper we consider a model for light beams propagation in the limit
of high frequency. This model can be derived both as high frequency limit of the
Maxwell equations and from the nonlinear Schrödinger (NLS) equation which
describes paraxial light beams. We will show that it is reasonable to assume the
nonlocality to be weak because of the quickly oscillating fields. In particular, we
can separate the pure nonlinear contribution from the higher orders nonlocal per-
turbations. Leading order is represented by the standard eikonal equation. Note
that in the standard theory higher order terms contain the amplitude of the electric
field as well as the phase S and consequently in virtue of nonlocality and nonlin-
earity they are rather complicated. Nevertheless, there exist a type of media where
it is possible to consider a set of nonlocal perturbations along one direction, say
z, which are not mixed up with the wave contributions. These are the Cole-Cole
media. They are characterized by the Cole-Cole dispersion law for the dielectric
function of the form ε = ε0+O(ω−α) for 0 < α < 1 and ω → ∞. We would like
to stress that a large variety of solid and liquid polar media obeys the Cole-Cole
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dispersion law [14]. In this case we perform an asymptotic expansion of all fields
with respect to the small parameter ω−α separating first nonlocal correction to the
phase S from the higher order wave corrections. In our derivations a suitable slow
dependence along z−direction is assumed. Nonlocal corrections are described
by polynomials in Sx and Sy. In particular, a one-to-one correspondence among
nonlocality and polynomials degrees is realized.

In the ω → ∞ limit separation between the nonlinear response and the non-
local effects along z suggest to study first the properties of the light beam on
the xy−plane (transverse equations) and then the “evolution” along z. Trans-
verse equations are the two-dimensional eikonal equation and the geometric op-
tics limit of the Poynting vector conservation law. It is shown that for a general
class of nonlinear responses obeying the so-called ellipticity condition there ex-
ists self-guided light beams. Moreover, several light beam features are determined
in terms of the properties of quasiconformal mappings on the plane via the Bel-
trami equation. Propagation of helicoidal wavefronts and its first degree nonlocal
perturbations are also discussed. Thereafter, we focus on the special class of per-
turbations which preserve the phase inversion symmetry S → −S similar to the
eikonal equation. Such perturbations are shown to be described by an infinite set
of integrable nonlinear partial differential equations (PDEs). It is the dispersion-
less Veselov-Novikov (dVN) hierarchy. First non-trivial equation of the hierarchy
can be formally obtained by the slow variable expansion of the Veselov-Novikov
equation, which has been introduced in [59] as (2+1)D integrable generalization
of Korteweg-de-Vries equation. The dVN hierarchy is of interest since it is treat-
able by different approaches. More specifically, we discuss the reduction method
based on the symmetry constraints. It allows us to reduce the dVN equation to a
1 + 1−dimensional hydrodynamic-type system and it is effective for construction
of explicit solutions. Moreover, we study the eikonal equation and the dVN hier-
archy using the quasiclassical ∂̄−dressing method. It provides us with a general
approach to construct and analyze the whole hierarchy.

It is worth to note that the quasiclassical ∂̄−dressing method establishes a remark-
able connection between the nonlocal nonlinear geometric optics and the theory
of quasiconformal mappings of the plane.

The paper is organized as follows. The model under consideration is derived
from the Maxwell equations in Section 2 and starting with NLS equation in the
Section 3. In Section 4 we analyze the transverse equations in connection with
the Beltrami equation and minimal surfaces equation which gives the helicoidal
wavefronts. Nonlocal perturbations described by the dVN hierarchy are derived
in Section 5. After a short review about integrable system in Section 6 we dis-
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cuss the hydrodynamic-type reductions obtained using the symmetry constraints
in Section 7 and the application of the quasiclassical ∂̄−dressing method to the
eikonal equation and to the dVN hierarchy in Section 8. Some concluding remarks
close the paper.

2. The General Model

Let us consider a medium with the magnetic permeability µ = 1. In such a case
the Maxwell equations (1) imply that

∇∧∇ ∧ E +
∂2

D

∂t2
= 0. (3)

For time oscillating solutions, of the form

E(x, y, z, t) = E(x, y, z) eiωt, D(x, y, z, t) = D(x, y, z) eiωt

equation (3) looks like
∇∧∇ ∧ E − ω2

D = 0 (4)

or, equivalently
∇2

E + ω2
D −∇ (∇ · E) = 0. (5)

Once the constitutive relation for D is assigned equation (5) determines the elec-
tric component of the field.

The constitutive relation depends on the physical properties of the medium. Let
us assume that the displacement vector D can be splitted in a local part DL and a
nonlocal one DN as follows

D = DL + DN (6)

where

DL = ε(I(x))E(x) (7)

DN =

∫
R3

R(x′ − x, a(ω))N(I(x′))E(x′) dx′. (8)

The quantity I = |E0|2 is the intensity of the electric field, ε(I) and N(I) are,
respectively, the local and nonlocal nonlinear responses while the function R(x−
x
′) describes the nonlocal distribution. The parameter a(ω) governs the width

of the nonlocal response in different regimes of the frequency. In particular, in
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the high frequency limit it is reasonable to assume that the external field is not
resonant with the proper oscillations of the particles of the medium in such a way
that the response becomes local, i.e.,

lim
ω→∞

R
(
x
′ − x, a(ω)

)
= δ
(
x
′ − x

)
(9)

where δ(x′ − x) denotes the Dirac δ−function. In order to explain this behav-
ior, one can consider a naive model where the single particle of the medium is
described by a one dimensional forced oscillator

ẍ + ω0x = f0 sin (ωt) . (10)

As usual, the dot denotes the total time derivative, ω0 is the proper oscillation
frequency of the particle. The left hand side contains the forcing term represented
by a linearly polarized electric field oscillating with frequency ω. The solution of
equation (10) is of the form

x =

⎧⎪⎪⎨
⎪⎪⎩

c1 sin (ω0t) + c2 cos (ω0t) +
f0

ω2
0 − ω2

sin (ωt) ω0 �= ω

c1 sin (ω0t) + c2 cos (ω0t) − f0

2ω0
t cos (ω0t) ω0 = ω.

(11)

We remind that we are interested in the non-resonant regime ω0 �= ω. In this
case, it is easy to see that for ω → ∞ the forcing contribution disappears and the
particle behaves as the harmonic oscillator. In this regime one expects that the
effect of the external field, up to higher corrections, does not propagate far from
the point considered and the response tends to be as local as much ω is larger.

Substituting the expression (6) into equation (1c) one gets

∇ · E = −∇ (log ε) · E − ∇ · DN

ε
. (12)

Thus, equation (5) takes the form

∇2
E + ω2 (εE + DN ) −∇

(
−∇ log ε · E − ∇ · DN

ε

)
= 0. (13)

Let us introduce a general model of weak nonlocality. It is given by a nonlocal
distribution function of the following form

R
(
x − x

′
)

= ρlmn (x) δ(l,m,n)
(
x − x

′
)

(14)
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where the sum on the repeated indices is assumed. The distributions δ(l,m,n) are
the Dirac δ−function derivatives. They are standardly defined via∫

R3

δ(l,m,n)
(
x − x

′
)

f
(
x
′
)

dx′ = (−1)l+m+n ∂l+m+nf(x)

∂xl
1∂xm

2 ∂xn
3

(15)

where we set x = (x1, x2, x3).

Using the weak nonlocal distribution (14), one can rearrange the expression on
the nonlocal contribution DN as follows

DN = r(0)(x)N (I(x))E(x) + r
(1)
l (x) ∂xl

(N (I(x)) E(x))
(16)

+ r
(2)
lm∂xl

∂xm
(N (I(x)) E(x)) + r

(3)
lmn (x) ∂xl

∂xm
∂xn

(N (I(x)) E(x)) + . . .

In principle the coefficients r(n) might depend on the frequency. In particular, we
assume the following power dependence

r(n) =
r̃(n)

ωn
· (17)

Here we consider a model where the function N depends on the intensity accord-
ing to the formula

N (I(x)) =
ε (I(x))

ωα
(18)

where α is a real positive constant parameter.

Under the assumptions mentioned above we perform the geometric optics (semi-
classical) limit of equation (13). As usual, let us represent the electric field in
term of the phase S̃

E (x) = E0 (x) eiωS̃(x). (19)

In high frequency limit, ω−α is the small parameter with respect to which we may
consider the following asymptotic expansions

I = I0 + ω−αI1 + O
(
ω−2α

)
(20)

ε (I(x)) = ε0 (I0(x)) + ω−αε1 (I0(x), I1(x)) + O
(
ω−2α

)
. (21)

Evaluating DN in the limit of high frequency, one gets

DN ≈ ε0 (I0(x))E0(x) D eiωS̃(x), ω → ∞ (22)

where

D = r̃(0) + ir̃
(1)
l S̃xl

− r̃
(2)
lm S̃xl

S̃xm
− ir̃

(3)
lmnS̃xl

S̃xm
S̃xn

+ . . .

l, m, n = 1, 2, 3.
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Using the expression (22), we get

∇ · DN ≈ iω D ε0 (I0(x)) E0(x) · ∇S̃ eiωS̃(x) (23a)

∇ (∇ · DN ) ≈ −ω2 D ε0 (I0(x))
(
E0 · ∇S̃

)
∇S̃ eiωS̃(x). (23b)

Recall that the vector ∇S̃ is perpendicular to the wavefront and provides us with
the light rays direction. Imposing the so-called transversality condition

E0 · ∇S̃ = 0 (24)

we restrict ourselves to the solutions such that the electric field E is perpendicular
to the light rays. In this case the terms (23a) and (23b) do not contribute to the
high frequency limit of the equation (13).

Moreover, we look for z−variable slowly depending solutions of the following
form

S̃ = kz + S (x, y, τ) (25)

where τ := z/ωα is the “slow variable”. The high frequency limit of the equa-
tion (13) at the leading order gives

S2
x + S2

y = 4u (I0(x)) (26)

where 4u (I0(x)) = ε0 (I0(x)) − k2.

If the parameter α is such that 0 < α < 1 we get an intermediate contribution
between the pure geometric optics order and the first correction containing the
amplitude of the electric field. In order to calculate it, we note that

S̃2
z =
(
k + ω−αSτ

)2
= k2 + 2kω−αSτ + ω−2αS2

τ (27)

where we kept into account that

∂

∂z
= ω−α ∂

∂τ
. (28)

The ω2−α order term in equation (13) is

2kSτ + D̃ (x, y, τ, Sx, Sy) ε0 + ε1 = 0 (29)

where D̃ is a polynomial in Sx and Sy of the form

D̃ = r̃(0) + ir̃
(1)
l Sxl

+ ikr̃
(1)
3 − r̃

(2)
lmSxl

Sxm
− kr̃

(2)
l3 (30)

− kr̃
(2)
3mSxm

+ . . . , l, m = 1, 2.
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Resuming, we have derived the following system of equations

S2
x + S2

y = 4u (I0) (31a)

Sτ = ϕ (Sx, Sy, I0, I1, x, y, τ) (31b)

where we set

ϕ (x, y, τ, Sx, Sy) = −ε0 (I0)

2k
D̃ (Sx, Sy, x, y, τ) − ε1 (I0, I1)

2k
. (32)

In the construction above, an important role is played by the parameter ω−α with
the condition 0 < α < 1. It is now natural to ask whether such materials exist in
reality. To provide with positive answer let us consider a medium which satisfies
the following dispersion law

ε = ε0 +
ε̃

1 + (2iω)α , 0 < α < 1. (33)

The formula (33) is referred to as the Cole-Cole dispersion law and it has been
found experimentally by the Cole and Cole in 1941 [14]. It is a phenomenoloigical
modification of the “classical” Debye law (obtained from the formula (33) in the
limit case α = 1). If ε0 and ε̃ depend on the intensity I , the function ε1 (I0, I1) in
the expansion (21) is

ε1 (I0, I1) =
dε0

dI0
(I0) I1 + ε̃ (I0) . (34)

Thus, our general model is realizable in the Cole-Cole media.

For sake of simplicity, let us consider a linearly polarized electric field E = E ê,
where ê is a constant unit vector and evaluate explicitly the nonlocal term DN =
DN ê in the one-dimensional case

DN (x) = ω−α

+∞∫
−∞

R
(
x′ − x

)
ε
(
I(x′)

)
E
(
x′
)
dx′. (35)

If the nonlocal distribution function R (x′ − x) is narrow one as it happens in the
high frequency limit, one can expand ε (I(x′)) and E(x′) around the point x. So,
one gets

DN =R0ε (I(x)) E(x) + R1

(
ε′ (I(x)) E(x) + ε (I(x))E ′(x)

)
(36)

+ R2

(
1

2
ε′′ (I(x)) E(x) + ε′ (I(x)) E′(x) +

1

2
ε (I(x)) E′′(x)

)
. . .
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where ε′ = dε/dx and ε′′ = d2ε/dx2

Rn =

+∞∫
−∞

R
(
x′ − x

) (
x′ − x

)n
dx′

is referred to as n−moment of the function R. If

Rn =
rn

ωn
(37)

in high frequency limit, one gets

DN ≈ ε0E0

ωα

(
r0 + ir1Sx − 1

2
r2S

2
x + . . .

)
eiωS , ω → ∞. (38)

We note that narrower is the nonlocal distribution function R smaller are the
higher moments. In this particular case the coefficients rn are related one to an-
other and they are expressed in terms of the fundamental quantity R. Thus, the
equation of ω2−α order is

Sτ = − ε0

2k

(
r0 + ir1Sx − 1

2
r2S

2
x + . . .

)
− ε1

2k
· (39)

An example of distribution R whose moments are of the form (37) is provided by
the Gaussian distribution

R(x) =
ω√
π

e−ω2x2

. (40)

In order to give a complete description of the physical system we should take
into account the conservation law of the Poynting vector. The Poynting vector in
complex representation is defined as follows [26]

P = E ∧ B
∗. (41)

In the more general case µ �= 1, B should be replaced by H in the formula (41).

The conservation law is (see page 35 in the reference [9])

∇ · P = 0. (42)

Equation (1b) for time-oscillating fields looks like as follows

∇∧ E + iωB = 0. (43)

Using the representation

E = E0e
iωS̃ , B = B0e

iωS̃
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one gets
∇∧ E0 + iω∇S̃ ∧ E0 = iωB0. (44)

The leading order in high frequency limit gives

B0 = ∇S̃ ∧ E0. (45)

Thus, we have the following approximation of the Poynting vector

P = E0 ∧ B
∗
0 = E0 ∧

(
∇S̃ ∧ E

∗
0

)
= (E0 · E∗

0)∇S̃ −
(
E0 · ∇S̃

)
E

∗
0.

In virtue of the transversality condition (24) one finally has

P = I∇S̃ (46)

where I = |E0|2. Note that P is parallel to the gradient of the phase ∇S. Using
the expression (46) in (42), one obtains

∇I · ∇S̃ + I∇2S̃ = 0. (47)

Due to the slow dependence on the variable z, for phases of the form (25) and the
asymptotic expansion I = I0 + ω−αI1 + . . . , equation (47) becomes

I0 (Sxx + Syy) + I0xSx + I0ySy = 0 (48a)

I1 (Sxx + Syy) + I1xSx + I1ySy + kI0τ = 0. (48b)

The system (48) has to be considered together with the system for the phase (31).

The properties of present model have to be investigated by the joint analysis of
the system (31) and the system (48). In our discussions we will separate the com-
patibility analysis of the transverse equation (31a) and (48a) from the “evolution”
equations (31b) and (48b).

3. Paraxial Light Beams

3.1. The Nonlocal NLS Equation

Many phenomenological models are based on the so-called nonlocal NLS equa-
tion [11,15,30–32,39–41,50]. It describes paraxial light beams in nonlinear (and
also nonlocal) media. In the present section we discuss the connection between
the high frequency model discussed above and the nonlocal NLS equation.

Let us consider a displacement vector of the form

D = σE + σ3
D

(3) (49)
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where σ is a constant parameter. The paraxial approximation in equation (5) is
usually performed by the consideration of the slow variations of a small-amplitude
electric field (or formally by the substitutions)

(∂x, ∂y, ∂z) →
(
σ∂x, σ∂y, σ

2∂z

)
, E → σEeiωz.

The leading nontrivial order in equation (5) is

2iω
∂E

∂z
+ ∇2

⊥E + ω2
D

(3) = 0 (50)

where ∇⊥ = (∂x, ∂y). For a general nonlocal nonlinear medium we can write

D
(3) =

∫
R3

R
(
r
′ − r, a

)
N
(
I(r′)

)
E(r′)d3

r
′ (51)

where r = (x, y, z). We use the notation D
(3) to recall that, in the case of a

local Kerr medium, the relation (51) is reduced to the cubic nonlinearity which
is associated with the standard NLS equation [10]. The distribution R(r′ − r, a)
characterizes the nonlocal response around the point r and a is the “width” pa-
rameter (in the following it will be assumed to be depending on the frequency
ω). N(I) is a certain nonlinear response depending on the intensity of the electric
field I = |E|2.

We note that due to the paraxial approximation the nonlocal response along z can
be neglected. As illustrative example to explain this fact let us consider a Gaussian
nonlocal response

R
(
r
′, r
)

=
1

(2π)
3

2

e−|r′−r|2 (52)

where |r|2 = x2+y2+z2. Due to the paraxial approximation we take into account
of slow dependence on the variable z by the substitution z → ε−1z

lim
ε→0

1

ε(2π)
3

2

e
(z

′
−z)

2

ε2 e(x′−x)2+(y′−y)2 =
1

2π
δ
(
z′ − z

)
e(x′−x)2+(y′−y)2 . (53)

The Dirac δ−function in the left hand side of (53) implies that the response along
the direction z becomes local. Thus, with the use of the distribution (53) in the
general definition of D

(3) the 3D integral is reduced to a two-dimensional one

D
(3) =

+∞∫
−∞

+∞∫
−∞

R
(
x′ − x, y′ − y, a

)
N (I(x, y, z))E(x, y, z)dxdy. (54)
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The model considered above, can be further simplified under suitable assumptions
on the widths of the nonlocal distribution R and the nonlinear response N(I). For
the sake of simplicity we focus on the 1 + 1−dimensional case

2iω
∂E

∂z
+

∂2
E

∂x2
+ ω2

D
(3) = 0 (55)

where

D
(3) =

+∞∫
−∞

R(x − x′, a)N
(
I(x′)

)
E(x′)dx′. (56)

Let us define the width δR of the nonlocal distribution R (x − x′; a) as the mini-
mum such that

R
(
x − x′, a

) � 0, for all x′ /∈ [x − δR, x + δR] . (57)

Of course, δR depends on the width parameter a. Similarly, we can introduce the
widths δE and δN of the electric field and the nonlinear response respectively.
Suppose they satisfy the following conditions

δR ∼ δN, δR � δE. (58)

Moreover, we assume the nonlinear response N(I) to be of the form

N (I(x)) = Ñ (X) (59)

where X = γ x and γ ∝ 1/δN . Expanding E(x′) and N (I(x′)) in Taylor series
around x, one gets the following approximation of the formula (56)

D
(3) �

( +∞∫
−∞

R(x − x′, a)N
(
I(x′)

)
dx′
)
E(x) (60)

where we kept into account that due to equation (59) higher orders of the expan-
sion of N (I(x)) are not negligible. Note that the formula (60), in the case of
nonlocal Kerr-type medium, leads to the nonlocal nonlinear Schrödinger equation
discussed in the paper [40].

For instance, given a bell-shaped electric field E = E0 exp
[−x2/2σ2

]
, a non-

linear response of the form N(I) = Iα = |E0|2α exp
[
− (γx)2 /2σ2

]
, where

γ =
√

2α, satisfies the condition (59). Nevertheless, it is easy to see that only the
validity of relations (58) is sufficient to obtain the model (60). For instance, for
E = E0/ cosh2(x) and N (I) = Iα, condition (58) is verified for α large enough.
Finally, we note that it is straightforward to generalize the previous considerations
to construct a more general (2 + 1)D model.



High Frequency Integrable Regimes in Nonlocal Nonlinear Optics 49

3.2. High Frequency Regimes

Now, we discuss the above in high frequency regime.

With the representation
E = E0e

iωS̃(x,y,z)

the NNLS equation takes the form

2S̃z +
(
∇⊥S̃

)2
= N0(I0(x, y, z)) (61)

where ∇⊥ = (∂x, ∂y) and N0(I0) is the high frequency limit of the intensity law

lim
ω→∞

N (I) = N0 (I0) .

Paraxial approximation of the Poynting vector conservation law (42) at the leading
order on σ gives the following equation on the xy−plane

∇⊥I · ∇⊥S̃ + I∇2
⊥S̃ = 0. (62)

An analysis of the (1+1)D reduction of the couple of the equations (61) and (62)
suggests that possible stable light beams (in this specific regime) exists only in
(2 + 1)D. Indeed, the following example shows that the bell-shape initial beam
profiles are no longer preserved.

If S in equations (61) and (62) does not depend on the variable y, one has

2S̃z + S̃2
x = N0 (I0) (63a)

I0S̃xx + I0xS̃x = 0. (63b)

Integrating equation (63b), one gets

S̃x =
γ0

I0
(64a)

S̃z =
1

2

(
N0(I0) − γ2

0

I2
0

)
(64b)

where γ0 is an arbitrary real constant. In virtue of Sxz = Szx one obtains

I0z +

(
I2
0N ′

0(I0)

2γ0
+

γ0

I0

)
I0x = 0 (65)

where N ′
0 := dN0

dI0
. General solution of equation (65), calculated by the character-

istics method [17], is provided by the following implicit relation

x −
(

I2
0N ′(I0)

2γ0
+

γ0

I0

)
− Φ(I0) = 0 (66)



50 Antonio Moro and Boris Konopelchenko

where Φ is an arbitrary function of its argument. It is assigned by the initial profile
of the intensity

I0 (x, 0) = Φ−1 (x) . (67)

It is well known [60] that equations of type (65) exhibit breaking wave phenomena
for finite z. For example, a smooth initial profile, such that I0 → 0 for x → ±∞
breaks at finite z where I0x → ∞.

Let us now consider a (2 + 1)D model for the following class of solutions

S̃ = kz + S (x, y, τ) (68)

where k is a real constant and τ = ωαz (with α > 0). A class of nonlocal per-
turbations with respect to the slow variable τ will be discussed in the following
subsection. Under these assumptions equations (61) and (62) assume the follow-
ing form

S2
x + S2

y = 4u (I0(x, y)) (69a)

I0 (Sxx + Syy) + I0xSx + I0ySy = 0 (69b)

where 4u(I0) = Ñ0(I0) − 2k. We kept into account that due to the rule

∂

∂z
= ω−α ∂

∂τ

z−derivatives do not contribute in the limit ω → ∞. We note also that I0 is the
leading order term of the ω−α−asymptotic expansion of the intensity

I(x, y, z) = I0(x, y, τ) + ω−αI1(x, y, τ) + . . .

One refers to the functional dependence among u and I0 as intensity law. It is
determined by the specific physical properties of the medium. Note that once
u(I0) is given, the system (69) is overdetermined. Its consistency condition will
be discussed in the next section.

3.3. Nonlocal Perturbations

Let us consider a model for which the nonlocal nonlinear contribution to the dis-
placement vector is of the following form

D
(3) = εE + DN (70)

where
DN =

∫
R2

R
(
r
′ − r, ω

)
N
(
I(r′, z)

)
E(r, z)dr′.
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In particular, we are interested in the construction of a special class of weak non-
local perturbations given by a nonlocal distribution function of the form

R
(
r − r

′, ω
)

=

M∑
l,m=0

Rl,m (r, ω) δ(l,m)
(
r − r

′
)

(71)

where r = (x, y) the distributions δ(l,m) are defined by (15) and M is an arbitrary
integer referred to as nonlocality degree. As a consequence one gets

DN =
2∑

l=1

cn
∂E

∂xl

+
2∑

l,m=1

cl,m

∂2
E

∂xl ∂xm

+ . . . (72)

Using the following asymptotic expansions on ω−α

E0(x, y, z) = E0(x, y, τ) + ω−α
E1(x, y, τ) + . . .

ε(x, y, z) = ε0(x, y, τ) + ω−αε2
1(x, y, τ) + . . .

(73)

and proceeding similarly to the previous section for a Cole-Cole medium (33),
one gets from the NNLS equation in the leading orders ω2 and ω2−α the following
system

S2
x + S2

y = 4u (74a)

Sτ = ϕ(Sx, Sy, x, y, τ) (74b)

where 4u = ε0 − 2k and the function ϕ is a polynomial in Sx and Sy. Equa-
tion (74a) is the well known eikonal equation in two-dimensions. The function ϕ
in equation (74b), in virtue of expression (72), is an M -degree polynomial in Sx

and Sy and it describes an M -degree nonlocal response. Moreover, if we require
that equation (74b) possesses the phase inversion symmetry (S → −S) just like
the eikonal equation, the function ϕ must contain only odd degree terms in Sx and
Sy. We note also that the system of equations (74) has been derived first directly
from the Maxwell equations [30, 31].

In local case we have
ϕ = ϕ(z), u = u(x, y) (75)

where ϕ and u are certain function of their arguments. For a first degree nonlo-
cality we have

ϕ = α1Sx + α2Sy (76)

and u must satisfy the following linear equation

uz = (α1u)x + (α2u)y (77)

where α1 and α2 are harmonic conjugate functions, that is they satisfy the Cauchy-
Riemann conditions α1x = α2y, α1y = −α2x.
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4. Transverse Equations

The compatibility of the system of equations for the phase (31) and intensity (48)
results to be highly nontrivial problem. More specifically, one can see that it is not
consistent for arbitrary intensity law. The construction presented above suggest to
separate the compatibility analysis on the xy−plane from the evolution along the
z−direction. We will study the system of equations (31a) and (48a) for a general
form of the intensity law and then we will discuss the “evolution” of the solutions
with respect to the variable τ .

4.1. Elliptic Intensity Laws

Let us assume the function u(I0) to be invertible. Note that for various physically
meaningful models such as the Kerr-type media

u = Iγ
0 , γ > 0 (78)

and logarithmic saturable media

u = log (1 + I0/I0t) (79)

where the constant I0t is the so-called threshold intensity, intensity law is the
invertible one.

Then, we can consider the function I0 = I0(u). We refer to it as inverse intensity
law. Since

∇⊥I0 = I ′0∇⊥u

where I ′0 = dI0/du, the system of equations (31a) and (48a) (or (69)) looks like
as follows

S2
x + S2

y = 4u (80a)

I0 (Sxx + Syy) + I ′0 (uxSx + uySy) = 0. (80b)

Substituting the expression for u from (80a) into (80b), we obtain the following
second order partial differential equation

ASxx + BSyy + 2CSxy = 0 (81)

where by definition J0 = log I0 and

A = J0
′S2

x + 2, B = J0
′S2

y + 2, C = J0
′SxSy. (82)
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The equations of the form (81) are well studied in mathematics (see e.g. [8] and
references therein). Their properties are critically depending on the signature of
the discriminant

∆ = AB − C2. (83)

In particular, one can distinguish three cases, elliptic (∆ > 0), parabolic (∆ = 0)
and hyperbolic (∆ < 0). In what follows, we will focus on the elliptic case moti-
vated by the fact that the intensity law for Kerr-type (78) and logarithmic saturable
media (79) satisfy the ellipticity condition ∆ > 0 uniformly. We remark that these
models are very relevant in practical applications since they are associated with
the propagation of stable spatial solitons [13, 52].

We would like to emphasize that elliptic second order nonlinear equations of the
form (81) possess several remarkable analytical and geometrical properties (see
e.g. [2, 6, 8, 25, 58]). An interesting class of solutions of equation (81) is provided
by the Beltrami equation which is well known and well studied in the theory of
elliptic systems of PDEs and in the theory of quasiconformal mappings [2, 58].
Let us introduce the complex variable z = x + iy (it should not be confused with
real variable associated with the z−axis) and the complex gradient w = Sx− iSy.
In these notations equation (81) takes the form

awz + bwz̄ + āw̄z̄ + b̄w̄z = 0 (84)

where

a =
1

2
(A − B + 2iC) , b =

1

2
(A + B − 2iC) . (85)

It is immediate to verify that if w satifies the, so-called, nonlinear Beltrami equa-
tion

wz̄ = µ (w, w̄)wz, µ = −a

b
(86)

and therefore it is also a solution of equation (84). It is easy to verify that ellipticity
condition ∆ > 0 implies |µ| < 1. Function µ possesses a remarkable geometrical
meaning being the complex dilatation of the quasiconformal mapping w.

Thus, the evolution of a light beam profile along the direction τ turns out to be
described by suitable deformations of quasiconformal mappings.

More specifically, let us consider an input light beam profile such that I0 �= 0
inside a simply connected domain G and I0 = 0 onto the smooth boundary Γ of
G and outside it. Set u0 = u(I0 = 0). Writing down the eikonal equation (69a)
in terms of w and z, one gets

w(z)w̄(z) = 4u. (87)
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From equation (87) one gets |w| = 2
√

u0 for z ∈ Γ, that is Γ is mapped on the
2
√

u0-radius circle. Assuming w to be assigned in such a way that, for instance,
w(0) = 0, where 0 ∈ G, and the variation of the argument of the complex num-
ber w around Γ is ∆Γ arg w = 2π, it can be proven that w is a homeomorphic
mapping of domain G onto 2

√
u0−radius disk Γ′ [25]. Of course, mapping w pre-

serves the topology of domain G. In virtue of the assumption (68) the wavefront
evolves according to the equation

ω−αkτ + S(x, y, τ) = constant. (88)

We observe that the mapping w = Sx − iSy = (Sx,−Sy) can be also regarded as
a two-dimensional vector field on the z−plane associated with transverse compo-
nents of the wavefront normal unit vector

n =
∇S̃

|∇S̃| =

(
Sx√

k2 + 4u
,

Sy√
k2 + 4u

,
1√

k2 + 4u

)
. (89)

We remind that the vector n is, by definition, parallel to the Poynting vector.
This means that the mapping w encodes information about light-rays distribution
around direction τ . For example, let us consider the mapping given in Figure 1.
Curves Γ and Γ′ are oriented leaving domain on the right hand side. Under the
assumptions mentioned above, there exists a homeomorphism w of domain G
onto G′ acting in such a way that w(s1, 0) = (−1, 0), w(0, s2) = (0, 1) and
w(−s3, 0) = (1, 0). Consequently, the normal unit vector to wave-front on the
boundary Γ is oriented in such a way that the light rays lie inside the rectangle
circumscribing the domain G (see Figure 1). Recall that y-component of w re-
verse y-component of n. Then, this mapping describes a light beam ‘trapped’
around the direction τ . Conversely, if w(s1, 0) = (1, 0), w(0, s2) = (0,−1) and

Γ’

trapping

spreading

O O(s1,0)

(0,s2)

(−s3,0)

(0,−s4)

(1,0)

(0,1)

(−1,0)

(0,−1)

G G’

sense−reversingΓ

wz

Figure 1: Sense-reversing mappings (solid line) describe beams which tend to be con-
fined inside the rectangle or scattered (dashed line) outside it.
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Γ’

O O(s1,0)

(0,s2)

(−s3,0)

(0,−s4)

(1,0)

(0,1)

(−1,0)

(0,−1)

G G’

Γ tr
ap

pi
ng

spreading

sense−preserving

wz

Figure 2: For the sense-preserving mapping the light beam spreads along x−direction
and tends to be trapped along y−direction.

w(−s3, 0) = (0,−1) radiation spreads transversely far from τ−direction. Note
also that in both cases homeomorphism w is sense-reversing. If we consider a
sense-preserving mapping such as, for instance, w(s1, 0) = (1, 0), w(0, s2) =
(0, 1) and w(−s3, 0) = (−1, 0), the beam spreads along x−direction and tends
to be trapped along y−axis (see Figure 2). The boundary conditions and the ori-
entation of the mapping allows us to control strongly the properties of the light
beam.

We emphasize, finally, that all of these observations can be generalized to the
case of arbitrary n−connected domains. They could be used for description of
interacting light beams.

Another class of solutions of equation (84) can be obtained solving the equation

bwz̄ + āw̄z̄ = 0. (90)

Introducing the reciprocal coordinates by inversion of the system

z = z(w, w̄), z̄ = z̄(w, w̄) (91)

one converts equation (90) into the form of the linear Beltrami equation

zw̄ = ν(w, w̄)zw (92)

where ν(w, w̄) = −ā/b and, due to ellipticity, |ν| < 1. The advantage of con-
sideration of equation (90) in reciprocal coordinates is that the Beltrami equa-
tion is linear and it can be solved explicitly for different choices of the intensity
law. Moreover, it is well known that several theorems in analytic functions the-
ory can be rigorously generalized to the quasi-analytic functions which are the
solutions of equation (92) (see e.g. [58]). In particular, a generalization of so-
called Liouville theorem (Vekua’s theorem) holds. If z = z(w, w̄) is bounded on



56 Antonio Moro and Boris Konopelchenko

whole w−plane and satisfies the linear Beltrami equation (92) it can be shown
that z(w, w̄) ≡ constant [58]. We stress that for the constant solution, mapping
from w−to−z−plane is singular and reciprocal transformation (91) is not defined.
Then, any non-trivial solution of equation (92) must be singular somewhere on the
complex plane and different type of singularities can occur, such as poles, essen-
tial singularities, singularities of the derivatives etc.

’Γ

z

Γ

w

D
D’

εD
R

Figure 3: Homeomorphic mapping from the exterior of Dε on DR such that Γ′ goes onto
Γ. Light rays associated with the points outside DR are parallel to the z−axis as much as
ε is small.

As illustrative example, we focus our attention on a solution z(w, w̄) which have a
simple pole at w = 0. As discussed above, one can always consider a homeomor-
phism from D′ = C\Dε to DR, where Dε is a disk of arbitrarily small radius ε on
the w−plane and DR is the R-radius disk on the z−plane, mapping the boundary
of Dε on the boundary of DR. Inverse mapping w : DR → D′, constructed in
such a way, can be used to describe a beam “confined”around τ−axis. Indeed, the
transverse component of the vector n outside DR are arbitrarily small. Hence, the
light rays can be settled down parallel to the τ−axis with arbitrary accuracy. So,
the beam results to be self-guided around τ as much as disk Dε is small.

Coming back to nonlinear Beltrami equation (86), we expect that for some “mild
enough” complex dilatations µ, Vekua’s theorem still holds. In these cases, the
only one bounded solution on whole z−plane is w = constant. In many physical
situations, the intensity distribution on the z−plane, at certain τ , goes to zero for
z → ∞, or equivalently, one can says that intensity vanishes outside a big enough
R−radius disk DR. Thus, outside DR, refractive index assumes a constant value
u = u0 and the solutions of eikonal equation (69a) is

S = c0x + c1y + c3 (93)

where c0, c1 and c3 are constants and the condition c2
0 + c2

1 = 4u0 holds. For
a paraxial beam we have c0 = c1 = 0. As the consequence w = Sx − iSy =
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c0 − ic1 = 0 and, of course it satisfies Beltrami equation in C \ DR. In virtue of
Vekua’s theorem, the only one bounded solution is w ≡ 0. Then, any non-trivial
solution must be singular somewhere on the plane. In our example, wavefront is
approximately plane for z ∈ C \ DR and possesses singularity inside DR.

In the next subsection we will discuss the so-called optical vortices obtained from
equation (81) assuming the phase to be a harmonic function on the xy−plane. We
will see that, in this case, equation (81) is equivalent to the minimal surfaces equa-
tion. We refer to this class of solutions as minimal sector in order to distinguish it
from the Beltrami sector which is associated with the solutions of equations (86)
and (92).

4.2. Helicoidal Wavefronts

The successive approximations method is a general approach to solve the linear
Beltrami equation (it has been demonstrated by Tricomi [56]). Nevertheless, cal-
culation of exact ‘explicit’ solutions can be the difficult task and the chances of
success strongly depend on the form of the complex dilatation. Incidentally, we
note that solutions possessing cylindrical symmetry such that

S = S(r), u = u(r), r =
√

x2 + y2 (94)

are not compatible with intensity law. It is straightforward to verify that equa-
tions (69) along with assumptions (94) imply that intensity depends explicitly on
z−axis distance r =

√
x2 + y2

I0 =
1

2cr
√

u
(95)

where c is an arbitrary constant.

Here, we will consider the solutions of equation (81) connected with the, so-
called, minimal surfaces. The minimal surface equation looks like as follows (see
e.g. [49]) (

1 + S2
y

)
Sxx +

(
1 + S2

x

)
Syy − 2SxSySxy = 0. (96)

We restrict ourselves to the class of solutions of equation (81) which are also
harmonic on the xy−plane, that is

Sxx + Syy = 0. (97)

Using the condition (97) in equation (81), one gets the equation

S2
xSxx + S2

ySyy + 2SxSySxy = 0 (98)
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for any elliptic intensity law. It is straightforward to check that equations (98)
and (96) coincide for harmonic solutions. In other words, a class of solutions of
equation (81), whatever is the inverse intensity law I0 = I0(u), is just given by the
class of the harmonic minimal surfaces. An important result for us is that the only
non-trivial harmonic minimal surface in Cartesian coordinates is the helicoid [49].
It can be written as follows

S = K arctan

(
βτ + y

x

)
(99)

where K is an arbitrary constant. One can check that the function S given by (99)
satisfies equations (96), (97) and (98) simultaneously. Equation of corresponding
wavefronts is

S̃ ≡ ωατ + K arctan

(
βτ + y

x

)
= constant (100)

where the constant K is the “pitch” of the helicoid. In particular, the expres-
sion (100) describes the edge-screw dislocations discussed first time experimen-
tally by Brynghdal in 1973 [12] and theoretically by Nye and Berry [47] in 1974.
We highlight that helicoidal wavefronts exist in both linear and (nonlocal) non-
linear regimes. They are associated with singularity of the phase (phase defects)
which appears as topological defects of the interferograms. These class of phase
defects has important phenomenological consequences connected to the optical
vortices [4, 16, 53, 57] (see also [5, 51] and references therein). If we assume,
for simplicity, β = 0 in (99), one has the pure screw dislocations. The complex
gradient associated with the helicoid

w = −i
K

z
(101)

is a meromorphic function on z with the simple pole singularity at the origin.
Nevertheless, normal vector to the wavefront, whose components coincides (up
to a sign) with real and imaginary parts of w, is not defined. Indeed, vector w =
(Sx,−Sy) has no limit as (x, y) → 0. Figure 4 shows examples of helicoidal
wavefronts (100) usually parametrized as follows

x = v cos t, y = v sin t, z = Kt. (102)

One-start helicoid shown in Figure 4a is obtained for 0 < v < +∞; two-start he-
licoids shown in Figures 4b and 4c are obtained for −∞ < v < +∞. Refractive
index

u =
K2

4(x2 + y2)
(103)
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Y

Z a) c)b)

X

Figure 4: Helicoidal structures of wavefront around τ−axis: a) one-start right-
screw (K = 1); b) two-start right screw (K = 1); c) two-start left screw (K =
−1).

has cylindrical symmetry around τ−axis and displays divergence at z = 0. This
means that around the origin geometric optics approximation fails and wave ef-
fects become relevant. In particular, necessary condition for the existence of sin-
gular wavefronts is that intensity vanishes where phase function is singular [47].
Indeed, in this region the interference phenomenon is no more negligible and can
realize this condition.

It is interesting to evaluate the effect of the present class of nonlocal perturbations

Sτ = ϕ (Sx, Sy, x, y, τ)

discussed in the Sections 2 and 3 on the pure (β = 0) helicoidal wavefront (99).
In particular we note that the solution (99) of the equation (98) is defined up to an
additive arbitrary function of τ−variable ψ(τ), such that ψ ′ = ϕ(τ). Then, one
has

S = K arctan (y/x) + ψ(τ).

Let us observe that the function ψ(τ) is specified by the function ϕ evaluated on
the helicoid. For example, in the case of the first degree nonlocality one has (see
equations (76) and (77))

ψ′(τ) = α1Sx + α2Sy, uτ = (α1u)x + (α2u) . (104)

Evaluating equations (104) on the helicoid one gets(
x2 + y2

)
α1x = xα1 + yα2

−yα1 + xα2 = ϕ(τ)
(
x2 + y2

)
.

(105)
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First degree nonlocal deformations of the helicoid exist only for the nonlocal data
α1 and α2 satisfying the system (105). For example, trivial solutions α1 = α2 =
ϕ = 0 corresponds to the local case discussed above. A simple non-trivial solution
α1 = −γy, α2 = γx and ψ′ = γ, where γ is an arbitrary constant, provides us
with the following wavefront

S̃ ≡ ωατ +
K

1 + γω−2ν
arctan

(y

x

)
= constant. (106)

For γ = 0 equation (106) coincides with equation (100). As a consequence of
nonlocal response the helicoid’s pitch is compressed if γ > 0 and stretched if
γ < 0.

5. Nonlocal Perturbations and dVN Hierarchy

In this Section we will discuss a particular class of nonlocal perturbations which
are connected with an integrable hierarchy of PDEs, namely, the dispersionless
Veselov-Novikov hierarchy. The methods to solve these equations, in particular,
the reduction method based on the symmetry constraints and the quasiclassical
∂̄−dressing approach will be considered in Sections 6 and 7.

Using the complex variables z = x + iy, z̄ = x − iy, one rewrites equations (31)
as follows

SzSz̄ = u(z, z̄, τ) (107)

Sτ = ϕ (Sz, Sz̄, z, z̄, τ) . (108)

The compatibility condition of equations (31) imposes constraints on the possible
forms of the function ϕ, namely

Sz̄ϕz + Szϕz̄ + uzϕ
′ + uz̄ϕ

′′ = uτ (109)

where

ϕ′ =
∂ϕ

∂Sz

(z, z̄; Sz, Sz̄) , ϕ′′ =
∂ϕ

∂Sz̄

(z, z̄; Sz, Sz̄) . (110)

The simplest cases have been already discussed above and corresponds to the local
and first degree nonlocal responses, given by the function ϕ of the forms (75)
and (76) respectively. The quadratic case

ϕ = αS2
z + ᾱS2

z̄ + βSz + β̄Sz̄ + γ + γ̄ (111)
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is equivalent to the linear one. Indeed, the consistency of equations (109) and (107)
implies

α = 0, β = β(z), γ = constant

and the (111) is reduced to (76).

The cubic function

ϕ = αS3
z + ᾱS3

z̄ + βS2
z + β̄S2

z̄ + γSz + γ̄Sz̄ + δ + δ̄ (112)

obeys equations (109) and (107) if

α = α(z), β = 0, γz̄ = −αzu − 3αuz δ = constant (113)

and one has the equation

uτ = (γu)z + (γ̄u)z̄ . (114)

In the particular case α = 1 and, consequently γz̄ = −3uz , equation (114) is the
dispersionless Veselov-Novikov (dVN) equation introduced in [35, 36].

In a similar way, repeating the procedures for higher degree polynomials, one can
construct higher order nonlocal perturbations.

Besides, if we formally admit all possible degrees of Sz and Sz̄ in the right hand
side of equation (108), one has an infinite family of nonlinear equations, govern-
ing the nonlocal deformations of the wavefronts and “refractive index” u.

Moreover, the polynomial dependence of these deformations should be compati-
ble with certain constraints. The request that equation (108) respects the symme-
try for phase inversion, S → −S, of the eikonal equation (107) gives the hierarchy
of nonlocal deformations of the form

n∑
m=1

umS2m−1
z +

n∑
m=1

ūmS2m−1
z̄ . (115)

Note that the constant terms which have appeared in (114) is, in fact, irrelevant.
Hence, these polynomial deformations assume the general form

Sτ =
n∑

m=1

(
umS2m−1

z + ūmS2m−1
z̄

)
, n = 1, 2, 3, . . . (116)

where um are certain functions on u.

In the case un = 1 one gets the dVN equation mentioned above (n = 2) and the
so-called dVN hierarchy of nonlinear PDEs. This means that the dVN hierarchy
is associated with a specific class of “integrable” nonlocal perturbations. In par-
ticular, there is a one-to-one correspondence between nonlocal degrees and the
equations of the dVN hierarchy. It is straightforward to verify that the helicoidal
wavefronts are not preserved under dVN hierarchy nonlocal perturbations.
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6. Integrable Systems

The celebrated Korteweg-de-Vries (KdV) equation

ut + 6uux + uxxx = 0 (117)

has been introduced to describe long, one-dimensional, small amplitude shallow
water wave propagation [1]. By a numerical analysis Zabusky and Kruskal [63]
observed main feature of the solitons, that is they “pass one another without losing
their identity” . Solitons, can be seen as a purely nonlinear phenomenon, where
the linear dispersion is “balanced” by the nonlinearity. Fundamental step has been
taken in 1967 with the famous paper by Gardner, Green, Kruskal and Miura, with
the introduction of the so-called inverse spectral transform method (IST). The
IST approach works as a nonlinear Fourier transform according to the following
scheme

u(x, 0) → Scattering data at t = 0 → evolution

→ Scattering data at t = t′ → u(x, t′).

By means of the spectral transform the initial profile u(x, 0) is associated with a
set of spectral data at the time t = 0. In the space of spectral data the system
results to be linearized and the evolution is trivial. Then, once the spectral data at
the time t = t′ are obtained, inverse spectral transform gives the evolved profile
u(x, t′), solution of nonlinear PDE. The method is based on the representation of
a nonlinear PDE as the compatibility condition of a pair of linear problems. In the
KdV case the linear system is

−∂2ψ

∂x2
− u(x, t)ψ = λ2ψ (118a)

∂ψ

∂t
+

∂3ψ

∂x3
− 3
(
λ2 − u

) ∂ψ

∂x
− 4iλ3ψ = 0 (118b)

where λ is usually called a spectral parameter. The system (118) can be regarded
also as the compatibility condition of the couple of operators (Lax pair) (118)

[L1, L2] = 0 (119)

where

L1 =
∂2

∂x2
+ u(x, t) + λ2 (120)

L2 =
∂

∂t
+

∂3

∂x3
− 3
(
λ2 − u

) ∂

∂x
− 4iλ3. (121)
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The nonlinear Schrödinger (NLS) equation

iqt + qxx + 2s |q|2 q = 0 (122)

and sine-Gordon (SG) equation

utt − uxx + sinu = 0 (123)

are other remarkable examples of (1 + 1)D nonlinear integrable PDEs. NLS
equation has applications, for instance, in nonlinear optics [10] and Bose-Einstein
condensation [18] and SG equation appears in geometry to describe negative cur-
vature surfaces [20], in physics in the study of flux propagation in Josephson
junctions, nonlinear optics and quantum field theory (see e.g. [1]). Thereafter, the
method has been generalized to (2 + 1)−dimensional soliton equations, such as
the Kadomtsev-Petviashvili equation

ut + uxxx +
3

2
uux +

3

4
vy = 0, vx = uy. (124)

Linear problems for (124) are

ψy = ψxx + uψ (125a)

ψt = ψxxx +
3

2
uψx +

(
3

2
ux +

3

4
v

)
ψ = 0 (125b)

where vx = uy. Equation (124) is the (2 + 1)D generalization of KdV describing
weakly two-dimensional long, shallow water waves. Another (2 + 1)D integrable
generalization of KdV equation is given by the Nizhnik-Veselov-Novikov (NVN)
equation

ut + c1uξξξ + c2uηηη − 3c1

(
u∂−1

ξ uη

)
η
− 3c2

(
u∂−1

η uξ

)
ξ

= 0 (126)

where ξ = x + sy, η = x − sy. Equation (126) has been introduced by Nizhnik
in the case s = 1 in [46] and by Veselov and Novikov in the case s = i, c1 =
c2 = 1 treated in [59]. Unlike the KP equation no physical applications of the
NVN equation is known at the moment. The Veselov-Novikov (VN) equation
(z = x + iy)

ut = (uV )z +
(
uV̄
)
z̄
+ uzzz + uz̄z̄z̄ (127a)

Vz̄ = −3uz (127b)
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is equivalent to the compatibility condition for equations

ψzz̄ = uψ

ψt = ψzzz + ψz̄z̄z̄ + (V ψz) +
(
V̄ ψz̄

)
.

Note also that the local (2+1)D NLS equation is not integrable by the IST method.

Recently the, so-called, quasi-classical limit (or dispersionless) limit of soliton
equations has attracted a great interest (see e.g. [27-43]). Dispersionless limit of
soliton equations is performed formally introducing a slow variable expansion by
the substitution

tn → tn/ε (128)

and introducing the asymptotic expansion of the form

u

(
tn
ε

)
= u (tn) + O (ε) , ε → 0 (129)

where tn the set of the “time” variables. For example, in the KdV equation case
one identify t1 = x, t2 = y, while for KP equation it is t1 = x, t2 = y and t3 = t.

In terms of the linear problems, this procedure corresponds to the following rep-
resentation of the function ψ

ψ = ψ0e
S

ε

where

S

(
λ,

tn
ε

)
= S (tn) + O (ε) .

For example, in the leading order equation (124) is the dispersionless KP (dKP)
equation

ut =
3

2
uux +

3

4
vy

vx = ux

(130)

and the linear problems (125) becomes the Hamilton-Jacobi equations

Sy = S2
x + u

St = S3
x +

3

2
uSx +

3

2
ux +

3

4
v.

(131)

The dKP equation is known in physics as Zabolotskaya-Khokhlov equation [62].
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In the following, in connection with the model of nonlocal nonlinear optics dis-
cussed above, we will focus on the dispersionless Veselov-Novikov (dVN) equa-
tion. It looks like as follows

ut = (uV )z +
(
uV̄
)
z̄
, Vz̄ = −3uz. (132)

It is obtained as the compatibility condition of the following system

SzSz̄ = u

St = S3
z + S3

z̄ + V Sz + V̄ Sz̄.
(133)

Dispersionless systems are of interest for both physical and mathematical reasons.
They have applications in hydrodynamincs, magneto-hydrodynamics, Laplacian
growth [44]. They arise also in the framework of the Whitham averaging method
for calculation of small amplitude modulations of soliton equations solutions [19,
60]. Moreover, we will see in the following that the dVN equation and the hierar-
chy associated are relevant in the description of specific high frequency regimes
in nonlocal nonlinear optics.

Different approaches can be used to study dispersionless systems. Here we will
consider the reduction method based on the symmetry constraints and making use
of the ∂̄-dressing method. In particular, their applications to the eikonal equa-
tion and the nonlocal perturbations associated with the dVN equation will be also
discussed.

7. Symmetry Constraints

Here we will recall shortly the definition of symmetry constraint and discuss its
specific application to the dVN equation as an approach for construction of new
(1 + 1)D hydrodynamic type reductions. Let us consider a partial differential
equation for the scalar function u = u(t) = u (t1, t2, . . . )

F
(
u, uti , utitj , . . .

)
= 0 (134)

where uti = ∂u/∂ti. By definition, a symmetry of equation (134) is a transforma-
tion u(t) → u′(t′), such that u′(t′) is again a solution of (134) (for more details
see e.g., [48]). Infinitesimal continuous symmetry transformations

t′i = ti + δti, u′ = u + δu = u + εuε (135)

are defined by the linearized equation (134)

Lδu = 0 (136)
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where L is the Gateaux derivative of F

Lδu :=
dF

dε

(
u + εuε,

∂

∂ti
(u + εuε) , . . . ), . . .

)∣∣∣∣
ε=0

. (137)

Any linear superposition δu =
∑

k ckδku of infinitesimal symmetries δku is, ob-
viously, an infinitesimal symmetry. By definition, a symmetry constraint is a re-
quirement that certain superposition of infinitesimal symmetries vanishes, i.e.,∑

k

ckδku = 0. (138)

Since null function is a symmetry of equation (134), the constraint (138) is com-
patible with equation (134). Symmetry constraints allow us to select a class of
solutions which possess some invariance properties. For instance, well-known
symmetry constraint δu = εutk = 0, selects solutions which are stationary with
respect to the “time” tk.

7.1. The dKP Equation

The linearized equation associate with the dKP equation (130) is

(δu)t =
3

2
(uxδu + u(δu)x) +

3

4
(δω)y

(139)
(δω)x = (δu)y.

Solutions are infinitesimal symmetries of dKP.

Theorem 1. Suppose Si and S̃i are arbitrary solutions of the Hamilton-Jacobi
equations (133). Then the quantity

δu =
N∑

i=1

ci

(
Si − S̃i

)
xx

where ci are arbitrary constants, is a symmetry of dKP equation.

Proof: It is straightforward to check that
(
Si − S̃i

)
xx

satisfies equation (139) �

This type of symmetries has been introduced for the first time in [7], within the
quasiclassical ∂̄-dressing approach. As a simple example, let us consider the fol-
lowing symmetry constraint

ux = Sxx. (140)
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Under this constraint the Hamilton-Jacobi system (131) gives rise to the following
hydrodynamic type system (the dispersionless nonlinear Schrödinger equation,
see [64])

ũy =
(
ũ2 + u

)
x
, uy = 2 (ũu)x (141)

where ũ = ∂Sx/∂λ.

7.2. Real dVN Equation

Let us focus on the case of real-valued u. Infinitesimal symmetries δu of the dVN
equation obey the equations

(δu)t = (V δu + uδV )z +
(
V̄ δu + δV̄ u

)
z̄ (142)

Vz̄ = −3uz; (δV )z̄ = −3 (δu)z .

Theorem 2. Suppose Si and S̃i are solutions of the Hamilton-Jacobi equations
(133). Then the quantity

δu =

N∑
i=1

ci

(
Si − S̃i

)
zz̄

(143)

where ci are arbitrary constants, is a symmetry of the dVN equation.

Proof: It is straightforward to check that
(
Si − S̃i

)
zz̄

satisfies equation (142). �

In particular, one can choose Si = S(λ = λi) and S̃i = S(λ = λi + µi). In the
case µi → 0 and ci = c̃i/µi, one has the class of symmetries given by

δu =
N∑

i=1

c̃iφizz̄ (144a)

φi =
∂S

∂λ
(λ = λi). (144b)

In what follows we will discuss three particular cases of real reductions, providing
real solutions of the dVN equation.

If S is a solution of Hamilton-Jacobi equations (133), then −S̄ is a solution as
well. Thus, for real-valued S (S = S̄), specializing constraint (143) for N = 1,
we have a simple constraint

ux = (S)zz̄ . (145)
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Let us introduce the functions ρ1 := Sx and ρ2 := Sy. Thus, the symmetry
constraint (145) can be written as follows

ux =
1

4
(Sxx + Syy) =

1

4
(ρ1x + ρ2y). (146)

In order to analyze constraint (146) it is more convenient to consider equations (133)
in Cartesian coordinates (x, y), i.e.,

S2
x + S2

y = 4u (147a)

St =
1

4
S3

x − 3

4
SxS2

y + V1Sx + V2Sy (147b)

where V = V1 + iV2, while the dVN equation acquires the form

ut = (uV1)x + (uV2)y (148a)

V1x − V2y = −3ux (148b)

V2x + V1y = 3uy. (148c)

Substituting (147a) in (146), one obtains the following hydrodynamic type system(
ρ1

ρ2

)
y

=

(
0 1

2ρ1 − 1 2ρ2

)(
ρ1

ρ2

)
x

. (149)

Now, let us focus on definition Vz̄ := −3uz . Differentiating it with respect to x,
using constraint (145) and equations (149), one obtains the equations

V1x = −3

2
ρ1x +

3

4

(
ρ2

1 + ρ2
2

)
x

V2x =
3

2
ρ2x

which can be trivially integrated providing the following explicit formulas for V1

and V2 in terms of ρ1 and ρ2

V1 = −3

2
ρ1 +

3

4

(
ρ2

1 + ρ2
2

)
, V2 =

3

2
ρ2. (150)

At this point we can derive t-dependent equations for ρ1 and ρ2. Differentiating
equation (147b) and using (149) and (150), one obtains the system(

ρ1

ρ2

)
t

=

(
A11 A12

A21 A22

)(
ρ1

ρ2

)
x

(151)

where

A11 = 3ρ1 (ρ1 − 1) , A12 = 3ρ2

A21 = 3ρ2 (2ρ1 − 1) , A22 = 3ρ1 (ρ1 − 1) + 6ρ2
2.

Common solutions (ρ1, ρ2) of the systems (149) and (151) provides us with the
solution u =

(
ρ2

1 + ρ2
2

)
/4 of the dVN equation (148).
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7.3. Admissible Intensity Laws

The analysis of the compatibility between the class of nonlocal perturbations as-
sociated with the dVN hierarchy and the intensity conservation law (69b) shows
that there are no nontrivial solutions for an arbitrary form of the intensity law.
In particular, intensity law appears to be a quite restrictive constraint making the
problem of compatible nonlocal responses rather non-trivial. Nevertheless, it is
possible to see, by an explicit example, that there exists nontrivial intensity laws
such that the system (74) and the intensity conservation law (69b) are compati-
ble with the dVN hierarchy. Here, as illustrative example, we focus on the third
degree of nonlocality associated with the dVN equation.

In order to do that, we consider hydrodynamic type reductions of dVN equation.
They have been found using symmetry constraint of the form [7]

∇2
⊥S = ux

or equivalently ux = Szz̄ . Under such a constraint one gets the hydrodynamic
type system (149), (151).

Looking for solutions of the system (149) and (151) such that G = p2 = p2(p1),
one finds that p1 and p2 are given implicitly by the following algebraic system

x + G′y + H ′z − Φ(p1) = 0 (152)

p2 =
1

2

⎡
⎣q +

2c − log
(
q +
√

1 + q2
)

√
1 + q2

⎤
⎦ (153)

q = p2 ±
√

p2
2 + 2p1 − 1

where c is an arbitrary constant, H = p3
1 − 3

2p2
1 + 3

2p2
2(p1) and the ‘prime’ means

the derivative with respect to p1.

Differentiating eikonal equation (74a) with respect to x and taking into account
that ux = ∇2

⊥S, one gets

∇⊥

(
−Sx

2

)
· ∇⊥S + ∇2

⊥S = 0. (154)

Comparing equation (154) with intensity conservation equation (69b), which can
be written equivalently as follows

∇⊥S · ∇⊥ (log I0) + ∇2
⊥S = 0 (155)
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one gets the following simple relation among intensity and p1−component of the
gradient

I0 = Ce−
p1

2 (156)

where C is an arbitrary real constant. Finally, eikonal equation provides us with
intensity law

u(I0) =

(
log

I0

C

)2

+
1

4

[
p2

(
−2 log

I0

C

)]2
(157)

where last term in r.h.s. is given by the algebraic relation (153).

8. The Quasiclassical ∂̄-Dressing Method

8.1. The Eikonal Equation

In this and next sections we will demonstrate that the plane eikonal equation and
dVN hierarchy both for complex and real refractive indices are treatable by the
quasiclassical ∂̄-dressing method.

The quasiclassical ∂̄-dressing method is based on the nonlinear Beltrami equation
[33, 34]

Sλ̄ = W
(
λ, λ̄, Sλ

)
(158)

where S(λ, λ̄) is a complex valued function, λ is the complex variable Sλ =
∂S/∂λ and W (the quasiclassical ∂̄-data) is an analytic function of Sλ

W
(
λ, λ̄, Sλ

)
=

∞∑
n=0

wn(λ, λ̄) (Sλ)n (159)

with some, in general, arbitrary functions wn(λ, λ̄).

To construct integrable equations one has to specify the domain G (in the complex
plane C) of support for the function W (W = 0, λ ∈ C/G) and look for solution
of (158) in the form S = S0 + S̃, where the function S0 is analytic inside G,
while S̃ is analytic outside G. In order to construct the eikonal equation on the
plane [31], we choose G as the ring D =

{
λ ∈ C; 1

a
< |λ| < a

}
, where a is

an arbitrary real number (a > 1), and select B − type solutions satisfying the
constraint

S
(−λ,−λ̄

)
= −S

(
λ, λ̄
)
. (160)

Then, we choose
S0 = zλ +

z̄

λ
. (161)



High Frequency Integrable Regimes in Nonlocal Nonlinear Optics 71

Due to the analyticity of S̃ outside the ring and the property (160) one has

S̃ =
∞∑

n=0

S
(∞)
2n+1

λ2n+1
, λ → ∞ (162)

and

S̃ =
∞∑

n=0

S
(0)
2n+1λ

2n+1, λ → 0. (163)

In particular, S̃ (0, 0) = 0.

An important property of the nonlinear ∂̄-problem (158) is that the derivatives
f = St of S with respect to any independent variable t, obeys the linear Beltrami
equation

fλ̄ = W ′
(
λ, λ̄; Sλ

)
fλ (164)

where W ′
(
λ, λ̄; φ

)
= ∂W

∂φ

(
λ, λ̄; φ

)
. Equations (164) has two basic properties,

namely, 1) any differentiable function of solutions f1, . . . , fn is again a solution;
2) under certain mild conditions on W ′, a bounded solution f which is equal to
zero at certain point λ0 ∈ C, vanishes identically (Vekua’s theorem) [58].

These two properties allows us to construct an equation of the form Ω(Sz, Sz̄) =
0 with certain function Ω. Indeed, taking into account (161), one has

Sz = λ + S̃z (165)

Sz̄ =
1

λ
+ S̃z̄ (166)

i.e., Sz has a pole at λ = ∞, while Sz̄ has a pole at λ = 0. The product SzSz̄

is again a solution of the linear Beltrami equation (164) and it is bounded on the
complex plane since

SzSz̄ = 1 +
1

λ
S̃z + λS̃z̄ + S̃zS̃z̄ (167)

where S̃z̄ (λ = 0) = 0 and λS̃z̄ → S
(∞)
1z̄ as λ → ∞.

Subtracting 1 + S
(∞)
1z̄ from the r.h.s of equation (167), one gets a solution of

equation (164) which is bounded in C and vanishes as λ → ∞. According to the
Vekua’s theorem it is equal to zero for all λ. Thus we get the equation

SzSz̄ = u(z, z̄) (168)

where
u = 1 + S

(∞)
1,z̄ . (169)
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In the Cartesian coordinates x, y defined by z = x + iy, equation (168) is the
standard two-dimensional eikonal equation discussed above

(∇⊥S)2 = 4u (170)

where we recall that ∇⊥ =
(

∂
∂x

, ∂
∂y

)
.

Using the ∂̄-problem (158), one can, in principle, construct solutions of equa-
tion (168). So, the quasiclassical ∂̄-dressing method allows us to treat the plane
eikonal equation (168) in a way similar to dKP and d2DTL equations. We note
that the phase function S in (168) depends also on the complex variables λ and
λ̄. Curves S(z, z̄) = constant define wavefronts. The ∂̄-dressing approach pro-
vides us also with the equation of light rays. Indeed, since r.h.s. of (170) does not
depend on λ and λ̄, the differentiation of (170) with respect of λ (or λ̄) gives

∇S · ∇φ = 0 (171)

where φ = Sλ (or φ = Sλ̄). So, the curves S = constant and φ = constant
are reciprocally orthogonal and, hence, the latter ones are nothing but the trajec-
tories of propagating light. Thus, the ∂̄-dressing approach provides us with all
characteristics of the propagating light on the plane. Note that any differentiable
function φ (Sλ, Sλ̄) is the solution of equation (171) too.

In general, within the ∂̄-dressing approach one has a complex-valued phase func-
tion S and, consequently, a complex refractive index. To guarantee the reality of
u, it is sufficient to impose the following constraint on S

S
(
λ, λ̄
)

= S

(
1

λ̄
,
1

λ

)
. (172)

Indeed, taking the complex conjugation of equation (168), using the differential
consequences (with respect to z and z̄), of the above constraint and taking into
account the independence of the l.h.s. of equation (168) on λ and λ̄, one gets

ū (xn) = S̄z̄

(
λ, λ̄
)
S̄z

(
λ, λ̄
)

= Sz̄

(
1

λ̄
,
1

λ

)
Sz

(
1

λ̄
,
1

λ

)
= u (xn) (173)

i.e., the “refractive index” u is a real one. The constraint (172) leads to the re-
lations S̄

(0)
2n+1 = S

(∞)
2n+1. Moreover, this constraint implies also that the function

S is real-valued on the unit circle |λ| = 1 (S
(
λ, λ̄
)

= S
(
λ, λ̄
)
, |λ| = 1). This

provides us with the physical wavefronts.

The ∂̄-approach reveals also the connection between geometrical optics and the
theory of the, so-called, quasiconformal mappings on the plane. Quasi-conformal
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mappings represents themselves a very natural and important extension of the
well-known conformal mappings (see e.g. [2]). In contrast to the conformal map-
pings the quasi-conformal mappings are given by non-analytic functions, in par-
ticular, by solutions of the Beltrami equation.

A solution of the nonlinear Beltrami equation (158) defines a quasi-conformal
mapping of the complex plane C [2, 58]. In our case we have a mapping S

(
λ, λ̄
)

which is conformal outside the ring G and quasi-conformal inside G. Such map-
ping referred as the conformal mapping with quasi-conformal extension. So,
the quasi-conformal mappings of this type which obey, in addition, the prop-
erties (160), (161) and (172) provide us with the solutions of the plane eikonal
equation (168). In particular, wavefronts given by S

(
λ, λ̄, z, z̄

)
= constant are

level sets of such quasi-conformal mappings. In more details, the interconnection
between quasi-conformal mappings and geometrical optics on the plane will be
discussed elsewhere.

8.2. The dVN Hierarchy

In this section we will apply the quasiclassical ∂̄-dressing method to the dVN
hierarchy. For this purpose we consider again the nonlinear ∂̄-problem (158),
(159) on the ring G with the constraints (160) and (172) and introduce independent
variables xn, x̄n via

S0 =
∞∑

n=1

xnλ2n−1 +
∞∑

n=1

x̄nλ−2n+1. (174)

The derivatives Sxn
and Sx̄n

obey the linear Beltrami equation (164), and using
the Vekua’s theorem one can construct an infinite set of equations of the form

Ω(xn, x̄n, Sxn
, Sx̄n

) = 0. (175)

Repeating the procedure described in the previous section, one gets the plane
eikonal equation for z = x1. In a similar manner, for the variable τ = x2 = x̄2,
taking into account that Sτ = λ3 + 1

λ3 + S̃τ , one obtains the equation

Sτ = S3
z + S3

z̄ + V Sz + V̄ Sz̄ (176)

where V = −3S
(∞)
1z = −3∂−1

z̄ uz . Evaluating the terms of the order λ−1 in the
both sides of equation (176), one gets the dVN equation

uτ = −3
(
u∂−1

z̄ uz

)
z
− 3
(
u∂−1

z uz̄

)
z̄
. (177)
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In a similar manner, setting τ = x3 = x̄3 one has

ϕ = S5
z + S5

z̄ + a3S
3
z + ā3S

3
z̄ + a1Sz + ā1Sz̄ (178)

and consequently the equations

uτ = (a1u)z + (ā1u)z̄ (179a)

5uz + a3z̄ = 0 (179b)

a1z̄ + ua3z + 3a3uz = 0. (179c)

Considering the higher variables τn = xn = x̄n, (n = 2, 3, . . . ), one constructs
the whole dVN hierarchy. It is a straightforward to check that the constraint (172)
is compatible with equations (176) and higher ones. So, the ∂̄-dressing scheme
under this constraint provides us with the real-valued solutions of the dVN hierar-
chy.

If one relaxes the reality condition for u (i.e., does not impose the constraint (172)),
then there is a wider family of integrable deformations of the plane eikonal equa-
tion with complex refractive index. To build these deformations one again consid-
ers the ∂̄-problem (158), chooses the domain G as the ring (as before), imposes
the B-constraint (160), but now chooses S0 as follows

S0 =
∞∑

n=1

xnλ2n−1 +
∞∑

n=1

ynλ−2n+1 (180)

where y1 = x̄1 = z̄. Repeating the previous construction, one gets again the
eikonal equation (168), but now with a complex-valued u. Considering the deriv-
atives Sxn

, Syn
with n = 2, 3, . . . , one obtains the two set of equations

Sxn
=

n∑
m=1

um(xn, yn) (Sz)
2m−1 , n = 2, 3, . . . (181)

Syn
=

n∑
m=1

vm(xn, yn) (Sz̄)
2m−1 , n = 2, 3, . . . (182)

Equations (168) and (181) give rise to the hierarchy of equations

uxn
= Fn (u, uz, uz̄) (183)

the simplest of which is of the form

ux2
= −3

(
u∂−1

z̄ uz

)
z

(184)



High Frequency Integrable Regimes in Nonlocal Nonlinear Optics 75

where
Sx2

= S3
z + V Sz. (185)

Equations (168) and (182) generate the hierarchy of equations uyn
= F̃n, the

simplest of which is given by

uy2
= −3

(
u∂−1

z uz̄

)
z̄

(186)

and
Sy2

= S3
z̄ + V̄ Sz̄. (187)

For both of these hierarchies the quantity
∫∫
C

udz ∧ dz̄ is the integral of motion as

for the dVN hierarchy. It is easy to see that equations (184) and (186) imply the
dVN equation (177) for the variable τ = (x2 + y2) /2.

8.3. Characterization of ∂̄-Data

As we have seen, the constraints (160) and (172) guarantee that one will get the
eikonal equation (168) with real valued u. In this section we will discuss the
characterization conditions for ∂̄-data W

(
λ, λ̄, Sλ

)
which provide us with such

result. In general, if one considers ∂̄-problem with a kernel defined in a ring
and the function S0 singular at two points, e.g. λ = 0 and λ = ∞, without B-
constraints (160), one constructs the dispersionless Laplace hierarchy [35] asso-
ciated with the quasiclassical limit of the Laplace equation, i.e., with the equation

Sz(λ, z, z̄)Sz̄(λ, z, z̄) − aSz̄ = u(z, z̄), for all λ ∈ C (188)

where a = ∂zS̃(0, 0) and u = 1+∂z̄S
(∞)
1 . The eikonal equation (74a) is obtained

as a reduction of equation (188) taking S̃(0, 0) independent on z. In fact, the B
condition (160), producing S̃(0, 0) = 0 realizes this reduction. In what follows
we will discuss how one has to choose the ∂̄-data in a way to construct the dVN
hierarchy directly. We will find constraints which are dispersionless analog of the
constraints found in [24], which specify two-dimensional Schrödinger equation
with real-valued potential. In particular, we will see that it is possible to weaken
slightly the B-condition (160), since the value S̃(0, 0) is fixed up to a constant by
dVN reduction.

In the following we will focus on solutions of ∂̄ problem of the form S = S0 + S̃,
where S0 has polynomial singularities at λ = 0 and λ = ∞ and S̃ is holomorphic
at these points and such that

lim
λ=∞

S̃
(
λ, λ̄
)

= 0 (189)

lim
λ=0

S̃
(
λ, λ̄
)

= S̃(0, 0, z, z̄) = −iv(z, z̄). (190)
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Lemma 3. Let the kernel W in equation (158) satisfies the assumptions of the
Vekua’s theorem, and let S be its solution. The condition

S
(
λ, λ̄
)

= −S
(−λ,−λ̄

)
+ constant (191)

is verified if and only if

W ′
(
λ, λ̄, Sλ

(
λ, λ̄
))

= W ′
(−λ,−λ̄,−Sλ

(−λ,−λ̄
))

. (192)

Proof: The condition (192) is a necessary one. Indeed, starting from (158), one
obtains

∂

∂λ̄

(
Sz

(
λ, λ̄
))

= W ′
(
λ, λ̄, Sλ

(
λ, λ̄
)) ∂

∂λ

(
Sz

(
λ, λ̄
))

(193)

∂

∂λ̄

(
Sz

(−λ,−λ̄
))

= W ′
(−λ,−λ̄,−Sλ

(−λ,−λ̄
)) ∂

∂λ

(
Sz

(−λ,−λ̄
))

. (194)

Exploiting the condition (191) in (194), one gets the equality (192).

The condition (192) is sufficient. Indeed, let us introduce the function

Φ
(
λ, λ̄, z, z̄

)
= Sz

(
λ, λ̄
)

+ Sz

(−λ,−λ̄
)
. (195)

Using the equations (189) and (190), one has

lim
λ→∞

Φ
(
λ, λ̄, z, z̄

)
= 0 (196)

lim
λ→0

Φ
(
λ, λ̄, z, z̄

)
= −2ivz (z, z̄) . (197)

Both terms in the right hand side of (195) satisfy the Beltrami equation (193)
and (194) respectively, from which, exploiting the constraint (192), one concludes
that

∂Φ

∂λ̄

(
λ, λ̄, z, z̄

)
= W ′

(
λ, λ̄, Sλ

(
λ, λ̄
)) ∂Φ

∂λ

(
λ, λ̄, z, z̄

)
. (198)

The function Φ is a solution of the Beltrami equation vanishing at λ → ∞. So, Φ
vanishes identically on whole λ-plane, so

∂S

∂z

(
λ, λ̄
)

= −∂S

∂z

(−λ,−λ̄
)
. (199)

In particular Φ(0, 0, z, z̄) = −2ivz (z, z̄) ≡ 0, that is vz (z, z̄) ≡ 0. Analogously
it is possible to demonstrate that

∂S

∂z̄

(
λ, λ̄
)

= −∂S

∂z̄

(−λ,−λ̄
)
. (200)

Hence vz̄ (z, z̄) ≡ 0. Equations (199) and (200) lead to the relation (191) � �
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Lemma 4. Let S
(
λ, λ̄, z, z̄

)
be a solution of ∂̄ problem (158) such that (189)

and (190) are verified. Then the condition

S̄
(
λ, λ̄
)

= S

(
1

λ̄
,
1

λ

)
+ iv(z, z̄) (201)

is verified if and only if

λ2W
(
λ, λ̄, Sλ

(
λ, λ̄
))

= −W

(
1

λ̄
,
1

λ
,−λ̄2Sλ̄

(
1

λ̄
,
1

λ

))
. (202)

Proof: The condition (202) is a necessary one. Let us consider the complex
conjugation of equation (158)

∂λ

(
S̄
(
λ, λ̄
))

= W
(
λ, λ̄, Sλ

(
λ, λ̄
))

. (203)

Since

S̄
(
λ, λ̄
)

= S

(
1

λ̄
,
1

λ

)
+ iv(z, z̄) = S

(
ξ, ξ̄
)

+ iv(z, z̄) (204)

where ξ = λ̄−1 and ξ̄ = λ−1, the left hand side of (203) can be written as follows

∂λ

(
S
(
ξ, ξ̄
))

=
∂ξ̄

∂λ

∂S

∂ξ̄

(
ξ, ξ̄
)

= − 1

λ2
W
(
ξ, ξ̄, ∂ξS

(
ξ, ξ̄
))

= − 1

λ2
W

(
1

λ̄
,
1

λ
,−λ̄2∂λ̄S

(
1

λ̄
,
1

λ

))
(205)

that provides us with equation (201).

The condition (202) is a sufficient one. The ∂̄-equation (158) written in terms of
the variables ξ = λ̄−1 and ξ̄ = λ−1

Sξ̄ = W
(
ξ, ξ̄, Sξ

(
ξ, ξ̄
))

(206)

is equivalent to

λ2Sλ

(
1

λ̄
,
1

λ

)
= −W

(
1

λ̄
,
1

λ
,−λ̄2Sλ̄

(
1

λ̄
,
1

λ

))
. (207)

Using equation (203), multiplied by λ2, and equation (202), one concludes that

∂λS̄
(
λ, λ̄
)

= ∂λS

(
1

λ̄
,
1

λ

)
. (208)

Integrating (208), one gets

S̄
(
λ, λ̄
)

= S

(
1

λ̄
,
1

λ

)
+ ṽ (z, z̄) . (209)
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Let us note that ṽ cannot depend on λ̄ since the function S is meromorphic outside
the ring. Now, evaluating the equality (209) at λ = 0 and λ → ∞, one obtains

ṽ (z, z̄) = S̃(0, 0, z, z̄) = −S̃(0, 0, z, z̄). (210)

So, ṽ is a purely imaginary function

ṽ (z, z̄) = iv (z, z̄) (211)

where v is a real valued function. This complete the proof. �

Note that ṽz = ivz(z, z̄) = −a, in other words, it is the coefficient in front of the
“magnetic” term in equation (188). When it vanishes (i.e., a = 0), one has the
pure potential equation (188), that is the eikonal equation.

Combining together the lemmas (3) and (4), one gets the following theorem:

Theorem 5. If the ∂̄-data W of the ∂̄-equation (158) obey the constraints

λ2W
(
λ, λ̄, Sλ

(
λ, λ̄
))

= −W

(
1

λ̄
,
1

λ
,−λ̄2Sλ̄

(
1

λ̄
,
1

λ

))
(212)

W ′
(
λ, λ̄, Sλ

(
λ, λ̄
))

= W ′
(−λ,−λ̄,−Sλ

(−λ,−λ̄
))

(213)

then this ∂̄-problem provides us with the eikonal equation with real-valued refrac-
tive index.

9. Concluding Remarks

Most results in nonlocal nonlinear optics, except very few interesting cases [40,
50], have been obtained previously by numerical analysis of the nonlocal NLS
equation (see e.g. [11, 39, 41]). We have demonstrated the existence of integrable
regimes for the Cole-Cole media in the geometric optics limit. In this case many
calculations can be performed analytically. Of course, this type of model provides
us with certain approximation for the phase of the electric field and of intensity. As
it happens for the helicoidal wavefronts, the model breaks along the lines where
the phase is singular. Then, even if our approach allows us to analyze exactly the
properties of wavefronts and the structure of their dislocations, the approximation
for intensity is no more accurate. The helicoid is a particular meaningful example
of this fact. Indeed, our geometric optics model gives a blows up instead of a
vanishing intensity [32]. As observed above, the intensity of light beam vanishes
due to the no more negligible wave corrections along the axis of helicoid, where
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the phase is singular. These vortex type structures are of interest from the phe-
nomenological point of view because the are often associated with dark solitons
in nonlocal media [45]. So, one may expect that the singularities of the phase may
give a clue of possible existence of particular interesting structures just like dark
solitons.

We also have demonstrated that in the Beltrami sector there exist self-guided light
beams exhibiting nontrivial singular phase structures which were not considered
before. An accurate description of these wavefront dislocations could gives useful
indications about the physical properties of light beams beyond our model.
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