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SOME CLASSES OF SHAPES OF THE ROTATING LIQUID DROP
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Abstract. The problem of a fluid body rotating with a constant angular velocity
and subjected to uniform external pressure is of real interest in both fluid dynamics
and nuclear theory. Besides, from the geometrical viewpoint the sought equilibrium
configuration of such system turns out to be equivalent to the problem of deter-
mining the surface of revolution with a prescribed mean curvature. In the simply
connected case, the equilibrium surface can be parameterized explicitly via elliptic
integrals of the first and second kind.
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List of Symbols

(OX,OY,OZ) Cartesian coordinate system in R3

(x, y, z) Cartesian coordinates
S surface in the three-dimensional space

(x(u, v), y(u, v), z(u, v)) parameterization of the surface S
(OX,OZ) Cartesian coordinate system in R2

(x, z) Cartesian coordinates in the plane
(xj(u), zj(u)) parameterization of the profile curves

of the shapes from j-th class
ã, c̃ physical constants
a dimensionless angular velocity

ν ∈ R shape parameter
N, S North and South Poles of closed surfaces

E Equator
κµ, κπ meridional and parallel curvatures
Rµ,Rπ meridional and parallel radii

r radius of the equator
κ̊µ, κ̊π equatorial principal curvatures
P (t) quadratic polynomial
D discriminant of P (t)
σ, τ roots of P (t)
σj , τj roots of P (t) related to the

shapes of the j-th class
θ angular coordinate of the parallel circle
φ angular coordinate of the meridians

n,nθ,nφ unit vectors along the normal, meridional
and parallel directions

k modulus of the elliptic function
kj modulus of the elliptic function related

to the shapes of class j
am(u, k) Jacobian amplitude function

∆(ϕ)=
√

1− k2 sin2ϕ delta function
sn(u, k), cn(u, k), dn(u, k) Jacobian elliptic functions

sn−1(u, k), cn−1(u, k),dn−1(u, k) inverse Jacobian elliptic functions
F (ϕ, k), E(ϕ, k) elliptic integrals of the first and second kind
K(k), E(k) complete elliptic integrals of the first

and second kind
Π(ϕ, n, k),Π(n, k) incomplete and complete elliptic integrals

of the third kind
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1. Introduction

Dynamics, and respective analyses of a rotating liquid drop held together by the
surface tension were initiated long time ago by Plateau [18]. In his experiments he
considers a fluid body with incompressible mass rotating with a constant angular
velocity and subjected to surface tension. The problem then is to find the shape
which this mass will have under prescribed angular velocity.

The only force acting inside the drop is the centrifugal force generated from the

potential
ρω2R2

2
and directed away from the axis. Here, ρ is the difference between

the densities ρi of the inner and ρe of the exterior mediums, ω is the fixed angular
velocity and R is the radial distance from the axis of rotation. Because the fluid
is assumed to be incompressible, a constant internal pressure pi results within the
body. According to the Laplace-Young equation [10, 15], at the free surface S
enclosing the drop the surface tension σ generates a pressure proportional to its
mean curvature H , σH . Finally, we must also add the constant pressure pe of the
external fluid. The surface in equilibrium is therefore described by equating these
pressures

pi +
ρω2R2

2
= σH + pe (1)

where ω, pe, pi, ρ, σ are constants. This then reduces immediately to the equation

H = 2ãR2 + c̃ (2)

where the constants

ã =
ρω2

4σ
, c̃ =

p

σ
(3)

allow arbitrary values ã, c̃ ∈ R. Note that the signs of ã and c̃ are determined by the
signs of the differences of the densities ρ = ρi − ρe and the pressures p = pi − pe
in the vicinity of the two sides of the interface between the two fluids.

As it was shown by Rayleigh [21] and exploited later by others (see e.g. [4] and
[14]) the shape of the rotating liquid drop depends only on one parameter which is
the non-dimensional angular velocity (rotation rate)

a =
ρω2r3

4σ
(4)

where r is the equatorial radius of the drop (see Fig. 3). The dimensionless rota-
tion rate a (denoted elsewhere [21] as Ω, or by Σ in [4] and [14]) is actually the
normalized parameter ã with the normalizing factor r3 (cf. also [13] and Table 1).
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Quite often in the literature, including the aforementioned articles, the rotation rate
appears with a denominator 8σ which is two times bigger than the denominator of
a as it is defined in (4). This however does not change the value of a which is due
to the use of a different convention for the determination of the surface tension σ
leading to twice as smaller values than the values of σ used in (4).

In view of our further investigation of the possible shapes of the rotating liquid
drop we prefer to use, instead of the physical quantity a, a parameter with a clear
geometric meaning. We define

ν =
κ̊µ
κ̊π

= r κ̊µ (5)

where κ̊µ = κµ(π/2) and κ̊π = κπ(π/2) = 1/r are the meridional and the parallel
principal curvatures respectively, that are calculated along the equator E, i.e., for
θ̊ = π/2 (cf. Fig. 1 – Fig. 3 and the assumptions made in Section 2).

Figure 1. Geometry of the profile curve.

By substituting in (2) with R ≡ r and making use of the mean curvature of the
drop’s surface at the points of the equator H̊ = (̊κµ + κ̊π)/2 one immediately
arrives at the relations

ã =
a

r3
, c̃ =

ν + 1

2r
− 2a

r
· (6)

As a result the initially given physical quantities ã and c̃ have been expressed
through two dimensionless parameters a and ν and a parameter r with the dimen-
sion of length. In the next section we derive formula for the dimensionless angular
velocity a in terms of the geometric parameters r and ν. Eventually, this allows us
to leave the physical description and continue our study of the rotating liquid drop
from the viewpoint of the geometry of plane curves [2, 3, 9, 10, 17, 19, 20].
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2. Geometry: Preliminaries

Let the surface S under consideration, which is the drop itself, is generated by the
rotation of a plane curve γ (profile curve) about the OZ-axis of some orthogonal
(OX,OY,OZ) coordinate system in R3. We assume that S intersects the XOY -
plane at right angle θ̊ = π/2 and the profile curve γ lies in the XOZ-plane where
R coincides with the Cartesian coordinate x. Let this curve γ is specified by the
function z = z(x), x ≥ 0, which is chosen in such a way that z(r) = 0 for some
positive number r (see Fig. 3). The curve on the surface traced by this point (i.e.,
the point (r, 0) of the profile curve) is the equator of S for which we assume that
it has a predetermined (fixed) radius r.

Let us now recall the well-known fundamental relations among meridional curva-
ture κµ, circumferential curvature κπ and the mean curvature H for surfaces of
revolution [15]

κµ =
d(xκπ)

dx
, H =

κµ + κπ
2

· (7)

The simultaneous solution of the system of equations (2) and (7) forR ≡ x is

κπ = ãx2 + c̃+
C

x2
, κµ = 3ãx2 + c̃− C

x2
(8)

where C is an integration constant which is assumed further on to be zero C ≡ 0.
We make this assumption here in order to get analytical formulas for the rotat-
ing drop. At the moment, letting C to be non-zero (despite that this is the most
interesting case) can be accessed only numerically [5].

Moreover, if Rπ is the distance from the surface point to the intersection of the
normal at that point with the symmetry axis (Fig. 1), meaning thatRπ is the radius
of the parallel principal curvature, then we have additionally

κπ =
1

Rπ
=

sin θ

x
(9)

and therefore

dz

dx
= ±tanθ = ± xκπ√

1− (xκπ)2
· (10)

Finally, the ordinate of the profile curve is given by the integral

z(x) = ±
∫

(ãx3 + c̃x)dx√
1− (ãx3 + c̃x)2

· (11)
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Figure 2. A sketch of a typical
surface of revolution.

N

E

S

O

Figure 3. A typical closed profile
curve in XOZ-plane.

Here, the indefinite integral produces an expression in x that gives the x-dependent
formula for z. From these considerations, we obtain a profile curve for the rotating
drop, (x, z(x)) with

x(u, v) = (x cos(v), x sin(v), z(x))

being a parametrization for the surface of revolution S that embraces the drop.

Returning back to the equations (8) we see at once that the shapes we have to deal
with are in fact linear Weingarten surfaces (cf [7,8,11,12] obeying the relation (if
C = 0)

κµ = 3κπ − 2c̃ (12)

which can be equivalently written as

κµ = 3κπ +
ν − 3

r
(13)

where
c̃ =

1− a
r

, a =
ν − 1

2
· (14)

The latter is a direct consequence of equation (12) after substitution of c̃ from (6)
and calculating at the points of the equator. For ease of the reader we have collected
in Table 1 the most important relationships between various parameters that have
been used in the literature on the subject.

Three particular surfaces can be immediately recognized: the right circular cylin-
der for ν = 0, the sphere for ν = 1 (both having the same constant parallel cur-
vatures, i.e., κπ(θ) ≡ 1/r, θ ∈ [−π/2, π/2]), and the rotational surface associated
with ν = 3 which is known as LW(2) balloon [19] (cf also Table 2).

Except the three surfaces – the sphere, the right circular cylinder and the surface
obtained for ν = 9 (see below), that are parameterizable by elementary functions,
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Table 1. Important relationships between the basic parameters.

ã =
ρω2

4σ
c̃ =

p

σ
a = r3ã

c = rc̃

Ω [21] ≡ Σ [4, 14] ≡ a [13]a =
ρω2r3

4σ
c =

pr

σ

ν =
κ̊µ
κ̊π

= rκ̊µ
r is the equatorial radius

κ̊π, κ̊µ are the principal curvatures

ã =
ν − 1

2r3
c̃ =

3− ν
2r

ãr3 + c̃r = 1
a+ c = 1

ρω2r3 + 4pr = 4σ

ρω2r3 = 2(ν − 1)σ

2pr = (3− ν)σ

ν = 2ãr3 + 1 ν = 3− 2c̃r

a =
ν − 1

2
c =

3− ν
2

ν = 2a+ 1 ν = 3− 2c

the condition (12) defines surfaces which can not be described in the same way.
One such surface is the above mentioned LW(2) balloon. The LW(2) balloon sat-
isfies the relation κµ = 3κπ, and therefore belongs to the special class of linear
Weingarten LW(n) surfaces (for relevant definitions and details see [19]).
Further, by substituting in the integral (11) the expressions for ã and c̃, given by
the equations (6) and (14), the profile curve (the upper right branch) of the rotating
liquid drop takes the form

z(χ) = ± r
1∫
χ

((ν − 1)t− ν + 3)dt√
(1− t) ((ν − 1)2t2 − (ν − 1)(ν − 5)t+ 4)

, χ =
x2

r2
(15)

in which for the surfaces lying inside the cylinder ν = 0

x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1) (16)

and for the surfaces positioned outside the cylinder

x ∈ [r,+∞), χ ∈ [1,+∞), t ∈ (1,+∞). (17)

For ν = 1 and ν = 9 the integral (15) can be evaluated only in terms of elementary
functions as these are the cases when the quadratic polynomial under the radical

P (t) = (ν − 1)2t2 − (ν − 1)(ν − 5)t+ 4, ν 6= 1 (18)
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is either reduced to constant or has multiple roots so that two surfaces are immedi-
ately obtained: the sphere for ν = 1, and the surface for ν = 9 which generating
curve γ(x) = (x, 0, z(x)), x ∈ (r/2, r] is given by the formula

γ(u) =
(
r sinu, 0, r

( 1√
3

arctan
2 cosu√

3
− cosu

))
, u ∈ (π/6, 5π/6] . (19)

A collection of shapes with known values for the shape parameter ν (resp. a) are
given in Table 2. The next Table 3 contains lists of explicit expressions represent-
ing the mean and the principal curvatures of the drop’s shape in relationship with
different selections of shape parameters.

Table 2. Some particular shapes and the corresponding values of the

parameters ν and a.

Shapes ν a

right circular cylinder 0 −0.5

sphere 1 0

LW (2) 3 1

biconcave discoid 5.6582 2.3291
with one contact point

shape parameterized 9 4
via elementary functions

When ν is not equal to one or nine the above integral belongs to the class of non-
elementary elliptic integrals. Our present goal is to build up the canonical forms
of the elliptic integral (15) for all values of the parameter ν ∈ (−∞,+∞).

3. Elliptic Integrals and Functions

As it was first shown by Legendre (1811-1819), the elliptic integrals are always
reducible to their canonical form, which means that they are expressible as a linear
combination of elementary functions and the three fundamental elliptic integrals –
the so called normal elliptic integrals of the first
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F (ϕ, k) ≡
ζ∫

0

dt√
(1− t2)(1− k2t2)

=

ϕ∫
0

dθ√
1− k2 sin2 θ

(20)

second

E(ϕ, k) ≡
ζ∫

0

√
1− k2t2
1− t2 dt =

ϕ∫
0

√
1− k2 sin2 θ dθ (21)

and respectively the third kind

Π(ϕ, n, k)≡
ζ∫

0

dt

(1−nt2)
√

(1−t2)(1−k2t2)
=

ϕ∫
0

dθ

(1−n sin2θ)
√

1−k2 sin2θ
· (22)

These three standard elliptic integrals depend on the variable upper limit ζ or ϕ,
which is considered as their argument

ζ = sinϕ, ζ ∈ (0, 1], ϕ ∈ (0,
π

2
]

and the so called elliptic modulus k ∈ (0, 1), while the third one depends on one
additional parameter which is assumed to be different from one and k2 (for more
details about the elliptic integrals, see e.g. [1]).

In order to reduce the elliptic integral (15) to its canonical form we will make
substitutions involving Jacobian elliptic functions. The method dates back to Abel

Table 3. Mean and principal curvatures expressed via different combinations

of parameters (R – radial distance from the axis of revolution).

Parameters Mean curvature Principal curvatures Weingarten relation

ã, c̃ H = 2ãR2 + c̃ κπ = ãR2 + c̃ κµ = 3κπ − 2c̃
κµ = 3ãR2 + c̃

a, c, r H =
2a

r3
R2 +

c

r

κπ =
a

r3
R2 +

c

r κµ = 3κπ −
2c

r

κµ =
3a

r3
R2 +

c

r

r, ν H =
ν − 1

r3
R2 +

3− ν
2r

κπ =
ν − 1

2r3
R2 +

3− ν
2r κµ = 3κπ +

ν − 3

2r

κµ =
3(ν − 1)

2r3
R2 +

3− ν
2r
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(1827-1828) and Jacobi (1828) who almost simultaneously suggested to consider
the inversion of the integrals

u = F (ϕ, k) ≡
ζ∫

0

dt√
(1− t2)(1− k2t2)

=

ϕ∫
0

dθ√
1− k2 sin2 θ

as new functions which are called am (amplitude) and respectively sn (sine ampli-
tude)

ϕ = am(u, k), ζ = sinϕ = sn(u, k). (23)

Two related functions namely, cn (cosine amplitude) and dn (delta amplitude) were
introduced via the formulas

∆ϕ=

√
1−k2 sin2 ϕ, cn(u, k)=

√
1−ζ2=cosϕ, dn(u, k)=

√
1−k2ζ2. (24)

The functions sn(u, k), cn(u, k) and dn(u, k) are called Jacobian elliptic func-

Figure 4. Commutative diagram for the inversion of the normal elliptic inte-

gral of the first kind.

tions. Their modern notation is due to Gudermann (1838). Assuming the modulus
k to be fixed we will simply write ϕ = amu, etc. We find it useful to visualize the
composite functions by commutative “barred arrow diagrams” as the one displayed
in Fig. 4.
As a consequence of the above formulas the following fundamental relations be-
tween the Jacobian elliptic functions are obtained

sn2u+ cn2u = 1, dn2u+ k2sn2u = 1, dn2u− k2cn2u = 1− k2 (25)
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and the representations of the normal elliptic integrals via the amplitude function
or the Jacobian elliptic functions are easily revealed

F (ϕ, k) = F (amu, k) ≡ u =

u∫
0

dũ

E(ϕ, k) = E(amu, k) =

u∫
0

dn2ũdũ (26)

Π(ϕ, n, k) = Π(amu, n, k) =

u∫
0

dũ

1− nsn2ũ
·

The derivatives of the Jacobian elliptic functions with respect to their argument are
obtained directly from the definitions of the respective functions

d

du
(snu) = cnu dnu,

d

du
(cnu) = −snu dnu,

d

du
(dnu) = −k2snu cnu.

Let us also notice that in the case of ζ = 1, respectively ϕ = π/2, the integrals
(20) – (22) are said to be the complete elliptic integrals of the respective kind which
are denoted as

K(k) = F (π/2, k), E(k) = E(π/2, k), Π(n, k) = Π(π/2, n, k). (27)

In order to proceed with the canonization of the integral (15), we need to know
the roots of the quadratic polynomial (18), and in what order the roots, when they
are real, are related to each other and the number one, which is the third root of
the polynomial under the radical

√
(1− t)P (t). Depending on the sign of the

discriminant
D = (ν − 1)3(ν − 9)

the roots of P (t)

σ =
ν − 5 +

√
(ν − 1)(ν −9)

2(ν − 1)
, τ =

ν − 5−
√

(ν − 1)(ν − 9)

2(ν − 1)
(28)

may be either real, for ν ∈ (−∞, 1) ∪ [9,+∞) or complex, for ν ∈ (1, 9). The
real roots are positive numbers, σ > 0, τ > 0, and when σ 6= τ (simple roots),
either σ < τ , for ν ∈ (−∞, 1), or τ < σ, for ν ∈ (9,+∞).
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Figure 5. Graphic of the arithmetic mean of the roots of the polynomial P (t)

versus ν and the dashed lines are the asymptotes of the function.

A more precise reasoning reveals that in the case of simple roots there are exactly
three possibilities for the number one: to be the smallest 1 < τ < σ, the largest
σ < τ < 1, or between the other two, i.e., σ < 1 < τ . All of the above statements
can be proven by inspection relying on the arithmetic mean of the roots σ and τ
versus ν

1

2
(σ + τ) =

ν − 5

2(ν − 1)

and the observation that the sign of P (1) = 4 ν alternates while P (0) = 4 is
always positive (cf. the graphic in Fig. 5). Consequently, there are four specific
ranges of the values of the parameter ν, related to the four possible ranges of the
roots of the polynomial under the radical

√
(1− t)P (t)

S I(ν) ν ∈ (−∞, 0), 0 < σ1 < 1 < τ1

S II(ν) ν ∈ (0, 1), 1 < σ2 < τ2 (29)
S III(ν) ν ∈ (1, 9), σ3 ∈ C, τ3 ∈ C
S IV(ν) ν ∈ (9,+∞), 0 < τ4 < σ4 < 1.

As a result the whole set of shapes is splitted into four classes of surfaces SI(ν) -
SIV(ν) which differ by the range of the values of the parameter ν (cf. Fig. 6). Our
next goal is to present the canonical parameterizations of these surfaces in each
one of these classes by using the normal forms of the elliptic integrals and the
Jacobian elliptic functions. We start with some observations regarding the general
properties of the considered shapes. In order that the integral (15) is well defined
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Figure 5. Ranges of the variable ν related to the different classes of non-

bending surfaces.

We start with some observations regarding the general properties of the considered
non-bending surfaces. For the integral (10) to be defined the polynomial P (t) must
obey some constraints. In the range of integration (11), i.e., for the surfaces lying
inside the cylinder, the values of the polynomial have to be positive

P (t) > 0, t ∈ (0, 1)

and in the range of integration (12), i.e., for the surfaces that are outside the cylin-
der, the values of the polynomial have to be negative

P (t) < 0, t ∈ (1,+∞).

Under such constraints, as it is easily seen from the suggestive graphics in Fig. 6,
it follows that the first two classes of non-bending surfaces consist of open “at the
top” surfaces, lying either outside the cylinder, if they are surfaces in SI(ν) class

SI(ν) : x ∈ [r, r
√
τ1], χ ∈ [1, τ1], t ∈ (1, τ1) (26)

or inside the cylinder, if they are surfaces from SII(ν)

SII(ν) : x ∈ [r
√
τ2, r], χ ∈ [τ2, 1], t ∈ (τ2, 1). (27)

P (t) < 0, t ∈ (1,+∞).

All of the non-bending surfaces belonging to the classes SIII(ν) and SIV(ν) are
closed and they are lying inside the cylinder, i.e.,

SIII(ν) and SIV(ν) : x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1). (28)

Figure 6. Ranges of the variable ν related to the different classes of shapes

of the rotating liquid drop.

it is necessary that the polynomial P (t) obey to some constraints. In the range of
integration (16), i.e., for the surfaces lying inside the cylinder, the values of the
polynomial have to be positive

P (t) > 0, t ∈ (0, 1)

and in the range of integration (17), i.e., for the surfaces that are outside the cylin-
der, the values of the polynomial have to be negative

P (t) < 0, t ∈ (1,+∞).

Under such constraints, as it is easily seen from the suggestive graphics in Fig. 7,
it follows that the first and the fourth classes of shapes consist of open surfaces,
lying either outside the cylinder

SI(ν) : x ∈ [r, r
√
τ1], χ ∈ [1, τ1], t ∈ (1, τ1) (30)

Figure 7. Graphics of the polynomial P (t) related to the different classes of

shapes of the rotating liquid drop.
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Figure 8. Ranges of the variable ν related to open and closed surfaces (left),

and that ones lying outside and inside the cylinder (right).

or inside the cylinder

SIV(ν) : x ∈ [r
√
σ4, r], χ ∈ [σ4, 1], t ∈ (σ4, 1). (31)

All of the surfaces belonging to the classes SII(ν) and SIII(ν) are closed and they
are lying inside the cylinder, i.e.,

SII(ν) and SIII(ν) : x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1). (32)

Thus the whole set of shapes are divided into two subsets of open and closed sur-
faces, obtained respectively for ν ∈ (−∞, 0] ∪ [9,+∞) and ν ∈ (0, 9), and lying
either outside (for negative ν) or inside (for positive ν) of the cylinder (Fig. 8).
As it will be seen below the shapes differ also on whether they have or do not

Figure 9. Ranges of the variable ν related to surfaces with and without self

intersections.
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have points of intersection (Fig. 9), thus splitting up into two subsets of shapes
for ν ∈ (−∞, 5. 6582) and ν ∈ (5. 6582,+∞) respectively. The limiting shape
generated by ν = 5. 6582 has a point of self contact (cf. Fig. 17 – Fig. 18). In what
follows we will derive not one but three different parameterizations for each class
having in mind their future applications.

4. Shapes of the First Class SI(ν)

As shown above, the shapes of the first class (for ν ∈ (−∞, 0), cf. Fig. 6) are open
surfaces lying outside the cylinder ν = 0, whose profile curves (upper right parts),
according to the equation (15) are given by the formula

z1(χ) =
r

2(1− ν)

χ∫
1

((ν − 1)t− ν + 3)dt√
(1− t)(t− σ1)(t− τ1)

, χ =
x2

r2
, x ∈ [r, r

√
τ1] (33)

where the roots σ1 and τ1, calculated by the equations (28) for ν ∈ (−∞, 0), are
such that the following inequalities hold (compare with the first item in (29) and
(30))

0 < σ1 < 1 < t < τ1, 0 < σ1 < 1 ≤ χ ≤ τ1. (34)

In the limiting case ν = −∞ the surfaces degenerate to a circle with radius r.

On substituting with

t = 1 + ξ2, χ = 1 + χ̃2, ξ > 0, χ̃ ≥ 0

the polynomial under the radical in (33) is transformed to a product of a sum and a
difference of squares

z1(χ̃) =
r

1− ν

χ̃∫
0

((ν − 1)ξ2 + 2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

(35)

where

σ̃1 =
√

1− σ1, τ̃1 =
√
τ1 − 1, 0 < ξ < τ̃1, 0 ≤ χ̃ ≤ τ̃1.

The above obtained integral can be split into two integrals



82 Vladimir Pulov and Ivaïlo Mladenov

Figure 10. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (36).

z1(χ̃) =
r

1− ν

 τ̃1∫
0

((ν − 1)ξ2 + 2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

−
τ̃1∫
χ̃

((ν − 1)ξ2 + 2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)


each of which is obtained as a special case of the elliptic integral

τ̃1∫
ζ

((ν − 1)ξ2 + 2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

, 0 ≤ ζ < τ̃1 (36)

with ζ = 0 and ζ = χ̃, respectively. The integral (36) can be reduced to its
canonical form with the help of the Jacobian cosine elliptic function, replacing ξ
and ζ by the new variables ũ and u

ξ = τ̃1cn(ũ, k1), ζ = τ̃1cn(u, k1), u = F (ϕ(ζ), k1), u ∈ (0,K(k1)] (37)

thereby employing the “inversion procedure” illustrated by the commutative dia-
gram in Fig. 10 where

ϕ := ϕ(ζ) = arccos
(
ζ

τ̃1

)
, k1 =

τ̃1√
σ̃21 + τ̃21

· (38)
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Hence, the reduction of the elliptic integral (36) follows in succession
τ̃1∫
ζ

((ν − 1)ξ2 + 2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

=

u∫
0

((ν − 1)τ̃21 cn2ũ+ 2)dn ũdũ√
σ̃21 + τ̃21 − τ̃21 sn2ũ

=
1√

σ̃21 + τ̃21

u∫
0

((ν − 1)τ̃21 cn2ũ+ 2)dn ũ dũ√
1− k21 sn2ũ

=
1√

σ̃21 + τ̃21

(
2

u∫
0

dũ+ (ν − 1)τ̃21

u∫
0

cn2ũdũ
)

(39)

=
1√

σ̃21 + τ̃21

(
2

u∫
0

dũ+
(ν − 1)τ̃21

k21

( u∫
0

dn2ũdũ− (1− k21)

u∫
0

dũ
))

=
1

k21
√
σ̃21 + τ̃21

((
2k21 − (ν − 1)(1− k21)τ̃21

)
F (ϕ, k1) + (ν − 1)τ̃21E(ϕ, k1)

)
.

In the above chain of equalities we have made use of the fundamental relations
between the Jacobian elliptic functions (25), the normal elliptic integrals (26) –
(27) and the formula for the differentiation of the Jacobian cosine function (see
above in Section 3). On returning back to the profile curve (35), we make two
substitutions in the last line of (39), ζ = 0 and ζ = χ̃, and then, by subtracting the
obtained expressions, we are led to the canonical form (cf. [1, Formula (213.13)])

z1(χ̃) =
r

k21
√
σ̃21 + τ̃21

(( 2k21
1− ν + (1− k21)τ̃21

)(
K(k1)− F (ϕ(χ̃), k1)

)

−τ̃21
(
E(k1)− E(ϕ(χ̃), k1)

))
, χ̃ =

√
x2

r2
− 1, x ∈ [r, r

√
τ1]

where the complete elliptic integrals K(k1) and E(k1) are obtained from the in-
complete ones with argument ϕ(0) = π/2 (cf. equations (27) and (38)).

Written with the help of the variable x the above expression provides the explicit
parameterization of the profile curves of the surfaces from the first class in Monge
representation

z1(x)=
r√

τ1−σ1

((
σ1−

ν−3

ν−1

)
(F (ϕ, k1)−K(k1))+(τ1−σ1)

(
E(ϕ, k1)−E(k1)

))
(40)

ϕ := ϕ(x)=arccos

√
(x/r)2 − 1

τ1 − 1
, k1 =

√
τ1 − 1

τ1 − σ1
, x ∈ [r, r

√
τ1]



84 Vladimir Pulov and Ivaïlo Mladenov

where σ1 and τ1 are calculated by (28) for each one of the surfaces with a parameter
ν ∈ (−∞, 0). Note that the above formula describes only the upper right part of the
profile curve. The whole curve is obtained by two consecutively applied reflections
with respect to the coordinate axes OX and OZ (cf. Fig. 3).

The next two canonical representations of the surfaces of the first class are obtained
from (40) by introducing two real parameters. One of these parameters v coincides
with the angular coordinate φ of the meridians (Fig. 2). The other parameter u is
related to χ̃ (respectively to the coordinate x) in two different ways, either by the
equations

u = arccsc
√

1 + χ̃2 = arccsc
(x
r

)
, u ∈

[
arccsc

√
τ1,

π

2

]
(41)

or by the equations

u = cn−1
( χ̃
τ̃1

)
= cn−1

(√(x/r)2 − 1

τ1 − 1

)
, u∈ [0, 2K(k1)] . (42)

The corresponding canonical representations of the surfaces from the first class,
i.e., of the surfaces obtained for ν ∈ (−∞, 0), are given either by the set of equa-
tions

z1(u) =
r√
2δ

(2δ+1

2
(K(k1)−F (ϕ(u), k1))−2δ(E(k1)−E(ϕ(u), k1))

)
λ1 =

√
(1− 2δ)ν + 2δ + 3

2(1− ν)
, δ=

√
(ν − 1)(ν − 9)

2(1− ν)

(43)

k1 =
λ1√
2δ
, ϕ(u)=arccos

(cotu

λ1

)
, β=arccsc

√
1 + λ21

x(u, v) = r cscu cos v, y(u, v)=r cscu sin v, z(u, v)=z1(u), u ∈
[
β,

π

2

]
or by another set of formulas in which appears the same parameter u running how-
ever in a different interval, i.e.,

x1(u) = r
√

1 + λ21 cn2 u, u∈ [0, 2K(k1)] , v∈ [0, 2π]

z1(u) =
r√
2δ

(2δ+1

2

(
K(k1)− u

)
−2δ

(
E(k1)− E(amu, k1)

))
(44)

x(u, v) = x1(u) cos v, y(u, v) = x1(u) sin v, z(u, v) = z1(u)
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-0.01

-0.1

-0.3
-0.7

-3

Figure 11. Some profiles of the first class.

where λ1, k1 and δ are defined in
(43). Notice that both parameteri-
zations rely on the same axial vari-
able v ∈ [0, 2π]. Using one and
the same notation u for parameters
with different meanings and differ-
ent ranges deserve some explana-
tion. Such use allows different pa-
rameterizations to be represented
in an uniformed way which gen-
erally does not lead to confusion.
But nevertheless one must be care-
ful not to confuse the parameter u
in the representation (41) with the
variable u that has been previously
used for denoting the values of the
normal elliptic integral of the first
kind (cf. (26)). In the same time
the variable u in the representation
(42) appears in exactly that pre-
vious meaning, related here with
the inverse of the Jacobian cosine

function. The latter becomes at once transparent if one looks at the commutative
diagram in Fig. 10 with the variable ζ replaced by χ̃. It should be noted that for the
parameterization (43), in the indicated interval of the parameter u, only that part of
the surface S which is over the XOY -plane (the upper half part) can be obtained.
The profile curves for both the parameterizations (43) and (44) are traced from
north to south. Graphics of the profile curves of some surfaces of the first class are
given in Fig. 11 for ν = −0. 01, −0. 1, −0. 3, −0. 7, −3 (from outside to inside).

5. Shapes of the Second Class SII(ν)

In a contrast with the surfaces of the first class which are mainly of academic
interest the shapes of the droplets in the second class are of immediate practical
applications. Many years ago Vonnegut [22] has suggested a method for a mea-
surement of the interfacial tension from the shape of the rotating drop. It is based
on the experimental fact that when a fluid drop is placed in a liquid of higher den-
sity contained in a rotating horizontal tube it becomes elongated along the rotation
axis until the centrifugal deformation forces are balanced by the interfacial tension.
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Relying on what we have up to now it can be readily described as follows.
First, the Laplace equation in our setting can be written (using equations (7), (9)
and (2)) in the form

d sin θ

dx
+

sin θ

x
= 2 (2ãx2 + c̃). (45)

When x ≡ r, sin θ ≡ 1 and the above equality reduces to

4ãr3 + 2c̃ r = 1. (46)

At the same point, the integrated form of (45) produces respectively

ãr3 + c̃ r = 1. (47)

It is easy to conclude that the only solution to the system formed by the equations

(46) and (47) (taking into account that ã =
ν − 1

2r3
) is

ν ≡ 0. (48)

Entering with this value of the parameter ν into the general expression (15) for the

45

35

25

Figure 12. The shape of the rounded end of the infinitely long cylinder.

generating profile curve and forgetting for the moment about the scale we end up
with the problem of evaluating the definite integral

z(x) =

1∫
χ̃

(3− t)dt
(1− t)

√
4− t , χ̃ = x2, x ∈ (0, 1). (49)

Performing the integration we find a primitive function I(t) of the form

I(t) = −2

(
√

4− t+

ln

√
4− t−

√
3√

4− t+
√

3√
3

)
(50)
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and therefore
z(x) = I(1)− I(χ̃). (51)

Because we already know that the central part of the drop is effectively an infinitely
long cylinder we can omit the first (divergent) term and take into account only the
second which present its rounded ends. This shape is illustrated by Fig. 12.
This case has been enlarged in [16] to more complicated surfaces which are also
cylinders but this time over special curves in the horizontal plane.
As indicated in Section 3, the possible equilibrium shapes of the liquid drop of the
second class (generated with ν ∈ (0, 1), cf. Fig. 6) are closed surfaces filling the
space between the sphere ν = 1 and the cylinder ν = 0. According to the equation
(15) and the condition (16), their profile curves (upper right parts) are given by

z2(χ) =
r

2(1− ν)

1∫
χ

((ν − 1)t− ν + 3)dt√
(1− t)(t− σ2)(t− τ2)

, χ =
x2

r2
, x ∈ [0, r] (52)

where the roots σ2 and τ2, calculated for ν ∈ (0, 1) by the equations (28), are such
that the following inequalities hold (cf. the second item in (29) and (32))

0 < t < 1 < σ2 < τ2, 0 ≤ χ ≤ 1 < σ2 < τ2. (53)

The reduction of the above elliptic integral goes through the “inversion procedure”,

Figure 13. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (52).

as illustrated by the commutative diagram in Fig. 13, on writing

t = nc2(ũ, k2)− σ2tn2(ũ, k2), χ = nc2(u, k2)− σ2tn2(u, k2) (54)



88 Vladimir Pulov and Ivaïlo Mladenov

u = F (ϕ(χ), k2), ϕ(χ) = arcsin
√

1− χ
σ2 − χ

, k2 =

√
τ2 − σ2
τ2 − 1

(55)

where we have used the standard notation ncu = 1/cnu and tnu = snu/cnu. As
a result of performing the above substitutions we arrive at the following canonical
form

z2(χ) =
r√
τ2 − 1

u∫
0

(
σ2tn2ũ− nc2ũ+

ν − 3

ν − 1

)
dũ

(56)

=
r√
τ2 − 1

(
2

1− ν F (ϕ, k2) +
1− σ2
1− k22

(E(ϕ, k2)− tanϕ∆(ϕ))

)
in which the standard abbreviation ϕ ≡ ϕ(χ) has been used. The rest of the
notation are as follows

u=sn−1
(√ 1− χ

σ2 − χ
)

=sn−1
(√ 1− (x/r)2

σ2 − (x/r)2

)
, u ∈ [−β, β], β = sn−1(

1√
σ2

)·

For additional details of the reduction process, we refer the reader to the Handbook
by Byrd and Friedman [1, Formulas (232.19), (313.02) and (316.02)].

On returning back to the variable x in (56) we obtain the first explicit representation
of the profile curves (upper right parts) of the surfaces of the second class

z2(x) =
r√
τ2 − 1

(
2

1− ν F (ϕ, k2) +
1− σ2
1− k22

(E(ϕ, k2)− tanϕ∆(ϕ))

)
(57)

ϕ : = ϕ(x) = arcsin

√
1− (x/r)2

σ2 − (x/r)2
, k2 =

√
τ2 − σ2
τ2 − 1

, x ∈ [0, r]

where the roots σ2 and τ2 are calculated by (28) for the values of the parameter ν
running through the interval (0, 1).

Let us now introduce a new parameter

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈ [−π

2
,
π

2
] (58)

which, as it can be seen from the commutative diagram in Fig. 13, should not be
confused with the parameter u in equations (54) – (56).
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From the above definitions it follows that the two choices of the parameter u have
different relationships with the variable χ (respectively x). The corresponding
canonical representations of the surfaces of the second class, i.e., of the surfaces
obtained for ν ∈ (0, 1), are given either by the set of equations

z2(u) = r

(
2

(1− ν)λ2
F (ϕ(u), k2)− λ2E(ϕ(u), k2) + λ2tanϕ(u)∆(ϕ(u))

)
ϕ(u) = arcsin

( √
2(1− ν) cosu√

2(ν − 1) sin2u+ (2δ − 1)ν − 2δ + 5

)
, k2 =

√
2δ

λ2

(59)

λ2 =

√
(1− 2δ)ν + 2δ + 3

2(1− ν)
, δ =

√
(ν − 1)(ν − 9)

2(1− ν)

x(u, v) = r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z2(u), u∈ [−π
2
,
π

2
]

or by another set of equations that also involve the parameter u, running however
in a different range of values, i.e.,

x2(u) = r
√

1− µ22 tn2 u, z2(u) = r
( 2u

(1− ν)λ2
−λ2E(amu, k2)+λ2 tnu dnu

)
µ2 =

√
(1 + 2δ)ν − 2δ + 3

2(1− ν)
, β = sn−1(

1√
µ22 + 1

) (60)

x(u, v)=x2(u) cos v, y(u, v) = x2(u) sin v, z(u, v) = z2(u), u ∈ [−β, β]

0.1

0.3

1.0

Figure 14. A few profiles

from the second class.

where δ, λ2 and the modulus k2 are defined by the for-
mulas in (59) and the second parameter v ∈ [0, 2π]
is the same for both parameterizations. If one makes
use of the parameterization (59) in the indicated inter-
val of the parameter u, only that part of the surface
S which is over the XOY -plane (the upper half part)
will be obtained.

The profile curves of the surface in the parameteriza-
tion (59) are traced clockwise while for the parame-
terization (60) they are traced counterclockwise.
Fig. 14 shows various profiles drawn with parameters
ν = 0, 0.1, 0.3, 0.5, 0.7 and 1 (from outside to in-
side).
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6. Shapes of the Third Class SIII(ν)

The shapes from the third class (for ν ∈ (1, 9), cf. Fig. 6) are closed surfaces lying
inside the sphere ν = 1, which profile curves (the upper right parts) according to
equations (15) – (16) are given by the formula

z3(χ) =
r

2(ν − 1)

1∫
χ

((ν − 1)t− ν + 3)dt√
(1− t)(t− σ3)(t− τ3)

, χ =
x2

r2
, x ∈ [0, r]. (61)

The roots σ3 and τ3 of the polynomial P (t), calculated by the equations (28) for
ν ∈ (1, 9), are complex numbers (compare the third item in (29) and (32)). The
reduction of the above integral to normal form relies on the substitutions (cf. [1,
Formula (243.00)])

t =
1−A+ (1 +A)cn(ũ, k3)

1 + cn(ũ, k3)
, χ =

1−A+ (1 +A)cn(u, k3)

1 + cn(u, k3)
(62)

where

A =
1

2

√
(σ3 + τ3 − 2)2 − (σ3 − τ3)2, k3 =

1

2

√
2− σ3 + τ3 − 2

A
· (63)

The commutative diagram in Fig. 15 indicates the fundamental role of the “inver-

Figure 15. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (61).

sion procedure” in canonizing the integral (61) achieved by introducing the rela-
tions

u = F (ϕ(χ), k3), ϕ(χ) = arccos
(A− 1 + χ

A+ 1− χ
)
· (64)
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As a result of performing the above substitutions the following canonical form of
the profile curve (61) is obtained

z3(χ) =
r

2

((√
A+

2

(ν − 1)
√
A

)
F (ϕ, k3)− 2

√
A

u∫
0

dũ

1 + cnũ

)
(65)

=
r

2

(( 2

(ν − 1)
√
A
−
√
A
)
F (ϕ, k3) + 2

√
A
(
E(ϕ, k3)−

sinϕ∆(ϕ)

1 + cosϕ

))
in which ϕ ≡ ϕ(χ)

u = cn−1
(A− 1 + χ

A+ 1− χ
)

= cn−1
(A− 1 + (x/r)2

A+ 1− (x/r)2

)
, u ∈ [−β, β] (66)

and
β = cn−1

(A− 1

A+ 1

)
.

For additional details of the reduction process, we refer the reader to the Handbook
by Byrd and Friedman [1, Formulas (243.07) and (341.53)].

On returning back to the variable x in (65) we obtain the first explicit representation
of the profile curves (upper right parts) of the surfaces of the third class

z3(x)=
r

2
√
A

(( 2

ν − 1
−A

)
F (ϕ, k3) + 2A

(
E(ϕ, k3)−

sinϕ∆(ϕ)

1 + cosϕ

))
(67)

ϕ : = ϕ(x)=arccos
(A− 1 + (x/r)2

A+ 1− (x/r)2

)
, x ∈ [0, r]

Figure 16. Prolate, oblate and

biconcave profiles.

where the elliptic modulus k3 and A are given by
(63) and the roots σ3 and τ3 are calculated by (28)
for the values of the parameter ν in the interval
(1, 9). Let us now introduce a new parameter

u = arcsin
√
χ = arcsin

(x
r

)
, u∈ [−π

2
,
π

2
] (68)

which, as it is clearly seen from the commutative
diagram in Fig. 15, should not be confused with the
parameter u used in equations (62) – (65) where it
is defined by the formulas (66).
The profiles in Fig. 16 are (from above): in the first
column ν = 0.01, 0.1, 0.5 and 0.7, in the second
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Figure 17. Some plots of the third class for ν = 1, 2, 3, 5 and ν = 5. 6582

(from outside to inside).

column ν = 1, 1.5, 2 and 2.5, and in the third column ν = 3, 4.5, 5 and 5.5.
Thus, we have two choices for the parameter u, given by formulas (66) and (68),
in which u has different relationships with the variable χ (respectively x). The
corresponding canonical representations of the surfaces of the third class, i.e., of
the surfaces obtained for ν ∈ (1, 9), are given either by the set of equations

z3(u)=r

√
2
√
ν

ν − 1

(
1−√ν
2
√
ν
F (ϕ, k3) + E(ϕ, k3)−

sinϕ(u)∆(ϕ)

1 + cosϕ

)

ϕ :=ϕ(u)=arccos
(2
√
ν − (ν − 1) cos2u

2
√
ν + (ν − 1) cos2u

)
, k3=

√
(1+
√
ν)(3+

√
ν)

2
√

2 4
√
ν

(69)

x(u, v)=r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z3(u), u∈ [−π
2
,
π

2
]

or by another set which involve the parameter u, running however in a different
range of values, i.e.,

z3(u) = r

√
2
√
ν

ν − 1

(
1−√ν
2
√
ν
u+E(amu, k3)−

snu dnu
1 + cnu

)
, u ∈ [−β, β]

x3(u) = r

√
1− 2

√
ν

ν − 1
· 1− cnu

1 + cnu
, β=cn−1

(2
√
ν−ν+1

2
√
ν+ν−1

)
(70)

x(u, v) = x3(u) cos v, y(u, v) = x3(u) sin v, z(u, v) = z3(u), v ∈ [0, 2π]

where k3 is defined in (69) and cn−1 is the inverse of the Jacobian cosine function.
Note also that the angular parameter v runs over the same range in both parameter-
izations. For the parameterization (69), in the indicated interval of the parameter
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u, only that part of the surface S which is over the XOY -plane (the upper half
part) is obtained. The profile curve in the parameterization (69) is traced clock-
wise while for the parameterization (70) it is traced counterclockwise (see Fig. 17
and Fig. 18).

Figure 18. Some plots of the third class with ν = 5. 6582, 7 and 8. 9 (from

left to right).

Finally, the degenerated case ν ≡ 9 is presented in Fig. 19 shown below.

Figure 19. Plot of the degenerated case ν ≡ 9 drawn by formula (19).

7. Shapes of the Fourth Class SIV(ν)

The shapes of the fourth class (for ν ∈ (9,+∞), cf. Fig. 6) are open surfaces with
self intersection lying inside the cylinder ν = 0. According to equations (15) – (16)
their profile curves (upper right parts) are given by the formula

z4(χ) =
r

2(ν − 1)

1∫
χ

((ν − 1)t− ν + 3)dt√
(1− t)(t− σ4)(t− τ4)

, χ =
x2

r2
, x ∈ [0, r]. (71)
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Figure 20. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (71).

where the roots σ4 and τ4 of the polynomial P (t), calculated by the equations (28)
for ν ∈ (9,∞), are such that the following inequalities hold (compare with the
fourth item (29) and (31))

0 < τ4 < σ4 < t < 1, 0 < τ4 < σ4 ≤ χ ≤ 1. (72)

In the limiting case ν = +∞ the surfaces degenerate to a circle of radius r. The
reduction of the above elliptic integral goes through the “inversion procedure”, as
illustrated by the commutative diagram in Fig. 20, on writing

t = 1− (1− σ4)sn2(ũ, k4), χ = 1− (1− σ4)sn2(u, k4) (73)

where

u = F (ϕ(χ), k4), ϕ(χ) = arcsin
√

1− χ
1− σ4

, k4 =

√
1− σ4
1− τ4

· (74)

By substituting and integrating in succession the profile curve in (71) is reduced to
a representation involving only normal elliptic integrals of the first and the second
kind (cf. [1, Formula (236.20)])
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z4(χ) =
r

ν − 1

u∫
0

(
2− (ν − 1)(1− σ4)sn2ũ

)
dn ũdũ√

1− τ4 − (1− σ4)sn2ũ

=
r

(ν − 1)
√

1− τ4

u∫
0

(
2− (ν − 1)(1− σ4)sn2ũ

)
dn ũdũ√

1− k24 sn2ũ

=
r√

1− τ4

u∫
0

(
2

ν − 1
− (1− σ4)sn2ũ

)
dũ (75)

=
r√

1− τ4

(
2

ν − 1

u∫
0

dũ− 1− σ4
k24

(

u∫
0

dũ−
u∫

0

dn2ũdũ)

)

=
r√

1− τ4

((
τ4 −

ν − 3

ν − 1

)
F (ϕ(χ), k4) + (1− τ4)E(ϕ(χ), k4)

)
.

In the above chain of equalities we have made use of the formulas (25) – (27), and
as well as, the formula for the derivative of the Jacobian sine elliptic function (refer
to Section 3).

On returning back to the variable x in the last line of (75) we arrive at our first
explicit parameterization of the profile curves of the surfaces of the fourth class in
Monge representation

z4(x) =
r√

1− τ4

((
τ4 −

ν − 3

ν − 1

)
F (ϕ(x), k4) + (1− τ4)E(ϕ(x), k4)

)
(76)

ϕ(x) = arcsin

√
1− (x/r)2

1− σ4
, k4 =

√
1− σ4
1− τ4

, x ∈ [r
√
σ4, r]

where σ4 and τ4 are calculated by (28) for each one of the surfaces with a parameter
ν ∈ (9,+∞). Note that the above formula describes only the lower right part of the
profile curve. The whole curve is obtained by two consecutively applied reflections
with respect to the coordinate axes OX and OZ (cf. Fig. 3).

Now we are going to give two canonical representations of the surfaces of the
fourth class obtained from (76) by referring to the roots of the polynomial P (t)
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as functions of ν and substituting for χ with a new parameter u, defined in two
different ways, either by the equations

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈

[
arcsin

√
σ4,

π

2

]
(77)

or by the equations

u = sn−1
(√ 1− χ

1− σ4

)
= sn−1

(√1− (x/r)2

1− σ4

)
, u∈ [−K(k4), K(k4)] . (78)

We have two choices for the parameter u, i.e., (77) and (78) with different ranges
and relationships with the variable χ (respectively the coordinate x). Their notation
should not create however confusion in respective parameterizations of the profile
curves. The commutative diagram in Fig. 20 may serve to elucidate the meaning
of the second choice.

As a result the corresponding canonical representations of the surfaces of the fourth
class, i.e., of the surfaces obtained for ν ∈ (9,+∞), are given either by the set of
equations

z4(u)=r
(2δ − 1

2λ4
F (ϕ(u), k4) + λ4E(ϕ(u), k4)

)
, k4 =

µ4
λ4

λ4=

√
(1− 2δ)ν + 2δ + 3

2(ν − 1)
, µ4=

√
(1 + 2δ)ν − 2δ + 3

2(ν − 1)
(79)

ϕ(u)=arcsin
(

cosu

µ4

)
, δ =

√
(ν − 1)(ν − 9)

2(1− ν)
, β = arcsin

√
1− µ24

x(u, v)=r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z4(u), u ∈
[
β,

π

2

]
or by another set of equations in which the parameter u appears again, but this time
with a different range, i.e.,

x4(u) = r
√

1− µ24 sn2 u, z4(u) = r
(2δ − 1

2λ4
u+λ4E(amu, k4)

)
(80)

x(u, v) = x4(u) cos v, y(u, v) = x4(u) sin v, z(u, v) = z4(u)

where λ4, µ4 and the modulus k4 are defined in (79), u ∈ [−K(k4), K(k4)] and
v∈ [0, 2π]. Notice that the second parameter v, which is the same for both param-
eterizations, coincides with the angular coordinate of the meridians.
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Figure 21. Some plots of the fourth class shapes generated with ν = 9, 10

and 13 (from left to right).

All surfaces of the fourth class are open surfaces placed inside the cylinder ν = 0
and have a circle of self intersection (see Fig. 21).

8. Geometry: Geodesics

Having whatever explicit parameterization of the surface S one can compute the
coefficients E,F,G of its first, respectively L,M and N of its second fundamen-
tal form either by hand or with the help of some Computer Algebra System like
Mathematica or Maple. The description of the Maple worksheet for the case
under consideration can be found in [13] and the result of these computations is

E =
1

1− (ãx3 + c̃x)2
, F = 0, G = x2

(81)

L =
3ãx2 + c̃

1− (ãx3 + c̃x)2
, M = 0, N = x2(ãx2 + c̃).

The knowledge of the fundamental forms open the possibility to study more deeply
the properties of the surface, e.g. to find out its geodesic curves. Finding the
geodesics on surfaces has a long history in geometry because they are intimately
tied up with, for instance, the symmetry properties of the surface. In physics,
geodesics are trajectories of freely moving particles subject only to the constraint
forces keeping them on the surface. Thus, geodesics often help us to understand ge-
ometrical and physical qualities of the surface which usually is the configurational
space of some mechanical system. The geodesic equations present a complicated
system of second order differential equations which rarely can be integrated analyt-
ically. In the case of surfaces of revolution this problem is reduced to the evaluation
of the integral

v(u) = ±
∫ u h

√
E√

G
√
G− h2

dũ, h ∈ (0, 1). (82)

As we are dealing with four classes of surfaces this means that we have to evaluate
at least four integrals which will increase significantly the volume of the paper.
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That is why we choose to do this for the second class of prolate spheroids and
accordingly the integral becomes

v(u) = ± h

1− ν

∫ u dt

t
√

(1− t)(t2 − ν2−6ν+5
(1−ν)2 t+ 4

(1−ν)2 )(t− h2)
· (83)

In order to determine the function v(u) let us denote the respective roots of the
polynomial under the radical in (83) as α1 ≡ τ2 > α2 ≡ σ2 > α3 ≡ 1 > α4 ≡ h2
and consider the integral

Ĩ =

∫
dt√

(t− α1)(t− α2)(α3 − t)(t− α4)
· (84)

Next, let us exchange the variable t for ξ by making use of the formula

t :=
α1(α3 − α4)ξ

2 + α1α4 − α3α4

(α3 − α4)ξ2 + α1 − α3
· (85)

In this way the integral (84) is transformed into its almost canonical form, i.e.,

Ĩ =

∫
2dξ√

(1− ξ2)
(
(α1 − α3)(α2 − α4)− (α1 − α2)(α3 − α4)ξ2

) (86)

which suggest also to introduce additionally the notation

m :=
√

(α1 − α3)(α2 − α4), k =

√
(α1 − α2)(α3 − α4)

(α1 − α3)(α2 − α4)
(87)

and a quick check proves that k2 < 1. Doing so we end up with the expression

Ĩ =
2

m

∫
dξ√

(1− ξ2)(1− k2ξ2)
(88)

which makes obvious the fact that the integral on the right can be inverted via the
Jacobian elliptic function sn(ũ, k), i.e., the replacement of ξ by sn(ũ, k) produces

Ĩ =
2

m
ũ. (89)

Combining all above we can conclude that the sought function v(u) can be deter-
mined explicitly by the evaluation of the elliptic integral of the third kind in the
form ∫

α+ β sn2(ũ, k)

λ+ µ sn2(ũ, k)
dũ. (90)
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This will be not detailed here as the final result depends crucially on the fine re-
lationships between the roots αi, i = 1, ..., 4. The interested reader however can
find the complete description of the procedure in any concrete case in the book by
Lawden [6, page 68] . Alternatively, a modification of the above integral is con-
sidered in Whittaker & Watson [24, Ch. XXII, page 522] where one can find the
useful formula∫

α̃+ β̃ sn2(ũ, k)

1 + ν̃ sn2(ũ, k)
dũ = α̃ u+ (β̃ − α̃ ν̃)

∫
sn2(ũ, k)

1 + ν̃ sn2(ũ, k)
dũ. (91)

in which α̃, β̃, ν̃ are real parameters which can be obtained directly from the origi-
nal ones α, β, λ and µ in (90).

9. Concluding Remarks

We have seen that starting from the first principles the problem of finding the equi-
librium of the system of two co-rotating with a constant angular velocity immis-
cible fluids is equivalent with that of finding an axially symmetric surface with a
prescribed mean curvature depending on two real parameters. In this formulation
there exists also a hidden parameter - the integration constant C in equations (8).
If this constant is fixed to zero one ends with a problem about a two parametric
family of axially symmetric linear Weingarten surfaces which mean curvature as a
function of the distanceR from the axis of revolution is given by the function

H =
ν − 1

r3
R2 +

3− ν
2r

in which the two characteristic parameters r and ν account respectively for the
size and the shape of the surfaces. We have succeeded to distinguish four classes
of shapes which are presented by their explicit parameterizations in terms of ellip-
tic integrals and Jacobian elliptic functions. At both limits ν = −∞ and ν = +∞
the surfaces degenerate to a circle Cr, where r is the radius of the circle.
Assuming solely axisymmetric configurations the drop evolves with the change of
the parameter ν in the range ν ∈ [−∞,+∞] starting from Cr, passing consecu-
tively through the right circular cylinder ν = 0, the sphere ν = 1, then the linear
Weingarten surface LW (2) ≡ SIII(3), and finally returning back to the circle Cr.
In more details the sequence of transformed shapes obtained under the change of
the parameter ν are presented in Table 4.
Let us mention also that the equilibrium shapes of the rotating spheroids and drops
have been reviewed by Wang [23] but without any details about their analytical
description.
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It was one of the principle aims of the present work to fill this gap and to initiate
the complete classification of all shapes. Another one was to study their geometry,
i.e., line elements, surfaces areas, volumes and geodesics that will be explored in
the future.
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Table 4. The sequence of shapes obtained by the change of the parameter ν.

class ν Shapes

Cr −∞ circle of radius r

SI(ν) (−∞, 0) open toroids (Fig. 11)

0 right circular cylinder

SII(ν) (0, 1)
closed prolate spheroids
(Fig. 14) and (Fig. 16)

1 sphere

(1, 3) closed oblate spheroids (Fig. 16)

SIII(ν)

3 LW (2) - (Fig. 16) and (Fig. 17)

(3, 5.6582)
closed biconcave discoids

(Fig. 16) and (Fig. 17)

5.6582
biconcave discoid with a contact

point (Fig. 17) and (Fig. 18)

(5.6582, 9)
closed surfaces with

self intersection (Fig. 18)

open surface with self
9 intersection parameterized via

elementary functions (Fig. 19)

SIV (ν) (9,+∞)
open surfaces with

self intersection (Fig. 21)

Cr +∞ circle of radius r
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