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Abstract. The two-dimensional noncommutative field theory on the light cone
is studied from the usual Moyal product formalism. The Noether currents and the
components of the energy-momentum tensor are explicitly computed.

1. Introduction

One of the major outstanding problems in Physics is the calculation of observable
processes in strongly interacting field theories like QCD and electroweak theory.
In particular, it is difficult to calculate, from first principles, the hadronic spectrum,
structure functions, fragmentation functions, weak decay amplitudes and nuclear
structure. The two most promising attempts to tackle strongly interacting field
theories are lattice calculations and light cone field theory. In the 60’s, Fubini
and Furlan [6] showed that, in a Poincaré invariant theory, calculations may be
simpler in an “infinite momentum frame”, i.e., in a frame moving with a velocity
v → c (the light velocity) relative to the centre of mass. Weinberg showed that
the singularities for γ = 1√

1−( v

c
)2

→ ∞ cancel in the physical observables [15].

The net effect (apart from a singular scale factor) is to transform to the light cone
coordinates

x+ :=
1√
2

(

x0 + x3
)

, x− :=
1√
2

(

x0 − x3
)

, x⊥ =
(

x1 , x2
)

unaffected

with x+ regarded as the (light cone) time and x−, x1 and x2 regarded as spatial
coordinates. This interpretation is crucial as the Hamiltonian formalism does not
treat space and time in a symmetric way.

Recently, the investigation of the gauge field theories in a noncommutative space-
time has become of increasing interest [1–6], [8–10], [12–15].
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In this paper, we investigate the two-dimensional noncommutative field theory on
the light cone from the Moyal product formalism. We deduce, from the variational
principle, the Noether currents and the components of the energy-momentum ten-
sor.

The paper is organized as follows. In Section 2, we provide the usual commu-
tative gauge theories on the light cone. In Section 3, the theoretical framework
of the noncommutative spacetime on the light cone is given; the Moyal product
is presented. The noncommutative U(1) covariant derivative and gauge action
are investigated as well as the equations of motion and the gauge invariance of
the theory. Furthermore, the Noether Theorem is introduced and the correspond-
ing currents are explicitly computed. In Section 4, the components of the energy
momentum tensor are calculated with respect to the ?-product.

2. Two-Dimensional Commutative Gauge Theory on the Light Cone

Consider the following Lagrangian density [11]

L = χ (i∂µ + gAµ) γµχ−mχχ− 1

4
FµνF

µν . (1)

The electromagnetic field is described by the vector potentialAµ(µ = 0, 1) which
in turn determines the field strength tensor

Fµν = ∂µAν − ∂νAµ. (2)

The matter field is described by a two component spinor

χ =

(

φ

ψ

)

with φ and ψ being Grassmann variables. The γµ are 2 × 2 Dirac matrices satis-
fying the Clifford algebra relations

{γµ, γν} = 2 gµν , gµν =

(

1 0
0 −1

)

. (3)

In addition, we set

γ5 = γ0γ1 =

(

1 0
0 −1

)

. (4)
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To simplify further the Lagrangian density, new coordinates are introduced

x+ =
1√
2

(

x0 + x1
)

, ∂+ =
1√
2

(∂0 + ∂1)

(5)
x− =

1√
2

(

x0 − x1
)

, ∂− =
1√
2

(∂0 − ∂1)

with a new combination of the gauge fields:

A± =
1√
2

(A0 ±A1) . (6)

The metric in these two-dimensional light cone coordinates is

g−− = g++ = 0, g−+ = g+− = 1, g−− = g++ = 0, g−+ = g+− = 1.

The commutative Lagrangian (1) thus becomes

L =
√

2φ† (i∂+ + gA+)φ+
√

2ψ† (i∂− + gA−)ψ
(7)

−m
(

φ†ψ + ψ†φ
)

+
1

2
(∂−A+ − ∂+A−)2 .

3. Noncommutative Gauge Theory on the Light Cone

The noncommutative geometric spaces are usually described by a ?-algebra. In
general, this algebra is not commutative. The usual product of functions is there-
fore replaced by the ?-product, which is characteristic for the noncommutative
geometry and is given by

(f ? g) (x) = exp

(

1

2
i θnm∂xn∂ym

)

f(x) g(y)|x=y
(8)

where f and g are arbitrary smooth functions, and θnm is a real constant antisym-
metric tensor. The Moyal bracket of two functions is [f , g]? = f ?g−g?f . If we
choose f and g to be the light cone coordinates, we obtain [x− , x+]? = i θ−+,

where θ−+ = θ ε−+, ε−+ = −ε+− = 1, θ = constant.

3.1. Noncommutative U(1) Gauge Action

Define the noncommutative U(1) covariant derivative as

D±(·) = ∂±(·) − ig A± ? (·) (9)
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with the bracket given by

[D− , D+]?(·) = −igF−+(·) (10)

where F−+ = ∂−A+ − ∂+A− − ig[A−, A+]?. Equation (10) is called the Ricci
identity and the noncommutative field obtained from this identity can be identified
as the noncommutative curvature tensor.

The noncommutative gauge action can be written as

S =

∫

d2x
{

i
√

2φ† ? D+φ+ i
√

2ψ† ? D−ψ −m
(

φ† ? ψ + ψ† ? φ
)}

(11)
+

1

2

∫

d2xF−+ ? F−+.

3.2. Equations of Motion

Equations of motion are derived through the stationary action principle. This
principle states that the quantities of the system follow an extremum path in
phase space. From the variation of the action and the properties of the ?-product,
and setting the surface terms ∂+

(

φ† ? δφ
)

, ∂−
(

ψ† ? δψ
)

, ∂−(δA+ ? F−+) and
∂+(δA− ? F−+) to zero, we deduce the following equations of motion

i
√

2D+φ−mψ = 0, i
√

2D−ψ −mφ = 0 (12)

−i
√

2D+φ
† −mψ† = 0, −i

√
2D−ψ

† −mφ† = 0 (13)

−g
√

2φ ? φ† − ∂−F−+ + ig [A−, F−+]? = 0 (14)

−g
√

2ψ ? ψ† + ∂+F−+ − ig [A+, F−+]? = 0. (15)

In this case (14) and (15) are the noncommutative counterparts of Maxwell equa-
tions on the light cone. With D±· = ∂± · −ig [A±, ·], they can be written as

D−F−+ = −g
√

2φ ? φ†, D+F−+ = g
√

2ψ ? ψ† (16)

which define the noncommutative Gauss-Law in the light cone representation.

3.3. Gauge Invariance of the Theory

Let λ(x) be a function on the spacetime of the light cone, U(x)- a noncom-
mutative U(1) gauge transformation defined by U(x) = eiλ

? = 1 + iλ − 1
2λ ?

λ − i
3!λ ? λ ? λ + · · · Using the definition of the ?-product, we can show that
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U(x) ? U−1(x) = U−1(x) ? U(x) = 1. Under the noncommutative U(1) gauge
group, the fermionic part is transformed as

(φ , ψ) → (U ? φ , U ? ψ), (φ† , ψ†) → (φ† ? U−1 , ψ† ? U−1) (17)

and the gauge part is transformed as, with x = (x+, x−)

A± → A′
± =

i

g
U(x) ? D±U

−1(x), F−+ → F ′
−+ = U(x) ? F−+ ? U

−1(x). (18)

Proposition 1. The infinitesimal gauge transformation is given, for the fermionic
and gauge parts, respectively, by

(δφ , δψ) = (iλ ? φ , iλ ? ψ), (δφ† , δψ†) = (−iφ† ? λ , −iψ† ? λ) (19)

δA± =
1

g
D±λ. (20)

Under the noncommutative U(1) gauge transformations (17) and (18), the non-
commutative action is gauge invariant.

3.4. Noether Currents

The Noether theorem allows us to deduce the current density via the infinitesi-
mal variation of the action S. Using the equations of motion (14) and (15), the
Noether currents corresponding, respectively, to the fermionic and gauge parts,
with respect to the axis x+ and x−, are given by the expressions
(

J+ , J−
)

=
(

φ ? φ† , ψ ? ψ†
)

,
(

J+
e , J−

e

)

=
(

−gφ ? φ† , gψ ? ψ†
)

. (21)

J±
e can be also called the noncommutative electromagnetic currents with respect

to the axis x± of the light cone.

The fermionic charge is obtained as

Q =

∫

dx+ J+ =

∫

dx+ φ ? φ† (22)

while the axial current Jn
γ5

under axial symmetry eiλγ5

? is

J+
5 = −φ ? φ†, J−

5 = ψ ? ψ†. (23)

With expressions (21), the Noether currents are related by
(

J+
e , J−

e

)

=
(

g J+ , −g J−
)

. (24)
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Proposition 2. Under the equations (14) and (15) we have

D+ J
+ + D− J

− = 0. (25)

This is the light cone version of the Ward identity [2], which means that the
Noether currents are (due to the equations of motion and the Bianchi identity)
covariantly conserved.

Proposition 3. Under the equations (14) and (15) we have also

∂+ J
− + ∂− J

+ =
i√
2

(∂+[A−, F−+]? − ∂−[A+, F−+]?) . (26)

The Noether currents are not locally conserved, but the integral over the noncom-
mutative light cone coordinates of these divergence vanishes.

4. Energy-Momentum Tensor in the Light Cone Representation

In this Section, we compute the energy-momentum tensor using the noncommu-
tative Lagrangian density whose terms depend on the derivatives through the de-
finition of the ?-product. The noncommutative Lagrangian density L is written
as commutative terms by perturbing the initial Lagrangian density by an interac-
tion Lagrangian. This is obtained by the expansion of the Lagrangian using the
?-product definition (8) in the first θ-order. From the conjugate momentum with
respect to the fermionic and gauge parts of the Lagrangian density L, the calcu-
lation of the components of the energy-momentum tensors becomes easier. We
obtain in a straightforward way

T++ = − i(
√

2φ† +
1

2
θ ∂−(g

√
2 (φ† ? A+) −mψ†)) ? ∂+φ

− i

2
θ ∂−(g

√
2(ψ† ? A−) −mφ†) ? ∂+ψ

+
1

2
gθ (i

√
2(∂−φ

† ? φ− φ† ? ∂−φ) + {∂−A− , F−+}?) ? ∂+A+ (27)

+
1

2
(ig

√
2θ(∂−ψ

† ? ψ−ψ† ? ∂−ψ)−2F−+ − gθ {∂−A+ , F−+}?)

? ∂+A−

which is the Hamiltonian density; the brackets {(·), (·)} are defined as, for any f
and g, {f , g}? = f ? g + g ? f. The component T+− of the energy-momentum
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tensor is respectively

T+− = − i(
√

2φ† +
1

2
θ ∂−(g

√
2 (φ† ? A+) −mψ†)) ? ∂−φ

− i

2
θ ∂−(g

√
2(ψ† ? A−) −mφ†) ? ∂−ψ

+
1

2
gθ (i

√
2(∂−φ

† ? φ− φ† ? ∂−φ) + {∂−A− , F−+}?) ? ∂−A+ (28)

+
1

2
(ig

√
2θ(∂−ψ

† ? ψ−ψ† ? ∂−ψ)−2TF
−+−gθ {∂−A+ , F−+}?)

? ∂−A− − L.

The other components of the energy-momentun tensor, namely, T−+ and T−−

can be obtained in a similar way [10]. We find that the energy-momentum tensor
is neither locally nor covariantly conserved, i.e., for n, m = +,−

∂nT
nm 6= 0, DnT

nm 6= 0. (29)

This result (29) is well in a good agreement with the work of Grimstrup et al [8]
who have studied the particular case of the gauge action.
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