
JGSP 6 (2006) 16–37

QUANTUM HALL EFFECT AND NONCOMMUTATIVE
GEOMETRY

ALAN L. CAREY, KEITH C. HANNABUSS and VARGHESE MATHAI

Communicated by Syed Twareque Ali

Abstract. We study magnetic Schrödinger operators with random or almost pe-
riodic electric potentials on the hyperbolic plane, motivated by the quantum Hall
effect (QHE) in which the hyperbolic geometry provides an effective Hamiltonian.
In addition we add some refinements to earlier results. We derive an analogue of
the Connes-Kubo formula for the Hall conductance via the quantum adiabatic the-
orem, identifying it as a geometric invariant associated to an algebra of observables
that turns out to be a crossed product algebra. We modify the Fredholm modules
defined in [4] in order to prove the integrality of the Hall conductance in this case.

1. Introduction

In [4], continuous and discrete magnetic Hamiltonians containing terms arising
from a background hyperbolic geometry were introduced. These may be thought
of as effective Hamiltonians for an analogue of the quantum Hall effect studied
in a Euclidean model by Bellissard [2] and Xia [20]. We interpret these Hamil-
tonians, following a suggestion of Bellissard, as modelling spinless electrons in
a conducting material with a perturbation term arising from a background hyper-
bolic geometry. (In [4] we took the somewhat different view that the conducting
material exhibited hyperbolic geometry.) They motivate constructing Fredholm
modules associated in a natural way with Riemann surfaces and two dimensional
orbifolds which give a higher genus analogue of the work of Bellissard (which is
the genus one case) on the quantum Hall effect. In [4] we considered Hamiltoni-
ans invariant under a projective action of a Fuchsian group Γ. We will only discuss
groups whose actions on hyperbolic space are free here and refer the reader to [12]
for the more general case. In this paper we allow in addition a random potential
(which may be thought of as modelling impurities) so that the invariance of the
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Hamiltonian under the Fuchsian group is replaced by a type of ergodicity assump-
tion. There is an analogue of the Connes-Kubo cocycle of the Euclidean case for
the Hall conductance. This cocycle takes values which are integer multiples of
a fundamental unit in the case of free actions and rational multiples for non-free
actions. Integrality follows by showing that the cocycle gives the index of a cer-
tain Fredholm operator (the conductance may also be thought of in terms of a
topological index). Thus the models in [4, 12] fit the noncommutative geometry
framework for magnetic Hamiltonians (see [8]).

We begin by reviewing the construction of magnetic Hamiltonians in a continu-
ous model with a background hyperbolic geometry term. There are also discrete
versions which are generalised Harper operators [4, 5, 12, 19]. Our model of hy-
perbolic space is the upper half-plane H in C equipped with its usual Poincaré
metric (dx2 + dy2)/y2, and symplectic area form ωH = dx ∧ dy/y2. The group
PSL(2,R) acts transitively on H by Möbius transformations

x+ iy = ζ 7→ gζ =
aζ + b

cζ + d
, for g =

(

a b
c d

)

.

Any Riemann surface of genus g greater than one can be realised as the quotient
of H by the action of its fundamental group realised as a cocompact torsion-free
discrete subgroup Γ of PSL(2,R).

Pick a one-form η such that dη = θωH, for some fixed θ ∈ R. As in geometric
quantisation we may regard η as defining a connection ∇ = d − iη on a line
bundle L over H, whose curvature is θωH. Physically we can think of η as the
electromagnetic vector potential for a uniform magnetic field of strength θ normal
to H. Using the Riemannian metric the Hamiltonian of an electron in this field is
given in suitable units by

H = Hη =
1

2
∇∗∇ =

1

2
(d − iη)∗(d − iη).

Comtet [6] has shown that H differs from a multiple of the Casimir element
for PSL(2,R), 1

8J.J, J1, J2 and J3 denote a certain representation of gener-
ators of the Lie algebra sl(2,R), satisfying [J1, J2] = −iJ3, [J2, J3] = iJ1,
[J3, J1] = iJ2, so that J.J = J2

1 +J2
2 −J2

3 is the quadratic Casimir element show-
ing the underlying PSL(2,R)-invariance of the theory. Comtet has computed the
spectrum of the unperturbed Hamiltonian Hη, for η = −θdx/y, to be the union
of finitely many eigenvalues {(2k + 1)θ − k(k + 1) : k = 0, 1, 2 . . . < θ − 1

2},
and the continuous spectrum [ 14 + θ2,∞). Any η is cohomologous to −θdx/y
(since they both have ωH as differential) and forms differing by an exact form dφ
give equivalent models: in fact, multiplying the wave functions by exp(iφ) shows
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that the models for η and −θdx/y are unitarily equivalent. This equivalence also
intertwines the Γ-actions so that the spectral densities for the two models also
coincide.

This Hamltonian can be perturbed by adding a potential term V . In [4], we
took V to be invariant under Γ. In [5] we allowed any smooth random poten-
tial function V on H using two general notions of random potential (in the liter-
ature random usually refers to the Γ-action on the disorder space being required
to admit an ergodic invariant measure). The class of random potentials we con-
sider here contains any smooth bounded potential V . The perturbed Hamiltonian
Hη,V = Hη +V has unknown spectrum for such general V . However we are able
to deduce some qualitative aspects of the spectrum of these Hamitonians by using
a reduction (via Morita equivalence) to a simpler case: that of a discrete model.

In Section 2, we extend the hyperbolic Connes-Kubo formula for the Hall conduc-
tance for the continuous model in [4], to the non-periodic case. We show that this
hyperbolic Connes-Kubo cocycle is cohomologous to another cyclic two-cocycle
which is the Chern character of a Fredholm module, from which we can deduce
that the Hall conductance takes on integral values in 2(g − 1) Z (g > 1 being
the genus). This result has been generalized in [12] where for general cocompact
Fuchsian groups Γ, it is shown that the conductance takes on values in φZ, where
φ denotes the orbifold Euler characteristic of the orbifold H/Γ, i.e., the conduc-
tance can take on certain fractional values. In the Appendix we give a derivation
of the hyperbolic Connes-Kubo formula for the Hall conductance, using the quan-
tum adiabatic theorem and standard physical reasoning.

2. Continuous Model

2.1. The Geometry of the Hyperbolic Plane

The upper half-plane can be mapped by the Cayley transform z = (ζ − i)/(ζ + i)
to the unit disc D equipped with the metric |dz|2/(1−|z|2)2 and symplectic form
dz dz/2i(1 − |z|2)2, on which PSU(1, 1) acts, and some calculations are more
easily done in that setting. In order to preserve flexibility we shall work more
abstractly with a Lie group G acting transitively on a space X ∼ G/K. Although
we shall ultimately be interested in the case of G = PSL(2,R) or PSU(1, 1), and
K the maximal compact subgroup which stabilises ζ = i or z = 0 so that X = H

orX = D, those details will play little role in many of our calculations, though we
shall need to assume that X has a G-invariant Riemannian metric and symplectic
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form ωX . We shall denote by Γ a discrete subgroup of G which acts freely on X
and hence intersects K trivially.

We shall assume that L is a hermitian line bundle over X , with a connection, ∇,
or equivalently, for each pair of points w and z in X , we denote by τ(z, w) the
parallel transport operator along the geodesic from Lw to Lz . In H with the line
bundle trivialised and η = θdx/y one can calculate explicitly that

τ(z, w) = exp



i

z
∫

w

η



 = [(z − w)/(w − z)]θ.

For general η we have η − θdx/y = dφ and

τ(z, w) = exp(i

z
∫

w

η) = [(z − w)/(w − z)]θ exp(i(φ(z) − φ(w))).

Parallel transport round a geodesic triangle with vertices z, w, v, gives rise to a
holonomy factor

$(v, w, z) = τ(v, z)−1τ(v, w)τ(w, z)

and this is clearly the same for any other choice of η, so we may as well work in
the general case.

Lemma 1. The holonomy can be written as $(v, w, z) = exp

(

iθ
∫

∆

ωH

)

, where

∆ denotes the geodesic triangle with vertices z, w and v. The holonomy is invari-
ant under the action of G, that is $(v, w, z) = $(gv, gw, gz), and under cyclic
permutations of its arguments. Transposition of any two vertices inverts $. For
any four points u, v, w, z in X one has

$(u, v, w)$(u,w, z) = $(u, v, z)$(v, w, z).

2.2. Algebra of Observables and Random or Almost Periodic Potentials

The algebra of physical observables that we consider in the continuous model
should include the operators f(Hη,V ) for any bounded continuous function f on
R and for any smooth random potential function V on H with disorder space Ω.
We will see that the twisted C∗-algebra of the groupoid G = Γ\(X × X × Ω),
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twisted by $, is large enough to contain all such operators. This algebra also
turns out to be the twisted C∗-algebra of the foliation ΩΓ. This C∗-algebra is
strongly Morita equivalent to the cross product C∗-algebra C(Ω) oσ Γ, where σ
is a multiplier on Γ which is determined by $.

Assumptions. The disorder space Ω we assume to be compact, to admit a Borel
probability measure Λ, and that there is a continuous action of Γ on Ω with a
dense orbit.

The geometrical data described in the last subsection enables us to easily describe
the first of the two C∗algebras which appear in the theory. This twisted algebra
of kernels, which was introduced by Connes [8] is the C∗-algebra B generated by
compactly supported smooth functions on X ×X × Ω with the multiplication

k1 ∗ k2(z, w, r) =

∫

X

k1(z, v, r)k2(v, w, r)$(z, w, v) dv

(where dv is the G-invariant measure defined by the metric) and k∗(z, w, r) =
k(w, z, r). The trace on B is given by, τB(k) =

∫

X×Ω

k(z, z, r) dzdΛ(r). Observe

that X × X × Ω is a groupoid with space of units X × Ω and with source and
range maps s((z, w, r)) = (w, r) and r((z, w, r′)) = (z, r′). Then the algebra of
twisted kernels is the extension of the C∗-algebra of the groupoid X × X × Ω
defined by the cocycle ((v, w, r), (w, z, r)) 7→ $(v, w, z), [16].

Lemma 2. The algebra B has a representation π on the space H of L2 sections
of L → X × Ω defined by

(π(k)ψ)(z, r) =

∫

X

k(z, w, r)τ(z, w)ψ(w, r) dw.

We now pick out a Γ-invariant subalgebra BΓ of B. This condition reduces sim-
ply to the requirement that the kernel satisfies k(γ−1z, γ−1w, γ−1r) = k(z, w, r)
for all γ ∈ Γ. As before, observe that Γ\(X × X × Ω) is a groupoid whose
elements are Γ orbits (x, y, v)Γ = {(γx, γy, γv); γ ∈ Γ}, with source and range
maps s((x, y, v)Γ) = (y, v) and r((x, y, v)Γ) = (x, v). The space of units is
ΩΓ = Γ\(X × Ω). Then the algebra of invariant twisted kernels BΓ is the exten-
sion of the C∗-algebra of the groupoid Γ\(X × X × Ω) defined by the cocycle
((v, w, r), (w, z, r)) 7→ $(v, w, z), [16]. With our assumptions on the disor-
der space Ω, there is in general no trace on the algebra BΓ, and there may not
even be a weight on this algebra in general. However, we mention that under
the additional assumption that the measure Λ on Ω is Γ-invariant, the natural
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trace τBΓ for this algebra is given by the same formula as before except that
the integration is now over ΩΓ = Γ\(X × Ω) rather than X × Ω, where we
have identified ΩΓ with a fundamental domain: τBΓ(T ) =

∫

ΩΓ

T (z, z, r)dzdΛ(r).

We also mention that under the additional assumption that the measure Λ on Ω
is quasi-Γ-invariant, the natural tracial weight τBΓ for this algebra is given by
τBΓ(T ) =

∫

X×Ω

f(z, r)2T (z, z, r)dzdΛ(r), where f ∈ Cc(X × Ω) is such that
∑

γ∈Γ

(γ∗f)2 = 1.

We now recall a notion due to Connes [8].

Definition 3. A random or almost periodic potential on X is a continuous fam-
ily of smooth functions on the disorder space, Ω 3 r 7→ Vr ∈ C∞(X) where the
following equivariance is imposed

Vγr = γ∗Vr, for all γ ∈ Γ and for all r ∈ Ω.

Remarks 4. If V is a Γ-invariant potential on X , then it is clearly random for
any disorder space. More generally, if V is a arbitrary smooth function onX such
that the set {γ∗V ; γ ∈ Γ} has compact closure in the strong operator topology in
B(L2(X)), then V is a random potential.

The reason the Hamiltonian can be accommodated within the algebra BΓ is not
hard to explain. Fix a base point u ∈ D and introduce

σ(x, y) = $(u, xu, xyu)

φ(z, γ) = $(u, γ−1u, γ−1z)τ(u, z)−1τ(u, γ−1z).

Then σ is the group two-cocycle in the projective action of PSU(1, 1) on L2(D)
defined by

U(γ)ψ(z) = φ(z, γ)ψ(γ−1z)

where ψ ∈ L2(D), γ ∈ PSU(1, 1). Note that U is constructed so that the Γ-
invariant algebra π(BΓ) is the intersection of π(B) with the commutant of U .
Recall that the unperturbed Hamiltonian H = Hη commutes with the projective
representation U (cf. Lemma 4.9, [4]). So we see that H is affiliated to the
von Neumann algebra generated by the representation π of BΓ (cf. Corollary 4.2
in [4]).

A random potential V can be viewed as defining an equivariant family of Hamil-
tonians Ω 3 r 7→ Hη,Vr = H + Vr ∈ Oper(L2(X) where Oper(L2(X)) denotes
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closed operators on L2(X). Brüning and Sunada have proved an estimate on the
Schwartz kernel of the heat operator for any elliptic operator, and in particular for
exp(−tHη,Vr) for t > 0, which implies that it is L1 in each variable separately.
Since this kernel is Γ-equivariant it follows (in exactly the same fashion as Lemma
4 of [3]) that this estimate implies that exp(−tHη,Vr) is actually in the algebra BΓ.

Lemma 5. One has f(Hη,V ) ∈ BΓ for any bounded continuous function f on R

and for any random potential V on X . In particular, the spectral projections of
Hη,V corresponding to gaps in the spectrum lie in BΓ.

Following [2], [15] but using our weaker assumptions we now have the

Theorem 6. Let V be a smooth bounded function on X . Then V is a random
potential for some disorder space Ω and therefore f(Hη,V ) ∈ BΓ for any bounded
continuous function f on R.

Example 7. Let the Iwasawa decomposition of PSU(1, 1) be written KAN then
PSL(2,Z) acts on D = PSU(1, 1)/K by Möbius transformations so that Γ ⊂
PSL(2,Z) also acts. Let gλ,w(z) = λ 1−|z|2

|w−z|2 where λ ∈ R
+ ∼= A, w ∈ U(1) ∼= K

and z ∈ D. Now let γ =

(

α β
β̄ ᾱ

)

and we calculate

U(γ)gλ,wU(γ−1) = gλγ,wλ,γw

where λγ,w = |β̄w+ᾱ|−2. The stabiliser of g1,1 is {±
(

1 − in in
−in 1 + in

)

; n ∈
R}. This group is MN where MAN is the maximal parabolic subgroup. Thus
we have the usual action of PSU(1, 1) on PSU(1, 1)/MN and hence a fortiori a
Γ-action which is known to be ergodic, cf. [21]. Note that, regarding {e−gλ,w}
as a set of bounded multiplication operators on L2(D), the strong closure of
{U(γ)e−gλ,wU(γ−1) ; λ ∈ R, w ∈ U(1)} is homeomorphic to S2. (This is
because taking the strong closure adds the zero and identity operator to the set.)
Thus in this example the disorder space is S2 which admits a dense orbit and a
quasi-invariant ergodic probability measure.

2.3. Morita Equivalence

Our ability to calculate the possible values of our generalised Connes-Kubo co-
cycle rests on a Morita equivalence argument due initially to [14]. We use the
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twisted version, [17], [18]. We have already noted that B is the C∗-algebra of an
extension of the groupoidX×X×Ω by a cocycle defined by$, and Γ invariance
of$ means that BΓ is likewise the C∗-algebra of an extension of Γ\(X×X×Ω)
by $, where Γ\(X × X × Ω) denotes the groupoid obtained by factoring out
the diagonal action of Γ. More precisely, the groupoid elements are Γ orbits
(x, y, v)Γ = {(γx, γy, γv); γ ∈ Γ}, with source and range maps s((x, y, v)Γ) =
(y, v) and r((x, y, v)Γ) = (x, v). Therefore (x1, y1, v1)Γ and (x2, y2, v2)Γ are
composable if and only if y1 = γx2 and v1 = γv2 for some γ ∈ Γ, and then the
composition is (x1, γy2, γv2)Γ. We also note that Ω×Γ is a groupoid. The source
and range maps are s((v, γ)) = γv and r((v, γ)) = v. Therefore the elements
(v1, γ1) and (v2, γ2) are composable if and only if v1 = γ2v2, and the composition
is (γ−1

2 v1, γ1γ2).

Theorem 8. The algebra BΓ is Morita equivalent to the twisted cross product
algebra C(Ω) oσ̄ Γ.

The proof is a consequence of

Lemma 9. The line bundle L over X × Ω provides an equivalence (in the sense
of [17] Definition 5.3) between the groupoid extensions (Γ\(X × X × Ω))$ of
Γ\(X ×X × Ω) defined by $ and (Ω × Γ)σ of Ω × Γ defined by σ.

Using the orientation reversing diffeomorphism of the Riemann surface Σ =
Γ\X , one can show as in Proposition 7 of [4] that the algebra C(Ω) oσ Γ is
isomorphic to C(Ω) oσ Γ, where σ̄ denotes the complex conjugate of σ. Morita
equivalence of algebras implies their K-groups are the same. It is possible to cal-
culate the values taken by our cyclic cocycles for the continous model in terms
those taken by explicit cocycles on C(Ω) oσ̄ Γ. The method uses generalisations
of arguments first developed for the study of the Baum-Connes conjecture. Full
details are in [13] and [4].

2.4. A Hyperbolic Connes-Kubo Formula, Part I

The quotient Σ = H/Γ is a Riemann surface when Γ is a cocompact torsion free
subgroup of PSL(2,R). On a Riemann surface it is natural to investigate changes
in the potential corresponding to adding multiples of the real and imaginary parts
of holomorphic one-forms. (For the genus one case with an imaginary period this
amounts to choosing forms whose integral round one sort of cycle vanishes but
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the integral around the other cycle is non-trivial. Physically this would correspond
to putting a non-trivial voltage across one cycle and measuring a current round the
other.)

We let aj , j = 1, 2, . . . , 2g be a normalized symplectic basis of harmonic one-
forms on Σ = H/Γ where aj+g = ∗aj , j = 1, 2, . . . , g, and

∫

Σ

aj ∧ aj+g = 1

for all j = 1, . . . , g. We introduce the map from H to R
2g given by Ξ : z 7→

(
z
∫

u

a1, . . . ,
z
∫

u

a2g). It is the lift to H of the Abel-Jacobi map, [9] (this map is usu-

ally regarded as mapping from Σg to the Jacobi variety however we are thinking
of it as a map between the universal covers of these spaces). Notice that Ξ gives
the period lattice in R

2g (that is the lattice determined by the periods of the har-
monic forms aj) to be the standard integer lattice Z

2g so that J(Σg) = R
2g/Z2g.

We give R
2g the distinguished basis consisting of the vertices in this integer

period lattice. We write for the corresponding coordinates u1, u2, . . . u2g. Let

ωJ =
g
∑

j=1
duj ∧ duj+g denote the symplectic form on R

2g. The closed one-forms

cj = Ξ∗(duj) are cohomologous to aj for all j = 1, . . . , 2g, and therefore we
have

Lemma 10. In the notation above, Ξ∗(ωJ) is cohomologous to
g
∑

j=1
aj ∧ aj+g.

Suppose that α ∈ B is a kernel decaying rapidly. By this we mean that it satisfies
an estimate

|α(x, y, r)| ≤ φ(d(x, y)), r ∈ Ω

where φ is a positive and rapidly decreasing function on R. Now define

δjα = [Ωj , α], i.e., δjα(x, y, r) = (Ωj(x) − Ωj(y))α(x, y, r)

where Ωj(z) = i

z
∫

u

aj . Since Ωj(γ.z) − Ωj(z) is a constant depending only on

γ but independent of z, and |Ωj(γ.z) − Ωj(z)| ≤ C||aj ||∞d(z, γ.z) ≤ Cj`(γ),
where ||aj ||∞ is the supremum norm of aj , γ ∈ Γ, d(z, γ.z) is the Riemannian
distance between z and γz, and `(γ) is the word length of γ. It follows that δjα
lies in B and therefore δj is a densely defined derivation on the algebra B, and
hence also on BΓ since clearly if α is Γ-invariant, then so is δjα.

We may summarise the previous discussion as
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Lemma 11. For operators A0, A1, A2 in BΓ whose integral kernels are rapidly
decaying we have cyclic cocycles defined by

cj,k(A0, A1, A2) = TrBΓ(A0[δjA1, δkA2]) = TrBΓ(A0[Ωj , A1][Ωk, A2])

for j, k = 1, . . . , 2g.

The cyclic cocycle cjk can be interpreted as the Kubo formula for the conductance
due to currents in the k direction induced by electric fields in the j direction, as
explained in the Appendix.

3. A Fredholm Module

We shall now assume that X has a spin structure, and we write S for the spin
bundle. The representation of BΓ on H can then be extended to an action on
H⊗S . This module can be equipped with a Fredholm structure by taking F to be
Clifford multiplication by a suitable unit vector (to be explained below), and using
the product of the trace on H and the graded trace on the Clifford algebra. (If ε
denotes the grading operator on the spinors then the graded trace is just Tr ◦ ε.)

The same module can also be described more explicitly: it splits into H⊗S+⊕H⊗
S− (with the superscripted sign indicating the eigenvalue of ε). Suppose that ϕ is
a U(1) valued function on the group, which satisfies ϕ(kgh) = χ1(k)ϕ(g)χ2(h)
for k and h in K and some σ-characters χ1 and χ2 of K. The involution F can

be taken to be the matrix multiplication operator: F =

(

0 ϕ∗

ϕ 0

)

. We may

take for ϕ the function used by Connes [8] which is essentially the Mishchenko
element. In the next subsection we will see that the module is two-summable for
suitably decaying kernels. Since ϕ is invariant under similtaneous conjugation of
both variables by elements of Γ, F preserves the Γ-invariant subspace.

Theorem 12. There is a dense subalgebra BΓ
0 of BΓ stable under the holomorphic

functional calculus and a two-summable Fredholm module (F,H⊗S) for BΓ
0 with

Chern character given by the cyclic two-cocycle τc,Γ(A0, A1, A2) which is equal
to

∫

XΓ×X×X

Φ(z, x, y)$(z, x, y)k0(z, x, r)k1(x, y, r)k2(y, z, r) dz dx dy
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r ∈ Ω, where the operators A0, A1, A2 are in BΓ
0 , and whose Schwartz kernels

are k0, k1, k2 respectively. Here Φ(z, x, y) =
∫

∆

ωH is the oriented hyperbolic

area of a geodesic triangle ∆ with vertices at x, y, z. Furthermore if P (r) is a
projection into a gap in the spectrum of the Hamiltonian Hη,V . Then P (r) lies in
a two-summable dense subalgebra BΓ

0 of BΓ and for almost any r ∈ Ω one has

index(P (r)FP (r)) = 〈τc,Γ, [P (r)]〉 ∈ 2(g − 1)Z.

3.1. Summability of the Fredholm Module

The technical parts of the proof of the previous theorem rest on a lengthy calcu-
lation together with a key estimate on kernels k(z, w, r) on H × H × Ω which
represent smooth functions of the resolvent of H +V . This estimate has the form

|k(z, w, r)|2 ≤ C2 exp(−C3d(z, w)2) (∗∗)
where C2, C3 are constants (note that the RHS is independent of r). This estimate
is a result of [3]. Since operators with kernels which have support in a band around
the diagonal are dense in the algebra BΓ so too is the set of operators with kernels
satisfying (**). We denote by BΓ

0 the subalgebra consisting of operators A ∈ BΓ,
with [F,A] a Hilbert-Schmidt operator. Now BΓ

0 is dense and by [7] BΓ
0 is stable

under the holomorphic functional calculus. The last claim of the corollary on the
range of values taken by the cyclic cocycle follows using Morita equivalence with
C(Ω) oσ̄ Γ. The details are in [13] and [4].

3.2. The Hyperbolic Connes-Kubo Formula, Part II

We now have many cyclic two-cocycles associated to our model. We combine
the cyclic two-cocycles of Subsection 1.4 to produce a Connes-Kubo cocycle for
the hyperbolic Hall conductance in Proposition 13, and our goal is to show that it
is cohomologous to the Chern character of the Fredholm module τc,Γ as given in
Theorem 12.

For j = 1, . . . , g, consider Ψj(z, x, y) which is given by,

(Ωj(x)−Ωj(y))(Ωj+g(y)−Ωj+g(z))− (Ωj+g(x)−Ωj+g(y))(Ωj(y)−Ωj(z)).

We claim first that
g
∑

j=1
Ψj(z, x, y) is proportional to the “symplectic area” of a

triangle in R
2g with vertices Ξ(x),Ξ(y),Ξ(z). To prove this it suffices to assume
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that the base point in H is one of the vertices of the triangle, say z. Consider the
expression

g
∑

j=1

Ψj(z, x, y) =

g
∑

j=1

(Ωj(x)Ωj+g(y) − Ωj+g(x)Ωj(y)).

Let s denote the symplectic form on R
2g given by: s(u, v) =

g
∑

j=1
(ujvj+g −

uj+gvj). The “symplectic area” of a triangle ∆E with vertices 0,Ξ(x),Ξ(y) is
given by s(Ξ(x),Ξ(y)). To appreciate why this is so we need an argument from
[9] (pp. 333-336). The form s is the two form on R

2g given by

ωJ =

g
∑

j=1

duj ∧ duj+g.

Now the symplectic area of a triangle ∆E in R
2g with vertices 0,Ξ(x),Ξ(y) is

by definition the integral of ωJ over the triangle. A brief calculation reveals that
this yields s(Ξ(x),Ξ(y))/2, proving our claim. We have now established the
following result.

Proposition 13. The higher genus analogue of the Connes-Kubo formula is given
by the cyclic two-cocycle τK on BΓ defined by

τK(A0, A1, A2) =

g
∑

j=1

κ cj,j+g(A0, A1, A2)

=

g
∑

j=1

∫

XΓ×X×X

κΨj(z, x, y)$(z, x, y)k0(z, x, r)

× k1(x, y, r)k2(y, z, r) dz dx dy

for r ∈ Ω. Here the kj are the kernels of the Aj , j = 0, 1, 2 (three exponentially

decaying elements of BΓ) and
g
∑

j=1
Ψj(z, x, y) is proportional to the “symplectic

area” of the Euclidean triangle ∆E in R
2g with vertices Ξ(x),Ξ(y),Ξ(z). Here

κ = 4π(g − 1)/g is a constant depending only on the genus g, where g > 1.

The constant κ = 4π(g−1)/g is justified in the discussion following Theorem 14
below. To compare the conductance cocycle τK with the Chern character cocycle
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τc,Γ, we begin by recalling the following Theorem 5.5.1, page 222 in [10].∗

Theorem 14. Let Σ be a compact Riemann surface of genus g ≥ 2 andα1, . . . , αg

be a basis of holomorphic one-forms on Σ. Then
g
∑

j=1
αj⊗ᾱj defines a Kähler met-

ric on Σ called the Bergman metric or the canonical metric, that has nonpositive
curvature vanishing at most at a finite number of points on Σ.

It follows from this theorem, which uses the Riemann-Roch theorem, that ωα =
√
−1
2

g
∑

j=1
αj ∧ ᾱj is a volume form on Σ. This is a subtle result as the holomor-

phic one-form αj cannot be nowhere zero, which follows by an application of the
Hopf index theorem, where we observe that the Euler characteristic is nonzero.
Therefore each term

√
−1
2 αj ∧ ᾱj by itself cannot be a volume form on Σ!

Next we recall the following basic fact relating holomorphic one-forms and har-
monic one-forms on Σ. A (complex valued) one-form α on Σ is holomorphic if
and only if α = a+

√
−1 ∗ a, where a is a (real valued) harmonic one-form on Σ

and ∗a is the Hodge ∗ of a.

If aj , j = 1, . . . 2g is a symplectic basis of harmonic one-forms on Σ, where
aj+g = ∗aj , j = 1, . . . g. Then αj = aj +

√
−1aj+g is a basis of holomorphic

one-forms on Σ. By Theorem 14 and its consequence, we deduce that the sum
g
∑

j=1
aj ∧ aj+g is a volume form on Σ.

Now let ωΣ denote the volume form on Σ = H/Γ induced by the hyperbolic
volume form ωH on H. Then there is a positive constant κ such that ωΣ and

κ
g
∑

j=1
aj ∧aj+g are cohomologous. To determine the constant κ, we integrate over

the surface Σ to get
∫

Σ

ωΣ = κ

∫

Σ

g
∑

j=1

aj ∧ aj+g.

Now each term
∫

Σ

aj ∧ aj+g = 1 by our choice of normalized symplectic basis.

By the Gauss-Bonnet theorem
∫

Σ

ωΣ = 4π(g − 1). Therefore κ = 4π(g − 1)/g.

∗ Note that in [4] page 652, we used a different, incorrect argument at this point, and we thank
Siye Wu for pointing this out to us.
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Thus by the argument above and Lemma 10, we see immediately that the dif-
ference ωH − κΞ∗(ωJ) = dΛ, where Λ is a Γ-invariant one-form on H. More
particularly for a geodesic triangle ∆ ⊂ H with vertices at x, y, z ∈ H

∫

∆

ωH = κ

∫

∆

Ξ∗(ωJ) +

∫

∆

dΛ = κ

∫

Ξ(∆)

ωJ +

∫

∂∆

Λ.

Now Ξ cannot map geodesic triangles to Euclidean triangles in R
2g as Ξ(∆) is a

compact subset of a non-flat embedded two dimensional surface in R
2g. Moreover

as Ψj(z, x, y) = 0 whenever the images of z, x, y under Ξ lie in a Lagrangian
subspace (with respect to the symplectic form s) of R

2g, τK and τc,Γ are not
obviously proportional.

Next we write ωJ = dθ. Considering the difference τK − τc,Γ one sees that the
key is to understand

∫

Ξ(∆)

ωJ −
∫

∆E

ωJ =

∫

∂Ξ(∆)

θ −
∫

∂∆E

θ.

Now this difference of integrals around the boundary can be written as the sum of
three terms corresponding to splitting the boundaries ∂Ξ(∆) and ∂∆E into three
arc segments each. We introduce some notation for this, writing

∂Ξ(∆) = Ξ(`(x, y)) ∪ Ξ(`(y, z)) ∪ Ξ(`(z, x))

where `(x, y) is the geodesic in H joining x and y (with the obvious similar defi-
nition of the other terms). We also write

∂∆E = m(x, y) ∪m(y, z) ∪m(z, x)

where m(x, y) is the straight line joining Ξ(x) and Ξ(y) (and again the obvious
definition of the other terms). Then we have

∫

∂Ξ(∆)

θ −
∫

∂∆E

θ = h(x, y) + h(y, z) + h(z, x) (∗)

where h(x, y) =
∫

Ξ(`(x,y))

θ −
∫

m(x,y)

θ with similar definitions for h(y, z) and

h(z, x).

Notice that we have h(x, y) =
∫

Dxy

ωJ whereDxy is a disc with boundarym(x, y)∪

Ξ(`(x, y)). From this it is easy to see that h(γx, γy) = h(x, y) for γ ∈ Γ.
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Now consider j(x, y) =
∫

`(x,y)

Λ. Since Λ is Γ-invariant, it follows that j(γx, γy) =

j(x, y) for γ ∈ Γ. Then by the computation done above, we see that
∫

∆

ωH = κ

∫

∆E

ωJ + κ(h(x, y) + h(y, z) + h(z, x)) + j(x, y) + j(y, z) + j(z, x).

We normalise
g
∑

j=1
Ψj(z, x, y) so that it equals

∫

∆E

ωJ . Then

Φ(x, y, z) = κ

g
∑

j=1

Ψj(z, x, y) + ∂(κh+ j)(x, y, z)

where Φ(x, y, z) =

∫

∆

ωH.

Introduce the bilinear functional τ1 on BΓ given by

τ1(A0, A1) =
∫

XΓ×X

(h(x, y) + j(x, y))k0(x, y)k1(y, x) dx dy

= TrBΓ(Aκh+jA1)

where the operator Aj has kernel kj(x, y, r), j = 0, 1 and Aκh+j is the operator
with kernel (κh(x, y) + j(x, y))k0(x, y, r). So we have proved that formally the
two cyclic two-cocycles satisfy,

bτ1 = τK − τc,Γ

where b is the Hochschild boundary operator, so that they are cohomologous
cyclic two-cocycles. What remains is to understand the domain of the cochains,
which is what is addressed next.

We want to see that τ1 is densely defined. By Theorem 1.5, one has an isomor-
phism

ΦF : BΓ ∼= C(Ω) oσ̄ Γ ⊗K(L2(F )).

HereF denotes a fundamental domain for the action of Γg on H. Now any element
x in C(Ω) oσ̄ Γ ⊗ K can be written as a matrix (xij), where xij ∈ C(Ω) oσ̄ Γ.
So we can define

Nk(x) = (
∑

i,j

ν(xij)
2)

1

2
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where

ν(xij) = (
∑

h∈Γg

(1 + `(h)2k)|x(h)|2) 1

2

and ` denotes the word length function on the group Γg. Using a slight modifica-
tion of the argument given in [8], III.5.γ, one can prove that there is a subalgebra
BΓ
∞ of BΓ which

i) contains C(Ω) oσ̄,alg Γ ⊗ R, where R denotes the algebra of smoothing
operators on F and oσ̄,alg denotes the algebraic twisted crossed product

ii) is stable under the holomorphic functional calculus, and

iii) is such that Nk(x) <∞ for all x ∈ BΓ
∞ and k ∈ N.

Then, following [8], we have that the trace τ ⊗ Tr on C(Ω) oσ̄,alg Γ⊗R, is con-
tinuous for the norm Nk, for k sufficiently large, and thus extends by continuity
to BΓ

∞. Note that elements in BΓ
∞ have Schwartz kernels which have rapid decay

away from the diagonal. The next result summarises the discussion above.

Proposition 15. The algebra BΓ
∞ is dense in BΓ, is closed under the holomorphic

functional calculus and is contained in the ideal I of BΓ consisting of operators
with finite trace.

Now τK is defined on BΓ
∞ while τc,Γ is defined on BΓ

0 as we noted earlier. Both
of these algebras contain the operators whose Schwartz kernels are supported in
a band around the diagonal. Thus the subalgebra BΓ

∞ ∩ BΓ
0 is dense and stable

under the holomorphic functional calculus. Since Λ is Γ-invariant, it is bounded,
therefore |j(x, y)| ≤ ||Λ||∞d(x, y), where ||Λ||∞ is the supremum norm of Λ
and d(x, y) is the hyperbolic distance from x to y. An explicit expression for θ
shows that it grows linearly in terms of d(x, y), so that h(x, y) grows at worst
like d(x, y)2. (for more details, see [4]) Therefore if A0 ∈ BΓ

∞ then so too does
Aκh+j . Hence we have τ1 defined on BΓ

∞ ∩BΓ
0 . This section has proved our main

theorem.

Theorem 16. The Connes-Kubo cocycle τK and the Chern character cocycle τc,Γ
arising as the Chern class of the Fredholm module (F,H⊗S), are cohomologous
as cyclic cocycles on BΓ

∞ ∩ BΓ
0 .
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4. Appendix A: On the Quantum Adiabatic Theorem (QAT)

One knows that the (time) evolution determined by a time independent Hamil-
tonian reduces to the spectral theory of the Hamiltonian. The QAT says that the
(time) evolution of a slowly varying time dependent Hamiltonian reduces to the
spectral theory of an associated family of adiabatic Hamiltonians. The setting for
the QAT is as follows. Let s → H(s) be a smooth family of Hamiltonians (self-
adjoint operators) τ = time scale and s = t/τ = scaled time. Consider now the
physical evolution

i∂tU(t) = H(t/τ)U(t), U(0) = 1

or equivalently

i∂sUτ (s) = τHτ (s)Uτ (s), Uτ (0) = 1. (A1)

Let P (0) denote the spectral projection onto a gap in the spectrum of H(0), that
is we have P (0) = χ(−∞,E](H(0)) where E 6∈ spectrum of (H(0)).

The adiabatic evolution is determined by the equation

P (s) = Ua(s)P (0)Ua(s)
∗, Ua(0) = 1 (A2)

where P (s) denotes spectral projection onto a gap in the spectrum of H(s). Let
Ha(s) denote the generator of Ua(s). It is also known as the adiabatic Hamil-
tonian and is given by

Ha(s) =
i

τ
(∂sUa(s))Ua(s)

∗. (A3)

Lemma 17. The adiabatic Hamiltonian Ha(s) satisfies the equation of motion

[Ha(s), P (s)] =
i

τ
∂sP (s).

Proof: Differentiating (A2), we have

∂sP (s) = ∂sUa(s)P (0)Ua(s)
∗ + Ua(s)P (0)∂sUa(s)

∗

= ∂sUa(s)P (0)Ua(s)
∗ − Ua(s)P (0)Ua(s)

∗∂sUa(s)Ua(s)
∗

= (∂sUa(s))Ua(s)
∗Ua(s)P (0)Ua(s)

∗ − τ

i
P (s)Ha(s)

=
τ

i
[Ha(s), P (s)].
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Lemma 18. Let f be a measurable function on R. Then Ha(s) = f(H(s)) +
i

τ
[∂sP (s), P (s)] satisfies the equations of motion.

Proof: [f(H(s)), P (s)] ≡ 0 and [[∂sP (s), P (s)], P (s)] = ∂sP (s) sinceP (s)2 =
P (s) and P (s) is a spectral projection of H(s). Define the adiabatic Hamiltonian
as

Ha(s) = H(s) +
i

τ
[∂sP (s), P (s)]. (1)

Then equation (A2) is satisfied and Ua(s) : RangeP (0) → RangeP (s), i.e., the
initial value problem

i∂sψ(s) = τHa(s)ψ(s), ψ(0) ∈ RangeP (0)

has the property that ψ(s) ∈ RangeP (s) for all s.

Theorem 19 (Quantum Adiabatic Theorem (QAT) [1]) Let s → H(s) be a
smooth family of self-adjoint Hamiltonians and s → P (s) be a smooth family
of spectral projections as before such that

sup{‖P (s)‖ <∞; s ∈ [0,∞)}

and the commutator equation [∂sP (s), P (s)] = [H(s), X(s)] has an operator-
valued solution X(s), such thatX(s) and ∂sX(s) are bounded. Then one has

‖(Uτ (s) − Ua(s))P (0)‖ ≤ 1

τ
max

s∈[0,∞)
{2‖X(s)P (s)‖ + ‖∂s(X(s)P (s))P (s)‖}.

That is, the adiabatic evolution Ua(s) approximates the physical evolution Uτ (s)
as the adiabatic parameter τ → ∞. Equivalently, the adiabatic Hamiltonian
Ha(s) approximates the physical Hamiltonian Hτ (s) on the range of P , as the
adiabatic parameter τ → ∞.

Note that the hypotheses on P (s) are satisfied if P (s) is a spectral projection onto
a gap in the spectrum of H(s) because one can then define

X(s) =
1

2πi

∮

C

R(z, s)∂sP (s)R(z, s)dz

where C is a contour in C enclosing the spectrum in (−∞, E], E 6∈ spec (H(s))
and R(z, s) = (H(s) − z)−1 is the resolvent.
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5. Appendix B: Conductance Cocycles

In this subsection we present an argument which derives from physical principles
the hyperbolic Connes-Kubo formula for the “Hall conductance”. Our reasoning
is that the Hall conductance in the Euclidean situation is measured experimentally
by determining the equilibrium ratio of the current in the direction of the applied
electric field to the Hall voltage, which is the potential difference in the orthogonal
direction. To calculate this mathematically we instead determine the component
of the induced current that is orthogonal to the applied potential. The conductance
can then be obtained by dividing this quantity by the magnitude of the applied
field. In the hyperbolic case preferred directions. are obtained by interpreting the
generators of the fundamental group as geodesics on hyperbolic space giving a
family of preferred directions emanating from the base point. For each pair of
directions it is therefore natural to imitate the procedure of the Euclidean case and
mathematically this is done as follows.

The Hamiltonian H in a magnetic field depends on the magnetic vector potential
A and the functional derivative δkH of H with respect to one of the components
of A, denoted Ak, gives the current density Jk, where we consider adiabatic vari-
ations within a one-parameter family Ak(s), which we can choose without loss
of generality to be bounded, since A(0) = −θ dx

y
defines a bounded operator in

the hyperbolic metric. The expected value of the current in a state described by
a projection operator P into a spectral gap of H is therefore Tr(PδkH) (cf. [1]
equation (3.2)). (Note that an argument, using the fact that P is a member of a
family P (s) of projections which correspond to gaps for small s, is required to
see that PδkH is trace class.) The following lemma is not proved by a rigorous
argument: one needs to check various analytical details as in [20] which we omit
as they would take us too far afield. For this discussion Tr will denote a generic
trace.

Lemma 20. In the adiabatic limit as the adiabatic parameter τ → ∞, the func-
tional derivative of the adiabatic Hamiltonian δkHa(s) approximates the func-
tional derivative of the physical Hamiltonian δkHτ (s) on the range of P , and one
has

Tr(PδkH) = iTr(P [∂tP, δkP ]).

Proof: The first statement is the result of a calculation. It uses the explicit forms
of δk and Ha(s) and the fact that the family Ak(s) is bounded to show that the
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norm of the difference δkHa(s) − δkHτ (s) goes to zero as s → 0. By using the
invariance of the trace under the adjoint action of operators and the equation of
motion we see that

Tr(P [∂tP, δkP ]) = −Tr([P, δkP ]∂tP )

= −iTr([P, δkP ][P,Ha]) = iTr([P, [P, δkP ]]Ha).

Now δkP = δk(P
2) = P (δkP ) + (δkP )P , whence P (δkP )P = 0 and we have

[P, [P, δkP ]] = P (P (δkP ) − (δkP )P ) − (P (δkP ) − (δkP )P )P

= P (δkP ) + (δkP )P = δkP.

Consequently we may write

Tr(P [∂tP, δkP ]) = iTr((δkP )Ha) = iTr(δk(PHa)) − iTr(P (δkHa))

and, assuming that the trace is invariant under variation of Ak, the first term van-
ishes. The result asserted follows by taking the limit as the adiabatic parameter
τ → ∞.

By following [11], one sees that in fact the limit of the lemma is true to all orders.
We note further that if the only t-dependence in H and P is due to the adiabatic
variation of Aj , a component distinct from Ak, then ∂t = ∂Aj/∂t× δj . Working
in the Landau gauge so that the electrostatic potential vanishes, the electric field
is given by E = −∂A/∂t, and so ∂t = −Ejδj . Combining this with the previous
argument we arrive at the following result:

Corollary 21. The conductance for currents in the k direction induced by electric
fields in the j direction is given by −iTr(P [δjP, δkP ]).

Proof: The expectation of the current Jk is given by

Tr(PδkH) = iTr(P [∂tP, δkP ]) = −iEjTr(P [δjP, δkP ])

from which the result follows immediately.
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