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LIE ALGEBRA EXTENSIONS AND HIGHER ORDER COCYCLES

KARL-HERMANN NEEB

Communicated by Martin Schlichenmaier

Abstract. In this note we present an abstract approach, based on Lie algebra
cohomology, to the Lie algebra extensions associated to symplectic manifolds. We
associate to any Lie algebra cocycle of degree at least two an abelian extension
by some space a and central extensions of subalgebras analogous to the Lie al-
gebras of symplectic, respectively, hamiltonian vector fields. We even obtain a
Poisson bracket on a compatible with the hamiltonian Lie subalgebra. We then de-
scribe how this general approach provides a unified treatment of cocycles defined
by closed differential forms on Lie algebras of vector fields on possibly infinite-
dimensional manifolds.

Introduction

If (M, ω) is a finite-dimensional symplectic manifold, then we assign to each
smooth function f : M → R its hamiltonian vector field Xf determined uniquely
by iXf

ω = df , and this leads to a central extension of Lie algebras

0 → H0
dR(M, R) → (C∞(M, R), {·, ·}) → ham(M, ω) → 0 (1)

where ham(M, ω) denotes the Lie algebra of hamiltonian vector fields on M
and the Lie bracket on C∞(M, R) is given by the Poisson bracket {f, g} :=
ω(Xf , Xg). Since a symplectic vector field X on M is hamiltonian if and only if
the closed one-form iXω is exact and each closed one-form can be written as iXω
for a symplectic vector field X , the exact sequence (1) can be extended to a four
term exact sequence

0 → H0
dR(M, R) → C∞(M, R) → sp(M, ω) → H1

dR(M, R) → 0. (2)

The central extension (1) can also be embedded into an abelian extension

0 → C∞(M, R) → V̂(M) := C∞(M, R) ⊕ω V(M) → V(M) → 0 (3)
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which is the abelian extension of the Lie algebra V(M) of smooth vector fields on
M by the module C∞(M, R) defined by ω, viewed as a Lie algebra two-cocycle
on V(M) with values in C∞(M, R). Moreover, (2) can be embedded into the
exact sequence

0 → H0
dR(M, R) → C∞(M, R) → V(M) → Ω1(M, R)/dC∞(M, R) → 0

(4)
X 7→ [iXω].

The first main point of this article is that this situation is a very special incarnation
of vastly more general exact sequences arising from any Lie algebra (p + 2)-
cocycle ω ∈ Zp+2(g, V ) with values in a g-module V . A key idea, carried out in
Section 1, is that ω defines a sequence (Tm(ω))0≤m≤p+2 of Lie algebra cocycles

Tm(ω) ∈ Zm(g, C̄p+2−m(g, V )), Tm(ω)(x1, . . . , xm) := [ixm . . . ix1
ω]

where C̄k(g, V ) := Ck(g, V )/dg(C
k−1(g, V )) is endowed with the natural g-

module structure. In Section 2, we further associate to ω two subalgebras
ham(g, ω) and sp(g, ω) of g and consider the abelian Lie algebra extension ĝ =
C̄p

c (g, V )⊕Ω g, corresponding to the cocycle Ω := T2(ω), the associated flux co-
cycle fω := T1(ω) and f̂ω([η], x) := ixω − dgη on ĝ. With ĥam(g, ω) := ker f̂ω

we then obtain the following diagram with exact rows (Lie algebra extensions)
and exact columns (Theorem 13)

0 → Hp(g, V ) → ĥam(g, ω) → ham(g, ω) → 0yı

yı

yı

0 → C̄p(g, V ) → ĝ = C̄p(g, V ) ⊕Ω g → g → 0y−d

y �

fω

yfω

0 → Bp+1(g, V ) → Cp+1(g, V ) → C̄p+1(g, V ) → 0.

The inclusion of ĥam(g, ω) into ĝ further defines a map ĥam(g, ω) → C̄p(g, V )
whose kernel is an ideal, so that the its image inherits a Lie algebra structure, gen-
eralizing the Poisson bracket. We also have four term exact sequences enlarging
the preceding ones

0 → Hp(g, V ) → ĥam(g, ω) → sp(g, ω)
fω
−−→ Hp+1(g, V )y

y
yı

yı

0 → Hp(g, V ) → ĥam(g, ω) → g
fω
−−→ C̄p+1(g, V ).

The corresponding classical situation in symplectic geometry is obtained as the
special case with g := V(M), p = 0 and V := C∞(M, R), which leads to

sp(g, ω) = sp(M, ω), ham(g, ω) = ham(M, ω) and ĥam(g, ω) ∼= C∞(M, R)
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endowed with the Poisson bracket. Here the exactness in the rightmost place in
(2) follows from the non-degeneracy of the symplectic two-form ω on M , which
is not required in the abstract context. This has the drawback that, not even for
p = 0, the flux cocycle sp(g, ω) → H1(g, V ) is always surjective (Example 16).

In Section 3 we explain how the abstract Lie algebraic setup applies to g =
V(M), the Lie algebra of smooth vector fields on a smooth manifold M and
cocycles with values in V := C∞(M, E), E a locally convex space, represented
by closed differential forms ω ∈ Ωp+2(M, E). In this context the natural re-
placement for the abstract space C̄p

c (g, V ) is the quotient space Ω̄p(M, E) :=
Ωp(M, E)/d(Ωp−1(M, E)). If M is smoothly paracompact, then de Rham’s The-
orem holds (cf. [6]), which implies that the space of exact forms is closed, and thus
V inherits a natural (Hausdorff) locally convex topology turning it into a topolog-
ical V(M)-module whenever M is finite-dimensional (otherwise the Lie bracket
on V(M) is not continuous). Any closed (p + 2)-form ω now leads to a two-
cocycle Ω with values in W := Ω̄p(M, E), and we obtain generalizations of the
exact sequences (1) and (2). For the Lie algebra sp(M, ω) of ω-symplectic vector
fields we obtain a central extension by W and show that if the singular homol-
ogy group Hp(M) is finitely generated, then it comes from an extension by the
subspace Hp

dR(M, E). Integration over p-cycles now leads to interesting central
extensions of sp(M, ω) only depending on the homology class of the cycle.

For E = R and p = 0 the pair (M, ω) is a presymplectic manifold. In particular,
we see that, up to the surjectivity of the flux cocycles, all the Lie algebraic struc-
ture contained in (1) and (2) is present without any non-degeneracy requirement
on ω and without any restriction on E or p.

Our setup also produces for a volume form µ on a compact n-dimensional mani-
fold M the universal central extension

0 → Hn−2
dR (M, R) ↪→ ĥam(M, µ) ∼= Ω̄n−2(M, R) →→ ham(M, µ) → 0

due to Lichnerowicz ([7], [13]).

In Section 4 we consider a Lie algebra g and a homomorphisms α : g → V(M),
i.e., an infinitesimal action of g on M . In this case we can obviously pull back all
structure available on V(M), so that we derive in particular from each closed E-
valued (p+2)-form an abelian extension of g by Ω̄p(M, E). The new freedom we
gain by this setup is that we may also assume that E carries a g-module structure,
which leads to a new action of g on the spaces Ωp(M, E) by x.ω := Lα(x)ω +
ρE(x) ◦ ω, commuting with the exterior differential. The space of g-invariant
forms on M is a subcomplex of the de Rham complex which is of particular
interest because evaluation in points m ∈ M provide homomorphisms into the
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Lie algebra complex (Cc(g, E), dg), hence geometric realizations of abstract Lie
algebra cocycles.

If the action on E is trivial, we obtain the notion of a generalized momentum map
µ : g → Ω̄p(M, E) as a map whose image lies in the projection of ĥam(M, ω)
and which is a homomorphism with respect to the Poisson bracket.

We conclude with an appendix on the natural topology on V(M) and the space
Ωp(M, E) if M is a locally convex manifold and E a locally convex space.

We feel that the setup described in this note unifies special constructions of Lie
algebra extensions one finds in the literature (mostly related to volume forms or
symplectic forms) and that it also points into new directions such as the geometry
of closed p-forms, which deserves a closer investigation. It also provides a natural
bridge between Lie algebra cohomology and the geometry of differential forms
from which both sides can profit. What we describe here is only the infinitesimal
part of the picture. There is also a very interesting global side involving infinite-
dimensional Lie groups, their extensions, and their smooth actions on manifolds.
The extra features of the global setup are the links to topology: the period homo-
morphisms and the flux cocycles ( [9], [10]). We plan to return to these global
aspects in a forthcoming paper. Throughout this note we shall work in the context
of topological Lie algebras and modules, which is needed in the global theory.

1. The Transfer Map in Lie Algebra Cohomology

In this section we introduce the transfer map in Lie algebra cohomology which is
used to derive from a single Lie algebra p-cocycle a whole series of cocycles of
degrees ≤ p, but with values in more complicated modules. First we recall the
basic facts from Lie algebra cohomology.

Definition 1. Let K be a topological field of characteristic zero. A topological
Lie algebra g is a K -Lie algebra which is a topological vector space for which the
Lie bracket is a continuous bilinear map. A topological g-module is a g-module
V which is a topological vector space for which the module structure, viewed as
a map g × V → V, (x, v) 7→ x.v, is continuous.

Throughout this section, V denotes a topological module of the topological Lie
algebra g. Note that this covers in particular the case where the topologies on K ,
g and V are discrete, which simply leads to the algebraic setup where no topology
is taken into account.
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Definition 2. For p ∈ N0, let Cp
c (g, V ) denote the space of continuous alternat-

ing maps gp → V , i.e., the Lie algebra p-cochains with values in the module
V .

We identify C0
c (g, V ) with V and put Cc(g, V ) :=

⊕∞
p=0 Cp

c (g, V ). We then ob-
tain a cochain complex with the differentials dg : Cp

c (g, V ) → Cp+1
c (g, V ) given

on f ∈ Cp
c (g, V ) by

(dgf)(x0, . . . , xp) :=

p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp)

+
∑

i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

where x̂j indicates omission of xj (see [2]). We call the operator dg the Lie
algebra differential. In view of d2

g = 0, the space Zp
c (g, V ) := ker(dg|Cp

c (g,V )) of
p-cocycles contains the space Bp

c (g, V ) := dg(C
p−1
c (g, V )) of p-coboundaries.

The quotient
Hp

c (g, V ) := Zp
c (g, V )/Bp

c (g, V )

is the p-th continuous cohomology space of g with values in the g-module V . We
write [f ] := f + Bp

c (g, V ) for the cohomology class of the cocycle f .

If no topology is involved, i.e., K , g and V are discrete, we omit the subscript c,
hence write Cp(g, V ), instead of Cp

c (g, V ), etc.

Definition 3. On Cc(g, V ) we have a natural representation of g, given for x ∈ g

and f ∈ Cp
c (g, V ) by the Lie derivative

(Lxf)(x1, . . . , xp) = x.f(x1, . . . , xp) −

p∑

j=1

f(x1, . . . , [x, xj ], . . . , xp).

We further have for each x ∈ g an insertion map ix : Cc(g, V ) → Cc(g, V ) de-
fined by ixf = 0 for f ∈ C0

c (g, V ) = V and for f ∈ Cp
c (g, V ) by

ixf ∈ Cp−1
c (g, V ),

(
ixf

)
(x1, . . . , xp−1) := f(x, x1, . . . , xp−1).

Remark 4. For x, y ∈ g we have on Cc(g, V ) the Cartan formulas

Lx = d ◦ ix + ix ◦ d, [Lx, iy] = i[x,y], [Lx, dg] = 0. (5)

In particular, Lx(Zp
c (g, V )) ⊆ Bp

c (g, V ), so that the action of g induced on
Hp

c (g, V ) is trivial. We also obtain a natural g-action on the reduced cochain
spaces

C̄p
c (g, V ) := Cp

c (g, V )/Bp
c (g, V ) ⊇ Hp

c (g, V ).
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For p, q ∈ N0 we consider the injection

T̃p : Cp+q
c (g, V ) → Cp(g, Cq

c (g, V ))

(T̃pf)(x1, . . . , xp) := ixp . . . ix1
f.

From the action of g on the spaces Cq
c (g, V ) we obtain the Lie algebra differential

d′
g : Cp(g, Cq

c (g, V )) → Cp+1(g, Cq
c (g, V ))

and we also have the linear maps

d′′
g : Cp(g, Cq

c (g, V )) → Cp(g, Cq+1
c (g, V )), ω 7→ dg ◦ ω

induced by the g-module homomorphisms dg : Cq
c (g, V ) → Cq+1

c (g, V ).

Lemma 5. For p, q ∈ N0 we have on Cp+q
c (g, V ) the identity

T̃p+1 ◦ dg = d′
g ◦ T̃p + (−1)p+1d′′

g ◦ T̃p+1.

Proof: (cf. Lemma 1 in [5]) We calculate for x0, . . . , xp, y1, . . . , yq ∈ g

(d′
gT̃p(f))(x0, x1, . . . , xp)(y1, . . . , yq)

=

p∑

j=0

(−1)j(xj .T̃pf(x0, . . . , x̂j , . . . , xp))(y1, . . . , yq)

+
∑

0≤i<j≤p

(−1)i+j(T̃pf)([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)(y1, . . . , yq)

=

p∑

j=0

(−1)j
(
xj .f(x0, . . . , x̂j , . . . , xp, y1, . . . , yq)

−

q∑

k=1

f(x0, . . . , x̂j , . . . , xp, y1, . . . , [xj , yk], . . . , yq)
)

+
∑

0≤i<j≤p

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp, y1, . . . , yq)

=

p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp, y1, . . . , yq)

−

p∑

j=0

q∑

k=1

(−1)j+p+k−1f([xj , yk], x0, . . . , x̂j , . . . , xp, y1, . . . , ŷk, . . . , yq)

+
∑

0≤i<j≤p

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp, y1, . . . , yq)
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=

p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp, y1, . . . , yq)

+

p∑

j=0

q∑

k=1

(−1)j+(p+k)f([xj , yk], x0, . . . , x̂j , . . . , xp, y1, . . . , ŷk, . . . , yq)

+
∑

0≤i<j≤p

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp, y1, . . . , yq)

= (dgf)(x0, . . . , xp, y1, . . . , yq)

−

q∑

k=1

(−1)p+kyk.f(x0, . . . , xp, y1, . . . , ŷk, . . . , yq)

−
∑

1≤j<k≤q

(−1)2(p+1)+i+jf([yi, yj ], x0, . . . , xp, y1, . . . , ŷj , . . . , ŷk, . . . , yq)

= (dgf)(x0, . . . , xp, y1, . . . , yq)

+(−1)p
[ q∑

k=1

(−1)k+1yk.(T̃p+1f(x0, . . . , xp)(y1, . . . , ŷk, . . . , yq))

+
∑

1≤j<k≤q

(−1)i+j(T̃p+1f)(x0, . . . , xp)([yi, yj ], y1, . . . , ŷj , . . . , ŷk, . . . , yq)
]

=
(
T̃p+1(dgf)(x0, . . . , xp) + (−1)p(d′′

gT̃p+1f(x0, . . . , xp))
)
(y1, . . . , yq).

This proves the lemma.

Proposition 6. a) Composing T̃p with the quotient map Cq
c (g, V ) → C̄q

c (g, V ),
we obtain the g-equivariant transfer maps

Tp : Cp+q
c (g, V ) → Cp(g, C̄q

c (g, V ))

satisfying Tp+1 ◦ dg = d′
g ◦ Tp, where d′

g denotes the differential on the cochain
complex C(g, C̄q

c (g, V )). In particular, they induce linear maps

Tp : Hp+q
c (g, V ) → Hp(g, C̄q

c (g, V )).

b) For each ω ∈ Zp+q
c (g, V ), the cocycle dg ◦ Tp(ω) ∈ Zp(g, Cq+1

c (g, V )) is
a coboundary equal to (−1)p−1d′

g(T̃p−1(ω)).

Proof: a) In view of Lemma 5, it remains to verify the g-equivariance of T̃p.
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For x, x1, . . . , xp, y1, . . . , yq ∈ g we have

(LxT̃pf)(x1, . . . , xp)(y1, . . . , yq) = (Lx(T̃pf(x1, . . . , xp)))(y1, . . . , yq)

−

p∑

i=1

T̃pf(x1, . . . , [x, xi], . . . , xp)(y1, . . . , yq)

= x.(T̃pf(x1, . . . , xp)(y1, . . . , yq))

−

q∑

k=1

T̃pf(x1, . . . , xp)(y1, . . . , [x, yk], . . . , yq)

−

p∑

i=1

f(x1, . . . , [x, xi], . . . , xp, y1, . . . , yq)

= x.f(x1, . . . , xp, y1, . . . , yq) −

q∑

k=1

f(x1, . . . , xp, y1, . . . , [x, yk], . . . , yq)

−

p∑

i=1

f(x1, . . . , [x, xi], . . . , xp, y1, . . . , yq)

= (Lxf)(x1, . . . , xp, y1, . . . , yq) = T̃p(Lxf)(x1, . . . , xp)(y1, . . . , yq).

b) is a consequence of Lemma 5.

Definition 7. For each ω ∈ Zq
c (g, V ), the preceding lemma implies that we ob-

tain a sequence (T j(ω))0≤j≤q of Lie algebra j-cocycles in Zj(g, C̄q−j
c (g, V )).

We call these the cocycles derived from ω. Of particular interest is the first de-
rived cocycle

fω : g → C̄q−1
c (g, V ), x 7→ [ixω]

called the flux cocycle (cf. [9], [12]).

2. Abelian and Central Extensions Defined by Higher Order Cocycles

In this section we associate several interesting structures to a continuous (p + 2)-
cocycle ω ∈ Zp+2

c (g, V ). In particular, we define Lie subalgebras ham(g, ω) E

sp(g, ω) ⊆ g which behave in many respects like the Lie algebra of Hamiltonian,
respectively, symplectic vector fields on a symplectic manifold. We further obtain
central extensions of ham(g, ω) and sp(g, ω) leading to the diagrams described in
the introduction.
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We start with a simple lemma that creates a bridge between central and abelian
extensions defined by invariant cocycles.

Lemma 8. If ω is a g-invariant element of Cp(g, V ) and d0
g denotes the Lie alge-

bra differential with respect to the trivial action of g on V , then dgω = −d0
gω.

Proof: First we note that for x0, x1, . . . , xp ∈ g the invariance of ω implies
that

xi.ω(x0, . . . ,x̂i, . . . , xp)

=ω([xi, x0], x1, . . . , x̂i, . . . , xp) + . . . + ω(x0, . . . , x̂i, . . . , [xi, xp])

=
i−1∑

j=0

(−1)jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+

p∑

j=i+1

(−1)j+1ω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp).

This leads to
p∑

i=0

(−1)ixi.ω(x0, . . . , x̂i, . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j>i

(−1)i+j+1ω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j<i

(−1)i+j+1ω([xj , xi], . . . , x̂j , . . . , x̂i, . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j<i

(−1)i+jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

=2
∑

j<i

(−1)i+jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

= − 2(d0
gω)(x0, . . . , xp).

We conclude that dgω = −2d0
gω + d0

gω = −d0
gω.
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Proposition 9. For any cocycle ω ∈ Zq
c (g, V ), we define the Lie subalgebras of

symplectic, respectively, hamiltonian elements of g

sp(g, ω) := {x ∈ g;Lxω = 0}, ham(g, ω) := {x ∈ g; ixω ∈ Bq−1
c (g, V )}.

Then the following assertions hold:

1) The restriction of ω to sp(g, ω) is a cocycle with respect to the trivial module
structure on V .

2) [sp(g, ω), sp(g, ω)] ≤ ham(g, ω) ≤ sp(g, ω). In particular, ham(g, ω) is
an ideal of sp(g, ω).

3) For p > 0 the flux cocycle fω : g → C̄q−1
c (g, V ), x 7→ [ixω] satisfies

ham(g, ω) = ker fω and sp(g, ω) = f−1
ω (Hq−1

c (g, V )).

Proof:
1) follows from Lemma 8.
2) For x, y ∈ sp(g, ω) we have 0=Lxω=dg(ixω), showing that ham(g, ω) ⊆

sp(g, ω). We further get with Remark 4

i[x,y]ω = [Lx, iy]ω = Lxiyω = dg(ixiyω) = dg(T2(ω)(y, x)). (6)

3) The first relation is a reformulation of the definition of ham(g, ω), and the
second one follows from dg(ixω) = Lxω for x ∈ g (Remark 4).

Remark 10. a) For q = 0 and ω ∈ Zq
c (g, V ) = V g we have sp(g, ω) = g =

ham(g, ω).

b) For q = 1 and ω ∈ Z1
c (g, V ) we have

sp(g, ω) = ω−1(V g) and ham(g, ω) = kerω.

Comparing b) in the preceding remark with statement 3 of Proposition 9, it is
natural to compare Hq

c (g, V ) with the set of g-fixed points in C̄q
c (g, V ). The

following lemma provides a sufficient condition for equality which is satisfied in
many applications.

Lemma 11. If Bp+1
c (g, V )g = {0}, then C̄p

c (g, V )g = Hp
c (g, V ).

Proof: We consider the exact sequence of g-modules

0 → Hp
c (g, V ) ↪→ C̄p

c (g, V )
d̄g
−−→Bp+1

c (g, V ) → 0

where d̄g[η] := dgη. In view of the g-equivariance of dg (Remark 4), d̄g maps
C̄p

c (g, V )g into Bp+1
c (g, V )g ={0}. Therefore C̄p

c (g, V )g ⊆ ker(d̄g)=Hp
c (g, V ),

and since g acts trivially on Hp
c (g, V ) (Definition 2), the assertion follows.
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Now let ω ∈ Zp+2
c (g, V ). Then Ω := T2(ω) ∈ Z2(g, C̄p

c (g, V )) is a two-cocycle
(Definition 7), defining an abelian Lie algebra extension

ĝ := C̄p
c (g, V ) ⊕Ω g, [([η], x), ([η′], x′)] = (x.[η′] − x′.[η] + Ω(x, x′), [x, x′])

of g by C̄p
c (g, V ) (cf. [10], Rem. II.9, for more details on the classification of

topologically split abelian extensions by two-cocycles).

Lemma 12. a) The restriction Ω0 of Ω to sp(g, ω) is a Lie algebra cocycle with
values in C̄p

c (g, V ), considered as a trivial sp(g, ω)-module and the composition
dg ◦ Ω0 ∈ Z2(sp(g, ω), Cp+1

c (g, V )) is a coboundary.

b) In the central extension ŝp(g, ω) := C̄p
c (g, V ) ⊕−Ω0

sp(g, ω), the subspace

ĥam(g, ω) := {([η], x) ∈ ŝp(g, ω); dgη = ixω}

is an ideal containing all commutators. The projection map q : ĥam(g, ω) →
ham(g, ω), ([η], x) 7→ x defines a central extension

0 → Hp
c (g, V ) ↪→ ĥam(g, ω) →→ ham(g, ω) → 0.

c) Let C̄p
c (g, V )ω := {[η] ∈ C̄p

c (g, V ); for which there exists x ∈ g such that
dgη = ixω}. Then the Poisson bracket

{[η], [η′]} := Ω(x′, x) for dgη = ixω, dgη
′ = ix′ω

defines on C̄p
c (g, V )ω the structure of a Lie algebra whose center is the space

C̄p
c (g, V )ham(g,ω), and the projection map

p : ĥam(g, ω) → C̄p
c (g, V )ω, ([η], x) 7→ [η]

is a surjective homomorphism of Lie algebras.

Proof: a) Since the transfer map Tp is g-equivariant (see Proposition 6), Ω is
sp(g, ω)-invariant, so that its restriction Ω0 to sp(g, ω) is an invariant cocycle,
hence also a cocycle with respect to the trivial action (Lemma 8). That dg ◦ Ω0 is
a coboundary follows from dg(Ω(x, y)) = −i[x,y]ω = (dgfω)(x, y) (cf. (6)).

b) From equation (6) it also follows that ĥam(g, ω) contains all commutators
of ŝp(g, ω). The kernel of the projection map q : ĥam(g, ω) → ham(g, ω) coin-
cides with Hp

c (g, V ), so that we obtain a central extension of ham(g, ω) by this
space.
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c) The kernel of the projection map p is n := {(0, x) ∈ ĥam(g, ω); ixω = 0}.
For any ([η], y) ∈ ĥam(g, ω) and (0, x) ∈ n we have

[(0, x), ([η], y)] = (−Ω(x, y), [x, y]) = (−[iyixω], [x, y]) = (0, [x, y])

showing that n is an ideal. Hence the quotient space C̄p
c (g, V )ω carries a unique

Lie bracket {·, ·} for which p is a quotient homomorphism. It is given for dgη =
ixω and dgη

′ = ix′ω by

{[η], [η′]} := p([([η], x), ([η′], x′)]) = Ω(x′, x).

To verify the statement on the center of C̄p
c (g, V )ω, we observe that [η] with dgη =

ixω is central if and only if for each x′ ∈ ham(g, ω) we have

0 = Ω(x′, x) = −[ix′ixω] = −[ix′dgη] = −[Lx′η] = −x′.[η].

We collect the main points of this section in the following theorem.

Theorem 13. Let ω ∈ Zp+2
c (g, V ).

a) The inclusion map φ : ĥam(g, ω) → ĝ is a homomorphism of Lie algebras
whose range is the kernel of the cocycle

f̂ω : ĝ → Cp+1
c (g, V ), ([η], x) 7→ ixω − dgη.

We thus obtain the following commutative diagram of Lie algebra extensions (in
the rows) with short exact columns

0 → Hp
c (g, V ) → ĥam(g, ω) → ham(g, ω) → 0yı

yφ

yı

0 → C̄p
c (g, V ) → ĝ = C̄p

c (g, V ) ⊕Ω g → g → 0y−d

y �

fω

yfω

0 → Bp+1
c (g, V ) → Cp+1

c (g, V ) → C̄p+1
c (g, V ) → 0.

b) The following commutative diagram has exact rows

0 → Hp
c (g, V ) → ĥam(g, ω) → sp(g, ω)

fω
−−→ Hp+1

c (g, V )y
y

yı

yı

0 → Hp
c (g, V ) → ĥam(g, ω) → g

fω
−−→ C̄p+1

c (g, V ).
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Proof: a) In view of Lemma 12, it remains to see that φ is a homomorphism of
Lie algebras and that f̂ω is a cocycle. The first assertion follows from the fact that
the bracket of ([η], x), ([η′], x′) ∈ ĥam(g, ω) in ĝ is given by

[([η], x), ([η′], x′)] = ([Lxη′ − Lx′η] + Ω(x, x′), [x, x′])

= ([ixdgη
′ − ix′dgη] + Ω(x, x′), [x, x′])

= ([ixix′ω − ix′ixω] + Ω(x, x′), [x, x′])

= (2Ω(x′, x) + Ω(x, x′), [x, x′]) = (−Ω(x, x′), [x, x′]).

To see that f̂ω is a cocycle, we first observe that f̂ω = q∗(T̃1(ω)) − dg ◦ θ, where
θ ∈ C1(ĝ, C̄p

c (g, V )) is the projection onto C̄p(g, V ), i.e., θ([η], x) = [η]. In view
of q∗Ω = −d�

gθ in Z2(ĝ, C̄p
c (g, V )) (cf. [10], Rem. VI.1), we get with Proposi-

tion 6

d�

gf̂ω = q∗(dgT̃1(ω)) − dg ◦ (d�

gθ) = q∗(dgT̃1(ω)) + dg ◦ (q∗Ω)

= q∗(dgT̃1(ω) + dg ◦ T2(ω)) = 0.

The remaining assertions are clear.

b) The exactness of the rows follows from Lemma 12.

Remark 14. Let ω ∈ Z2
c (g, V ) and ĝ = V ⊕ω g the corresponding abelian

extension of g by V with q(v, x) = x. For (v, x) ∈ ĝ we then have

ad(v, x)(v′, x′) = [(v, x), (v′, x′)] = (x.v′ − x′.v + ω(x, x′), [x, x′])

so that the linear map ad(v, x) preserves the subspace {0} × g ∼= g of ĝ if and
only if ixω = dgv, which, in view of Theorem 13, leads to

ĥam(g, ω) ∼= {(v, x) ∈ ĝ; ad(v, x)({0} × g) ⊆ {0} × g}.

In particular, an element x ∈ g lifts to an element of ĝ preserving {0} × g if and
only if it is hamiltonian.

For the projection map θ : ĝ → V, (v, x) 7→ v and (v, x) ∈ ĝ, we further have

((v, x).θ)(v′, x′) = x.v′−θ([(v, x), (v′, x′)]) = x′.v−ω(x, x′) = −f̂ω(v, x)(x′)

so that the cocycle f̂ω measures to which extent the adjoint action of an element
of ĝ preserves the subspace ker θ = {0} × g.



Lie Algebra Extensions and Higher Order Cocycles 61

Example 15. If V is a trivial g-module and p = 2, then Lxω = dg(ixω) vanishes
if and only if ixω vanishes on the commutator algebra [g, g], hence sp(g, ω) =
[g, g]⊥ω . Further B1

c (g, V ) = {0} leads to ham(g, ω) = rad(ω). For V = R, a
necessary condition for

fω : sp(g, ω) → H1
c (g, V ) = Lin(g/ ¯[g, g], V )

to be surjective is that rad(ω) ⊆ ¯[g, g]. If, conversely, g is finite-dimensional and
rad(ω) ⊆ [g, g], then the fact that the induced form on g/rad(ω) is non-degenerate
implies that fω is surjective.

Example 16. If g is the three-dimensional Heisenberg algebra and ω is a non-
zero two-cocycle on g, then rad(ω) is one-dimensional, and rad(ω) ⊆ [g, g] =
z(g) is equivalent to rad(ω) = [g, g]. This implies that ω is a coboundary. There-
fore the flux homomorphism fω : sp(g, ω) → H1(g, R) is surjective if and only
of ω is a coboundary. If this is not the case, then sp(g, ω) is a proper two-
dimensional subalgebra containing the center and rad(ω), and its image under
fω is a one-dimensional subspace of the two-dimensional space H1(g, R).

Remark 17. From the embedding of ĥam(g, ω) as an ideal into ŝp(g, ω), we ob-
tain an action of the Lie algebra sp(g, ω) on ĥam(g, ω) by

x.([η′], x′) := (−Ω(x, x′), [x, x′]).

Since this action extends the canonical action of ham(g, ω) on its central exten-
sion ĥam(g, ω), and the homomorphism qσ : ĥam(g, ω) → sp(g, ω) is equivari-
ant, it defines a so-called crossed module (cf. [10], [17]). To any crossed module
one associates a characteristic class, which in our case is an element of

H3(sp(g, ω)/ham(g, ω), Hp
c (g, V )) ∼= C3(sp(g, ω)/ham(g, ω), Hp

c (g, V )).

From [10] we know that the existence of the sp(g, ω)-equivariant embedding of
ĥam(g, ω) into ŝp(g, ω) implies that the characteristic class of this crossed mod-
ule vanishes.

3. Applications to Lie Algebras of Vector Fields

In this section M denotes a smooth manifold modeled on a locally convex space,
g := V(M) the Lie algebra of smooth vector fields on M (which is not topologi-
cal if dim M = ∞) and E a Mackey complete locally convex space. Recall that
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Mackey completeness means that Riemann integrals of smooth curves [0, 1] → E
exist (cf. [6], Theorem 2.14). Then V := C∞(M, E) carries a natural topo-
logical g-module structure and so do the spaces Ωp(M, E) and Ω̄p(M, E) :=
Ωp(M, E)/d(Ωp−1(M, E)) (see the Appendix). The space of closed E-valued
p-forms is denoted Zp

dR(M, E) and the subspace of exact E-valued p-forms by
Bp

dR(M, E), so that Hp
dR(M, E) = Zp

dR(M, E)/Bp
dR(M, E) is a subspace of

Ω̄p(M, E).

Remark 18. a) If each vector v ∈ Tp(M) can be extended to a smooth vector
field on M , then the natural morphism

(Ω(M, E), d) ↪→ (Cc(g, V ), dg)

of cochain complexes is injective. Moreover, we have dgV = dC∞(M, E) ⊆
Ω1(M, E) ⊆ C1

c (g, V ), so that the natural map Ω̄1(M, E) → C̄1
c (g, V ) is injec-

tive.

b) The assumptions of a) are in particular satisfied if M is diffeomorphic to an
open subset of a locally convex space, hence they are always satisfied locally.

c) If M is modeled on a smoothly paracompact locally convex space, then
we can use smooth partitions of unity to extend vectors to vector fields, so that
the assumption of a) is satisfied. If, in addition, M is smoothly paracompact,
then de Rham’s Theorem holds (cf. [6], Theorem 34.7), and the subspace of exact
forms in Ωp(M, E) is the common kernel of the integration maps over smooth p-
cocycles, which are continuous linear maps. Hence Bp

dR(M, E) is closed, which
implies that Ω̄p(M, E) inherits a Hausdorff locally convex topology. If M is finite-
dimensional, this turns it into a topological V(M)-module.

Since we do not know for which locally convex manifold M the natural maps

Ω̄p(M, E) → C̄p(V(M), C∞(M, E))

are injective for p > 1, we have to use a slight modification of the transfer maps in
the context of smooth manifolds, but this also leads to more geometric information

Definition 19. For any smooth manifold M we define transfer maps

T̃M
p : Ωp+q(M, E) → Cp(V(M), Ωq(M, E))

(T̃M
p ω)(X1, . . . , Xp) := iXp . . . iX1

ω

and, accordingly

TM
p : Ωp+q(M, E) → Cp(V(M), Ω̄q(M, E))

(TM
p ω)(X1, . . . , Xp) := [iXp . . . iX1

ω].
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Lemma 20. For p, q ∈ N0 we have on Ωp+q(M, E) the identity

T̃M
p+1 ◦ d = dV(M) ◦ T̃M

p + (−1)p+1d ◦ TM
p+1.

Proof: If each vector v ∈ Tp(M) extends to a smooth vector field on M ,
this follows immediately from Lemma 5 because Ωp(M, E) embeds into the
space C(V(M), C∞(M, E)). As this assumption is always satisfied locally (Re-
mark 18), the assertion follows.

Definition 21. For ω ∈ Zq
dR(M, E) we define the Lie subalgebras of symplectic,

respectively, hamiltonian vector fields on M by

sp(M, ω) := {X;LXω = 0}, ham(M, ω) := {X; iXω ∈ Bq−1
dR (M, E)}.

For q > 0 the flux cocycle fω : V(M) → Ω̄q−1(M, E), X 7→ [iXω] then satisfies

ham(M, ω) = ker fω and sp(M, ω) = f−1
ω (Hq−1

dR (M, E))

(Proposition 9).

We now obtain for each closed ω ∈ Ωp+2(M, E) some two-cocycle
Ω ∈ Z2(V(M), Ω̄p(M, E)). If M is finite-dimensional, this cocycle defines a
topologically split abelian extension

ĝ = Ω̄p(M, E) ⊕Ω V(M).

Moreover, we obtain central extensions ŝp(M, ω) of sp(M, ω) by Ω̄p(M, E) and
ĥam(M, ω) of ham(M, ω) by the space Hp

dR(M, E).

If p = 0, then ω is a closed two-form, Ω̄0(M, E) = C∞(M, E), and H0
dR(M, E)

is the subspace of locally constant functions. On the subspace

C∞(M, E)ω := {f ∈ C∞(M, E); there exists X ∈ V(M) df = iXω}

we further obtain a Lie algebra structure by the Poisson bracket

{f, g} := Ω(Xg, Xf ), for df = iXf
ω, dg = iXgω.

If, in addition, E = R, then the cokernel of fω very much depends on the reg-
ularity of ω. For ω = 0 we have sp(M, ω) = V(M), fω = 0, and therefore
coker(fω) = H1

dR(M, E). The opposite situation arises if ω is strongly sym-
plectic in the sense that it induces a bijection V(M) → Ω1(M, R), X 7→ iXω
and coker(fω) = {0}. In particular, we then have C∞(M, R)ω = C∞(M, R)
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and {f, g} is the usual Poisson bracket from symplectic geometry. Moreover, the
non-degeneracy of ω also implies that the map

ĥam(M, ω) → (C∞(M, R), {·, ·})

is an isomorphism of Lie algebras.

Besides the classical case p = 0, such extensions arise in the structure theory of
toroidal Lie algebras, where the space

H2
c (V(M), Ω̄1(M, R))

for the d-dimensional torus M = T
d plays an important role in the context of

classification problems. This space contains in particular the image of the natural
map

TM
2 : H3

dR(M, R) → H2
c (V(M), Ω̄1(M, R))

which in general is not injective (see [1] for a more detailed analysis of this situa-
tion for parallelizable manifolds).

Remark 22. If M is compact of dimension n and µ a volume form on M , then
the map f̃µ : V(M) → Ωn−1(M, R), X 7→ iXµ is a linear isomorphism, which
leads to linear isomorphisms

ham(M, µ) ∼= Bn−1
dR (M, R) and sp(M, µ) ∼= Zn−1

dR (M, R)

and we obtain a central extension

0 → Hn−2
dR (M, R) ↪→ ĥam(M, µ) ∼= Ω̄n−2(M, R) →→ ham(M, µ) → 0

which is the universal central extension of ham(M, µ) ([7], [13]).

In view of Remark 10 b), the following lemma shows that under mild assumptions
on M , we have

sp(M, ω) = sp(V(M), fω) and ham(M, ω) = ham(V(M), fω).

Lemma 23. If M is locally smoothly paracompact and p ∈ N0, then

Ωp+1(M, E)V(M) = {0} and Ω̄p(M, E)V(M) = Hp
dR(M, E).

Proof: First we show that each closed p-form invariant under all vector fields
vanishes. Since M is locally smoothly paracompact, standard arguments using
smooth bump function reduce the problem to showing that on any open convex



Lie Algebra Extensions and Higher Order Cocycles 65

0-neighborhood U in a locally convex space V , each V(U)-invariant (p+1)-form
ω vanishes in 0.

We consider the identity function Y : U → V, x 7→ x as a smooth vector field
on U . For each constant vector field X on U we then have [Y, X] = dX(Y ) −
dY (X) = −X and therefore Y (0) = 0 leads to

0 = (LY ω)(X1, . . . , Xp+1)(0) = pω(X1, . . . , Xp+1)(0).

This implies that ω vanishes in 0.

The second part is proved as Lemma 11, using the exact sequence

0 → Hp
dR(M, E) ↪→ Ω̄p(M, E)

d̄
−−→Ωp+1(M, E)

of V(M)-modules, where d̄[η] := dη and Ωp+1(M, E)V(M) = {0}.

For the following proposition, we use the concept of smooth singular chains and
cycles (cf. [6] or [18]).

Proposition 24. a) For each smooth singular p-cycle Σ in M , integration
over Σ defines a continuous linear map

IΣ : Ω̄p(M, E) → E, [β] 7→

∫

Σ

β.

b) If ω ∈ Zp+k
dR (M, E), then ωΣ := IΣ ◦ TM

k (ω) defines on sp(M, ω) a p-
cocycle with respect to the trivial module structure on E.

c) If, in addition, there exists a smooth singular (p+1)-chain Γ with ∂Γ = Σ,
then ωΣ is a coboundary.

d) If ω ∈ Zp+k
dR (M, E), the element d ◦ T M

k (ω) = (−1)k−1dV(M)

(
T̃M

k−1(ω)
)

of Zk(V(M), Ωp+1(M, E)) is a coboundary. If the sequence

0 → Hp
dR(M, E) ↪→ Ω̄p(M, E)

d
−−→Bp+1

dR (M, E) → 0 (7)

splits topologically and M is finite-dimensional manifold, then the coho-
mology class [T M

k (ω)] ∈ Hk
c (V(M), Ω̄p(M, E)) comes from an element

of Hk
c (V(M), Hp

dR(M, E)). This splitting condition is satisfied if M is
(smoothly) paracompact and the singular homology group Hp(M) is fi-
nitely generated.
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Proof: a) is an immediate consequence of Stokes’ Theorem.

b) In view of the invariance of ω and hence of Tk(ω) under sp(M, ω), Lemma 8
implies that Tk(ω) is a cocycle with respect to the trivial action of sp(M, ω) on
Ω̄p(M, E). Composing with IΣ therefore leads to a cocycle with values in the
trivial module E.

c) For X1, . . . , Xk ∈ g := sp(M, ω), we obtain with Lemmas 8 and 20 the
formula

d(iXk
· · · iX1

ω)

= (−1)kT̃M
k (dω)(X1, . . . , Xk) + (−1)k−1(dgT̃

M
k−1ω)(X1, . . . , Xk)

= (−1)k−1(dgT̃
M
k−1ω)(X1, . . . , Xk) = (−1)k(d0

gT̃
M
k−1ω)(X1, . . . , Xk).

Since the integration map IΓ is equivariant with respect to the trivial g-module
structure on Ω̄p+1(M, E), we derive with Stokes’ Theorem

ωΣ(X1, . . . , Xk) =

∫

Σ

iXk
· · · iX1

ω =

∫

∂Γ

iXk
· · · iX1

ω =

∫

Γ

d(iXk
· · · iX1

ω)

= (−1)k

∫

Γ

(d0
gT̃

M
k−1ω)(X1, . . . , Xk)

= (−1)kd0
g(IΓ ◦ T̃M

k−1ω)(X1, . . . , Xk) = (−1)k(d0
gωΓ)(X1, . . . , Xk).

Hence ωΣ = (−1)kd0
gωΓ is a coboundary.

d) The first part follows as in Proposition 6b) from Lemma 20. If (7) splits
topologically, then the exactness of the corresponding long exact cohomology
sequence of topological V(M)-modules implies the second assertion.

If M is smooth paracompact and Hp(M) is finitely generated, then de Rham’s
Theorem implies that there exist smooth singular cycles C1, . . . , Cn such that

Ω̄p(M, E) → En ∼= Hp
dR(M, E), [η] 7→

( ∫

C1

η, . . . ,

∫

Cn

η
)

yields a topological splitting of (7).

In [14] similar constructions are used to obtain for a compact symplectic manifold
(M, ω) central extensions of sp(M, ω) by cocycles of the form ωk

Σ, where Σ is
given by a 2k-dimensional orientable submanifold (see also [4]). If ω = µ is
a volume form on a compact manifold, one similarly obtains the Lichnerowicz
cocycles ΩΣ = IΣ◦Ω, where Σ ⊆ M is an orientable submanifold of codimension
two.
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Corollary 25. For ω ∈ Zk
dR(M, E) we obtain for each m ∈ M a continuous

k-cocycle
ωm(X1, . . . , Xk) := ω(X1, . . . , Xk)(m)

of sp(M, ω) with values in the trivial module E. If m and n lie in the same
connected component of M , then ωm − ωn is a coboundary.

Proof: We apply the preceding proposition with Σ = [m] − [n], viewed as a
singular zero-chain, and a path Γ: [0, 1] → M from m to n, viewed as a singular
one-chain.

Remark 26. Let N be a compact oriented p-dimensional manifold and E a Mackey
complete locally convex space. Then we have a natural map

Φ: Ω̄p(M, E) → C∞(C∞(N, M), E), [α] 7→
(
γ 7→

∫

γ

α =

∫

N

γ∗α
)
.

We further have a homomorphism α : V(M) → V(C∞(N, M)), α(X)(φ) =
X ◦ φ defining on the right hand side a V(M)-module structure for which Φ
is equivariant.

Example 27. Assume M to be connected and write qM : M̃ → M for a sim-
ply connected covering. Then the fibers of qM correspond to orbits of the group
π1(M) of deck transformations and we have a natural isomorphism V(M̃)π1(M)

∼= V(M), hence in particular an embedding ι : V(M) ↪→ V(M̃).

Now let ω ∈ Z2
dR(M, E) be a closed two-form and ω̃ := q∗Mω its pull-back to M̃ .

Since H1
dR(M̃, E) = {0}, we have sp(M̃, ω̃) = ham(M̃, ω̃). In particular, we

can use the embedding

sp(M, ω) ∼= sp(M̃, ω̃)π1(M) ↪→ ham(M̃, ω̃)

to pull back the central extension ĥam(M̃, ω̃) to obtain a central extension of
sp(M, ω) by H0

dR(M̃, E) ∼= E. This extension is given by

s̃p(M, ω) = {(f, X) ∈ C∞(M̃, E) × sp(M, ω); df = i �

X
ω̃ = q∗M (iXω)}.

To obtain a cocycle for this extensions, we pick a point m0 ∈ M , a point m̃0 ∈ M̃
with qM (m̃0) = m0, and define for X ∈ sp(M, ω)

fX : M̃ → E, m̃ 7→

�

m∫

�

m0

q∗M (iXω) =

�

m∫

�

m0

i �

X
ω̃.
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Then σ : sp(M, ω) → s̃p(M, ω), X 7→ (fX , X) is a continuous linear section,
and the corresponding cocycle is

ωσ(X, Y ) := [σ(X), σ(Y )] − σ([X, Y ]) = (ω̃(Ỹ , X̃) − f[X,Y ], 0)

where the function ω̃(X̃, Ỹ ) − f[X,Y ] is constant because dω̃(Ỹ , X̃) = i
[

�

X,
�

Y ]
ω̃.

This shows that

ωσ(X, Y ) = ω̃(Ỹ , X̃)(m̃0) = ω(Y, X)(m0).

Hence [ωσ] = −[ωm] for each m ∈ M (cf. Corollary 25).

If C∞
∗ (M, E) denotes the subspace of those functions vanishing in m0, then we

clearly have C∞(M, E) ∼= C∞
∗ (M, E) ⊕ E as trivial sp(M, ω)-modules, where

the projection onto the second summand is evaluation in m. The two-cocycle
ω0 decomposes accordingly as ω0 = (ω∗, ωm). We know from Proposition 24d)
that ω∗ is trivial whenever H1(M) is finitely generated. Considering the embed-
ding q∗M : C∞(M, E) ↪→ C∞(M̃, E), we easily obtain an explicit coboundary
because

η : sp(M, ω) → C∞
∗ (M̃, E), η(X)(m̃) :=

�

m∫

�

m0

q∗M (iXω)

satisfies

η([Y, X])(m̃) = f[Y,X](m̃) = ω̃(X̃, Ỹ )(m̃) − ω̃(X̃, Ỹ )(m̃0) = ω∗(X, Y )(m̃).

Example 28. Let Z be an abelian Lie group with Lie algebra z and q : P →
M a principal Z-bundle with principal connection one-form θ ∈ Ω1(P, z) and
curvature form ω ∈ Ω2(M, z), i.e., q∗ω = −dθ. Let aut(P ) := V(P )Z denote
the Lie algebra of Z-invariant vector fields on P . Then there exists for each
X ∈ aut(P ) a unique vector field q∗(X) ∈ V(M) which is q-related to X . This
leads to the exact sequence of topological Lie algebras

0 → C∞(M, z) ↪→ V(P )Z q∗
−−−−−→V(M) → 0 (8)

where we identify the space ker q∗ of vertical Z-invariant vector fields with the
abelian Lie algebra C∞(M, z).

We obtain a continuous linear section σ : V(M) → V(P )Z by assigning to X ∈
V(M) the unique vector field X̃ ∈ V(P )Z with θ(X̃) = 0 and q∗X̃ = X (a
horizontal vector field). Then

ω(X, Y ) = (q∗ω)(σ(X), σ(Y )) = θ([σ(X), σ(Y )])

= θ([σ(X), σ(Y )] − σ([X, Y ]))
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is the two-cocycle of the abelian extension (8), so that

V(P )Z ∼= C∞(M, z) ⊕ω V(M)

(cf. [10], Section VI for a similar discussion of non-abelian structure groups).
In view of Remark 14, the subalgebra ham(M, ω) consists of those vector fields
X ∈ V(M) which have a lift X̂ ∈ V(P )Z preserving the connection one-form θ,
i.e., the splitting defined by σ. This leads to the central extension

0 → H0
dR(M, z) ↪→ ĥam(M, ω) → ham(M, ω) → 0

describing the Lie subalgebra ĥam(M, ω) ⊆ V(P )Z of infinitesimal automor-
phisms of the pre-quantum data (P, θ).

4. Actions of Lie Algebras on Manifolds

In this short section we briefly discuss a more general situation, where g is a
locally convex Lie algebra and we are given an infinitesimal action of g on the
manifold M , i.e., a continuous homomorphism of Lie algebras α : g → V(M).

4.1. Equivariant Differential Forms

Further let E be a topological g-module w.r.t. (x, v) 7→ ρE(x).v. We thus obtain
on Ωp(M, E) a g-module structure by

x.ω := Lα(x)ω + ρE(x) ◦ ω.

In particular V := C∞(M, E) = Ω0(M, E) is a g-module. Let d1
g denote the

differential on Cp
c (g, V ) corresponding to the trivial action of g on E and d0

g for
the differential corresponding to the trivial action of g on V . For the corresponding
action on V we accordingly write ρV (x)f = ρ0

V (x)f + ρE(x) ◦ f and ρE
V (x)f =

ρE(x) ◦ f . Then dg = d0
g + ρV ∧ where ρV ∧ : Cp

c (g, V ) → Cp+1
c (g, V ) denotes

the map induced by the bilinear map g × V → V, (x, v) 7→ ρV (x)v (cf. [10],
Exercise I.3).

With respect to the pull back maps α∗ : Ωp(M, E) → Cp
c (g, V ) we have

dg(α
∗ω) = α∗(dω) + ρE ∧ α∗ω = d1

g(α
∗ω) + ρE ∧ α∗ω.

We are mostly interested in the subspace Ωp(M, E)g of g-invariant forms which
pull back to invariant Lie algebra cochains in Cp

c (g, V )g. In view of Lemma 8, we
obtain for each invariant form ω

d1
g(α

∗ω) + ρE ∧ α∗ω = dg(α
∗ω) = −d0

g(α
∗ω)
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which leads to

α∗(dω) = d1
g(α

∗ω) = −
(
d0

g + ρE∧)(α∗ω) = −d
ρE

V
g (α∗ω) (9)

describing how the exterior differential on Ωp(M, E) intertwines α∗.

For any point m ∈ M we have an evaluation map evm : Ωp(M, E) → Cp
c (g, E)

evm(ω)(x1, . . . , xp) := ω(α(x1), . . . , α(xp))(m) =
(
(α∗ω)(x1, . . . , xp)

)
(m).

Since the evaluation map evm : V → E, f 7→ f(m) is g-equivariant with respect
to ρE

V , (9) implies that

dg(evm(ω)) = dg(evm ◦α∗ω) = evm ◦d
ρE

V
g (α∗ω)

= − evm ◦α∗(dω) = − evm(dω)

showing that evm induces maps

Hp
dR(M, E)g → Hp

c (g, E), [ω] 7→ [evm(ω)].

Such evaluation maps are used in [15] to realize abelian extensions of Lie group
geometrically.

Example 29. Of particular interest is the special case where M = G is a Lie
group with identity e and g = L(G) ∼= Te(G) is the Lie algebra of G, which
we identify with the space of left invariant vector fields on G. Writing xr for the
right invariant vector field with xr(e) = x, the map σ : g → V(G), x 7→ −xr is
a continuous homomorphism of Lie algebras and Ωp(G, E)g is the space of left
equivariant differential forms, characterized by

Lxrω = ρE(x) ◦ ω for x ∈ g.

This space has the remarkable property that evaluation in e leads to an isomor-
phism

(Ω(G, E)g, d) → (Cc(g, E), dg)

of chain complexes (cf. [2], [9]).

4.2. Generalized Momentum Maps

Definition 30. Assume that E is a trivial g-module and ω is a closed E-valued
(p+2)-form. Let α : g → ham(M, ω) be a continuous homomorphism. A contin-
uous linear map µ : g → Ω̄p(M, E) is said to be a generalized momentum map
for α if
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1) dµ(x) = iα(x)ω for x ∈ g.

2) µ([x, y]) = {µ(x), µ(y)} = Ω(α(y), α(x)), i.e., µ is a homomorphism of
Lie algebras with respect to the Poisson bracket on Ω̄p(M, E)ω.

We may pull back the central extension ĥam(M, ω) of ham(M, ω) by Hp
dR(M, E)

defined by ω to a central extension of g. From the definition of this central exten-
sion it immediately follows that µ : g → Ω̄p(M, E) is a generalized momentum
map for α if and only if (µ, α) : g → V̂(M) has values in ĥam(M, ω) and is a
homomorphism of Lie algebras. Therefore the existence of a momentum map is
equivalent to the triviality of the central extension α∗ĥam(g, ω) of g. Note also
that 2) means that the two-cocycle α∗Ω ∈ Z2

c (g, Ω̄p(M, E)) satisfies α∗Ω = dgµ.
Here α(g) ⊆ ham(M, ω) already implies that α∗Ω can be reduced to a cocycle
with values in the trivial module Hp

dR(M, E), and the triviality of this cocycle is
equivalent to the existence of a momentum map.

If ω = dθ is an exact form and θ is also g-invariant, then µ(x) := [−iα(x)θ]
satisfies

dµ(x) = −diα(x)θ = −Lα(x)θ + iα(x)dθ = iα(x)ω

and 0 = Lα(y)θ = diα(y)θ + iα(y)dθ = diα(y)θ + iα(y)ω further yields

µ([x, y]) = −[iα([x,y])θ] = −[[Lα(x), iα(y)]θ] = −[Lα(x)iα(y)θ]

= −[iα(x)diα(y)θ] = [iα(x)iα(y)ω] = Ω(α(y), α(x))

so that µ is a momentum map.

Example 31. If M is a Banach manifold, then its cotangent bundle T ∗(M) car-
ries the Liouville one-form θM , which is invariant under the hamiltonian lift α :
V(M) → V(T ∗(M)). This leads to a moment map

µ : V(M) → C∞(T ∗(M), R), X 7→ −θM (α(X)).

A similar situation arises for the infinitesimal action ĥam(M, ω) → V(P ) of a
pre-quantum bundle (P, θ) which preserves the connection one-form θ (cf. Exam-
ple 28).

Remark 32. Via α we obtain on Ω̄p(M, E) a natural structure of a g-module by

x.[η] = [Lα(x)η] = [iα(x)dη].

Therefore dµ(y) = iα(y)ω implies that

x.µ(y) = [iα(x)iα(y)ω] = Ω(y, x) = {µ(x), µ(y)}.

We conclude that if µ satisfies 1), then its equivariance is equivalent to 2).
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Remark 33. Assume that p = 0 and that M is connected. Then Ω̄p(M, E) =
C∞(M, E) and µ corresponds to a map

µ̂ : M → C1
c (g, E), µ̂(m)(x) := µ(x)(m)

being usually called the momentum map. The classical setting is obtained for
E = R and (M, ω) symplectic. Each x ∈ g defines a linear vector field ad∗

E(x) on
C1

c (g, E) = Lin(g, E) by ad∗
E(x)(f) := f ◦adx, which leads to a homomorphism

g → V(C1
c (g, E)). From this viewpoint we have

ad∗
E(x)(µ̂(m))(y) = µ̂(m)([x, y]) = µ([x, y])(m)

and

Tm(µ)(α(x)m)(y)=dµ(y)(α(x))(m)=ω(α(y), α(x))(m)={α(x), α(y)}(m).

Hence we also see in this context that µ is equivariant, i.e., the vector fields α(x)
and ad∗

E(x) are µ-related, if and only if 2) is satisfied.

5. Appendix. The Topology on Vector Fields and Differential Forms

If X and Y are topological spaces, then the compact open topology on the space
C(X, Y ) is defined as the topology generated by the sets of the form

W (K, U) := {f ∈ C(X, Y ); f(K) ⊆ U}

where K is a compact subset of X and U an open subset of Y . We write C(X, Y )c

for the topological space obtained by endowing C(X, Y ) with the compact open
topology.

If M and N are smooth manifolds, then every smooth map f : M → N defines a
series of smooth maps T kf : T kM → T kN on the iterated tangent bundles. We
thus obtain an embedding

C∞(M, N) ↪→
∏

k∈N0

C(T kM, T kN)c

that we use to define a topology on C∞(M, N).

Since every compact subset of M is contained in a finite union of chart domains,
the topology is generated by sets of the form W (K, U) in C(T kM, T kN), where
K lies in a chart domain.

If E is a locally convex space, the topology on C∞(M, E) coincides with the
topology of uniform convergence of all partial derivatives on each compact subset
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of a chart domain. It follows in particular that C∞(M, E) is a locally convex
space.

Since smooth vector fields are smooth functions X : M → TM (sections of the
tangent bundle), we have a natural embedding V(M) ↪→ C∞(M, TM), defining
a topology on V(M). If U ⊆ M is a chart domain diffeomorphic to an open
subset of the locally convex space E, then TU ∼= U × E, and smooth vector
fields on U correspond to smooth functions U → E. This shows that, endowed
with its natural topology, V(M) is a locally convex space. Since on U the Lie
bracket of two vector fields is given by the formula

[X, Y ](p) := dY (p)X(p) − dX(p)Y (p)

V(M) is a topological Lie algebra if M is finite-dimensional, and if M is infinite-
dimensional, the bracket is in general not continuous.

If E is a locally convex space and Ωp(M, E) the space of smooth E-valued p-
forms, then we identify for each chart domain U the set Ωp(U, E) with a subspace
of C∞(U × Ep, E), which leads to a locally convex topology on Ωp(M, E) by
embedding it into the product of all sets Ωp(U, E), where U is a chart domain.
The formula for the Lie derivative shows that if M is finite-dimensional, this turns
Ωp(M, E) into a topological V(M)-module.

For more details on the subject of this appendix, we refer to the forthcoming
book [3].
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