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Abstract. We consider the Taubes correspondence between solutions of Seiberg–
Witten equations on a compact four-dimensional symplectic manifold and pseudo-
holomorphic curves. We start from Kähler surfaces, in which case there is a di-
rect correspondence between solutions of Seiberg–Witten equations and holomor-
phic curves. The general Taubes correspondence for symplectic four-manifolds
involves, in contrast with the Kähler case, a limiting procedure, called the scal-
ing limit. Under this scaling limit solutions of Seiberg–Witten equations reduce
to families of solutions of certain vortex equations in the normal bundle of the
limiting pseudoholomorphic curve.

1. Introduction

One of the most remarkable results, related to the Seiberg–Witten equations (pro-
posed by N. Seiberg and E. Witten in 1994), is the so called “Taubes equation”

SW = Gr.

It is a mnemonic formula, encoding a simple relation between two important in-
variants of a compact symplectic four-manifold, namely, its Seiberg–Witten in-
variant, produced from the moduli space of solutions of Seiberg–Witten equations,
and the Gromov invariant of this manifold, counting the number of pseudoholo-
morphic curves in a given homology class.

This “equation” is based on a remarkable construction, proposed by C. Taubes
in [9], which associates pseudoholomorphic curves with solutions of Seiberg–
Witten equations. In the first part of the paper we explain how the Taubes corre-
spondence is established in the simpler case of compact Kähler surfaces. In the
Kähler case the moduli space of solutions of (perturbed) Seiberg–Witten equations
can be identified with the space of effective divisors (i.e., holomorphic curves with
multiplicities). This is analogous to the Bradlow’s description of the moduli space
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of solutions of vortex equations on compact Riemann surfaces (cf. [2]). In the gen-
eral case of compact symplectic four-manifolds pseudoholomorphic curves arise
in the scaling limit of Seiberg–Witten equations. Solutions of Seiberg–Witten
equations under this limit reduce to pseudoholomorphic families of solutions of
vortex equations in the normal planes of the limiting pseudoholomorphic curves.

2. Seiberg–Witten Equations on Kähler Surfaces

2.1. Seiberg–Witten Equations

Let X be a (simply connected) compact Kähler surface, provided with a symplec-
tic two-form ω. Denote by J a complex structure on X which is compatible with
ω in the sense that

• ω(Jξ, Jη) = ω(ξ, η) for any tangent vectors ξ, η ∈ TX

• the symmetric tensor, defined by

g(ξ, η) := ω(ξ, Jη)

generates a Riemannian metric on X .

Let E → X be a complex Hermitian line bundle on X , provided with a Hermitian
connection B.

These data define the following Seiberg–Witten equations on X






















∂̄Bϕ0 + ∂̄∗
Bϕ2 = 0

F 0,2
B + η0,2 =

ϕ̄0ϕ2

2

Fω
can + Fω

B + ηω =
i

4
(|ϕ0|2 − |ϕ2|2) .

(SW)

In these equations

• ∂B is the covariant exterior derivative, associated with the connection B,
and ∂̄B is its (0, 1)-component with respect to J ; ∂̄∗

B denotes the L2-adjoint
operator of ∂̄B

• FB is the curvature of the connection B; accordingly, F 0,2
B denotes its

(0, 2)-component with respect to J and F ω
B is the component of FB , parallel

to ω (i.e., F ω
B coincides with the inner product of FB with ω)
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• 2Acan is the canonical connection, generated by the Riemannian metric of
X , on the anticanonical bundle K∗ = Λ0,2 on X (note that in the case when
X has a spin structure, i.e., K∗ admits the square root Lcan → X such
that K∗ = Lcan ⊗ Lcan, Acan would be a connection on Lcan); 2Fcan is
the curvature of the canonical connection 2Acan

• η is a fixed arbitrary self-dual two-form on X with imaginary coefficients
to be considered as a perturbation.

We are looking for solutions of these SW-equations, given by the Hermitian con-
nection B and a spinor field Φ = (ϕ0, ϕ2), represented by a pair of sections ϕ0,
ϕ2 where

• ϕ0 is a section of the line bundle E → X , i.e., ϕ0 ∈ Ω0(X, E)

• ϕ2 is a (0, 2)-form on X with values in E → X , i.e., ϕ2 ∈ Ω0,2(X, E).

We have written here the Seiberg–Witten equations in the form, adapted to the
Kähler case. The standard Seiberg–Witten equations on Riemannian four-mani-
folds have the following form (cf. [5–7])







DBΦ = 0

F+
B + η = Φ ⊗ Φ∗ − 1

2
|Φ|2 · id .

(RSW)

The relation between these standard Seiberg–Witten equations and the SW-equa-
tions, written above, is established as follows.

The first of RSW-equations, which corresponds to the first of the SW-equations,
is the Dirac equation with

DB : Ω0(X, E) ⊕ Ω0,2(X, E) −→ Ω0,1(X, E)

being the covariant Dirac operator, generated by the connection B. We can write
it in a more familiar way, namely as a homomorphism

DB : Γ(X, W+) −→ Γ(X, W−)

of sections of the semispinor vector bundles (of rank 2), defined by

W+
E := Λ0(X, E) ⊕ Λ0,2(X, E), W−

E := Λ0,1(X, E)

where Λp,q(X, E) denotes the bundle of (p, q)-forms on X with values in the line
bundle E.
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In the second RSW-equation F +
B is the self-dual part of the curvature FB , while in

the right hand side we have a traceless Hermitian endomorphism of the semispinor
bundle W+

E , defined by a spinor field Φ ∈ Γ(X, W +). To equalize the two sides
of the second equation, one should represent the two-form F +

B with imaginary
coefficients as an endomorphism of Γ(X, W +), using the Clifford multiplication
(we refer to the above references [5–7] for details). To relate the second RSW-
equation with the second and third SW-equations, we recall that the bundle of
self-dual two-forms on a Kähler surface with pure imaginary coefficients has the
following Hodge decomposition

Λ2
+ ⊗ iR =

(

Λ2,0 ⊗ iR
)

⊕ iR[ω] ⊕
(

Λ0,2 ⊗ iR
)

where the first and the third terms on the right are complex conjugate to each other.
So we can split the second RSW-equation into three components, according to the
above decomposition of Λ2

+ ⊗ iR. The second and third of SW-equations are
precisely the (0, 2) and (1, 1) components of the second RSW-equation.

We return to the Seiberg–Witten SW-equations on the Kähler surface X . These
equations are invariant under gauge transformations, given by the natural action

B 7−→ B + u−1du, Φ 7−→ u−1Φ

of the group G := Γ(X, U(1)) of gauge transformations. We are interested in
the moduli space of SW-solutions, i.e., the space of solutions of SW-equations
modulo gauge transformations.

2.2. Solvability Conditions

We analyze first the solvability conditions for the SW-equations, assuming that
the perturbation two-form η is of the (1, 1)-type.

By applying the ∂̄B-operator to the first SW-equation, we get

∂̄B ∂̄∗
Bϕ2 = −∂̄B ∂̄Bϕ0 = −F 0,2

B ϕ0 = −|ϕ0|2ϕ2

2
(1)

where in the last equality we have used the second SW-equation. Integrating this
relation over X with ϕ̄2, we obtain

‖∂̄∗
Bϕ2‖2

L2 +
1

2
‖ϕ0‖2

L2 · ‖ϕ2‖2
L2 = 0 .

It follows that
∂̄∗

Bϕ2 = ∂̄Bϕ0 = ϕ̄0ϕ2 ≡ 0 .
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It is easy to prove that solutions of ∂̄B (and ∂̄∗
B) equation satisfy to the following

identity principle: if such a solution vanishes on an open subset of X , it is iden-
tically zero on X . By this principle the last equation implies that either ϕ0 or ϕ2

should be identically zero on X .

In order to detect which of them is identically zero, we integrate the third SW-
equation. Then we get

‖ϕ0‖2
L2 − ‖ϕ2‖2

L2

2
=

∫

X

|ϕ0|2 − |ϕ2|2
4

ω ∧ ω = i

∫

X

(Fcan + FB + η) ∧ ω

= π (−c1(K) + 2c1(E)) · [ω] + i

∫

X

η ∧ ω .

(2)

Consider first the case when η = 0, corresponding to the non-perturbed Seiberg-
Witten equations. Then the above relation (2) reduces to

‖ϕ2‖2 − ‖ϕ0‖2 = 2π (2c1(E) · [ω] − c1(K) · [ω]) .

This relation implies the following solvability conditions

• if c1(E) · [ω] > c1(K) · [ω]/2, then ϕ0 ≡ 0, ϕ2 6≡ 0

• if c1(E) · [ω] < c1(K) · [ω]/2, then ϕ0 6≡ 0, ϕ2 ≡ 0 .

We provide now our line bundle E with a holomorphic structure, determined by
the ∂̄B-operator. Recall the following general fact: if the holomorphic line bun-
dle (E, ∂̄B) has a non-trivial holomorphic section ϕ0, then

c1(E) · [ω] ≥ 0 .

We can apply the same argument to the holomorphic line bundle K⊗E∗, provided
with the holomorphic structure, generated by the ∂̄∗

B-operator. If this bundle has
a non-trivial holomorphic section ϕ2, then

c1(K) · [ω] ≥ c1(E) · [ω] .

Thus we have the following solvability conditions in terms of the Chern class

• if 0 < c1(E) · [ω] < c1(K) · [ω]/2, then ϕ0 is a non-trivial solution of
SW-equations and ϕ2 ≡ 0

• if c1(K) · [ω]/2 < c1(E) · [ω] < c1(K) · [ω], then ϕ2 is a non-trivial solution
of SW-equations and ϕ0 ≡ 0.
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In the next section, where we analyze the existence of solutions of the general
(perturbed) SW-equations, we shall obtain the solvability conditions for the per-
turbed equations, analogous to the above conditions in the non-perturbed case.

2.3. Solution of the Seiberg–Witten Equations

We consider now the perturbed SW-equations in the case of the trivial bundle E
and choose the perturbation η in the form

η = −F+
can + iλω

where λ > 0 is a parameter. As in the previous section, we integrate the third
SW-equation. We arrive at

4λ · Vol(X) + ‖ϕ2‖2 − ‖ϕ0‖2 = 0 .

It follows that ϕ2 ≡ 0 and the SW-equations take on the form

∂̄Bϕ0 = 0 , F 0,2
B = 0 , 4iFω

B = 4λ − |ϕ0|2 .

Since E is trivial, these equations admit the trivial solution

B ≡ 0 , ϕ2 ≡ 0 , ϕ0 ≡ 2
√

λ .

It may be proved (cf. [6, 7]) that this solution is unique (up to gauge transforma-
tions).

We switch now to the case of a general E and choose the perturbation η in the
form

η = iλω

where λ > 0 is a parameter, as above. We integrate again the third SW-equation
in order to deduce the following necessary solvability condition

0 ≤ c1(E) · [ω] < c1(K) · [ω]/2 + λVol(X). (3)

It turns out that this condition is also sufficient for the solvability of SW-equations.
This assertion is analogous to the Bradlow’s theorem on the solvability of vortex
equations on compact Riemann surfaces (cf. [2]) and is proved in a similar way.
We refer to [2] (or to [7]) for a detailed proof and give here only the idea of
Bradlow’s construction.

It’s easy to show, as above, that any solution of SW-equations under the condition
(3) is represented by a Hermitian connection B on the line bundle E and a spinor
field ϕ0 (i.e., ϕ2 vanishes identically under the condition (3)). The moduli space
of SW-solutions (B, ϕ0) under the condition (3) admits the following description.
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Proposition 1. Under the condition (3) there is a one-to-one correspondence bet-
ween the moduli space

{SW-solutions(B, ϕ0)}
G

of Seiberg–Witten solutions and the space of effective divisors of degree c1(E) on
X .

This Proposition is proved in the following way. It is well known that the space
of effective divisors can be identified with the space

{holomorphic line bundles with a non-trivial holomorphic section}
{holomorphic equivalence}

of holomorphic equivalence classes of holomorphic line bundles (E, ∂̄E) over X
with a non-trivial holomorphic section ϕ0.

Since ∂̄E = ∂̄B for an appropriate Hermitian connection B, the space of holo-
morphic line bundles with non-trivial holomorphic sections can be, in its turn,
identified with the space of solutions (B, ϕ0) of the equations

∂̄Bϕ0 = 0 , F 0,2
B = 0 (4)

modulo complex gauge transformations from the complexified group GC.

To prove that the latter space can be identified with the original Seiberg–Witten
moduli space, we must show that for any solution (B, ϕ0) of the equations (4)
there exists a unique GC-equivalent solution (Bu, ϕu) = u∗(B, ϕ0) of these equa-
tions, which satisfies the third SW-equation. Writing down the gauge factor u
in the form u = eθ for a real-valued function θ ∈ R, we obtain the following
Liouville-type equation for θ

8i(∂∂̄θ)ω + e−2θ|ϕ0|2 = 4πλ − 4i(F ω
B + Fω

can) .

According to the Kazdan-Warner theorem [4], this equation has a unique solution
under the condition (3).

We can reformulate the above Proposition in the following way: for sufficiently
large λ (such that (3) is satisfied) the moduli space of SW-solutions can be identi-
fied with the space of complex curves on X with multiplicity c1(E). In the second
part of this paper we’ll see that in the symplectic case the moduli space of SW-
solutions can be identified with the space of pseudoholomorphic divisors on X of
multiplicity c1(E). However, in contrast with the Kähler case, this identification
will require the passing to the limit λ → ∞.
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3. Seiberg–Witten Equations on Symplectic Four-Manifolds

3.1. Seiberg–Witten Equations and Solvability Conditions

Let (X, ω) be a (simply connected) compact symplectic four-manifold, provided
with a symplectic two-form ω. We denote by J an almost complex structure on X ,
compatible with ω in the sense of Section 1.1. We fix again a complex Hermitian
line bundle E → X , provided with a Hermitian connection B, and choose the
perturbation two-form

η = −F+
can +

iλ

4
ω .

Since we are going to take the limit λ → ∞, it is convenient to introduce the
normalized sections α ∈ Ω0(X, E), β ∈ Ω0,2(X, E) by setting

α :=
ϕ0√

λ
, β :=

ϕ2√
λ

.

The SW-equations for these sections will have the form






















∂̄Bα + ∂̄∗
Bβ = 0

2

λ
F 0,2

B = ᾱβ

4i

λ
Fω

B = 1 + |β|2 − |α|2
((SW)λ)

similar to the SW-equations in the Kähler case.

However, for the analysis of the solvability of these equations we cannot use the
same idea, as in the Kähler case. The reason is that the application of the ∂̄B-
operator to the first SWλ-equation yields, instead of the identity (1) in Section 1,
the following relation

∂̄B ∂̄∗
Bβ = −∂̄B ∂̄Bα = −F 0,2

B α +
1

4
(∂Bα) ◦ NJ . (5)

The right hand side of (5) contains, compared to (1), an extra term, depending on
the Nijenhuis tensor NJ of the almost complex structure J . This tensor measures
the non-integrability of J (we refer, e.g., to [1] for its definition). Since we have
no control of NJ , we get, instead of the integral identity in Section 2.1, only the
following inequality, necessary for the solvability of SWλ-equations (cf. [6, 9])

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω] .
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Note that the bounds of the solvability domain (in terms of c1(E) · [ω]) remain the
same, as in the Kähler case, but in the symplectic case the SWλ-equations do not
split in general. As in the Kähler case, the equality in the left “≤”-sign is attained
only for the trivial bundle E, while the equality in the right “≤”-sign is attained
only when E coincides with the canonical bundle K.

3.2. Associating a Pseudoholomorphic Curve with a Seiberg–Witten Solution

Solutions of SWλ-equations, given by (Bλ, Φλ) with Φλ := (αλ, βλ), satisfy the
following a priori estimates, proved in [9]















































|αλ| ≤ 1 +
C1

λ
|βλ|2 ≤ C2

λ
(1 − |α|2) +

C3

λ3

‖∂̄Bλ
αλ‖2 + ‖dBλ

βλ‖2 ≤ C4

λ
|F±

Bλ
| ≤ C5λ(1 − |αλ|2) + C6

2πc1(E) · [ω] − C7

λ
≤ λ

2

∫

X

|1 − |αλ|2| d vol ≤ 2πc1(E) · [ω] +
C7

λ

(6)

where C1, · · · , C7 are some constants, depending only on c1(E) and almost com-
plex structure J .

These estimates imply that the SWλ-solution (Bλ, Φλ) have the following behav-
ior for λ → ∞

• |αλ| → 1 almost everywhere on X (more precisely, outside its zeros)

• ‖∂̄Bλ
αλ‖ → 0, i.e., αλ tends to become a ∂̄Bλ

-holomorphic section of E

• βλ → 0 everywhere (together with its first derivatives).

Hence, the situation for λ → ∞ becomes more and more similar to the Kähler
one.

Since |αλ| → 1 everywhere outsides its zeros, it’s natural to ask what happens to
the zeros of αλ. Let us denote by

Cλ := α−1
λ (0)

the zero-divisor of αλ. The above estimates imply (cf. [9]) that the curves Cλ

have a weak limit (in the sense of currents) and this limit is a pseudoholomorphic
divisor C, assigned to the (SWλ)-solution (Bλ, Φλ).
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In more detail, we associate with a SWλ-solution (Bλ, Φλ) the integration current:

Fλ(σ) :=
i

2π

∫

X

FBλ
∧ σ

for a smooth two-form σ ∈ Ω2(X, R). The norms of the currents Fλ, equal to

‖Fλ‖ = sup
06=σ∈Ω2

|Fλ(σ)|
supx∈X |σ(x)|

are uniformly bounded, since the third and fourth of the estimates (6) imply that

‖Fλ‖ ≤ 1

2π
‖FBλ

‖L1 < C

where C > 0 is a constant, not depending on λ. Hence, we can find a sequence
λn → ∞ such that Fλn

converges weakly to some F , which is a closed positive
integral (1, 1)-current, Poincaré dual to c1(E). The support of this current F is
the desired pseudoholomorphic curve C.

As it is shown in [9], this C is a pseudoholomorphic divisor of degree d =
c1(E). It means, in other words, that

C =
k

∑

j=1

djCj , dj are positive integers

is the sum of non-intersecting (maybe, non smooth) pseudoholomorphic curves
Cj with multiplicities dj such that the homology class [C] of the divisor C is
equal to

[C] :=
∑

dj [Cj ] = PD(c1(E)) .

3.3. The Limiting Behavior of Seiberg–Witten Solutions

We analyze next the limiting behavior of a SWλ-solution (Bλ, Φλ) for λ → ∞.
This limit can be considered as the adiabatic (scaling) limit of SWλ-equations (cf.
[8]). Let us assume for the simplicity of formulations that the limiting divisor C is
smooth and k = 1 so that [C] = d[C0] where C0 is a smooth pseudoholomorphic
curve.

Then it can be shown that for a suitable choice of a subsequence λn → ∞
and representatives in the gauge classes [Bλn

, Φλn
] the subsequence (Bn, Φn) ≡
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(Bλn
, Φλn

) converges for n → ∞ to a family (A, α) of solutions of vortex equa-
tions on the normal planes Nz , parametrized by z ∈ C0, where N → C0 is the
normal bundle of C0. The zero-divisor of α is equal to C.

Recall that the vortex equations on the complex plane C have the form (cf. [3])
{

∂̄Aα = 0

FA = ∗(1 − |α|2) .

A solution of these equations is given by a Hermitian connection A on C and a
complex-valued function α on C such that the energy of (A, α), given by

∫
{

|FA|2 + |dAα|2 +
1

4
(1 − |α|2)2

}

d vol (7)

is finite. Solutions of vortex equations minimize the energy (7) in a given topolog-
ical class, determined by the algebraic number d of zeros of α (called, otherwise,
the vortex number). The above equations are invariant under gauge transforma-
tions of the form

A 7−→ A + idχ , α 7−→ e−iχα

where χ is a real-valued function on C. We denote by Md the moduli space of
solutions (A, α) of the above vortex equations with vortex number d > 0 modulo
gauge transformations. It is well known (cf. [3]) that this moduli space may be
identified with the dth symmetric power of C

Md
∼= Symd

C ∼= C
d .

We return after this short digression to the Seiberg–Witten equations. As we have
remarked, the limit of SWλn

-solutions (Bn, Φn) for n → ∞ is a family (Az, αz)
of solutions of vortex equations on the normal planes Nz ≈ C, parametrized by
z ∈ C0. We can consider the limiting family (A, α) as a complex path

γ : z ∈ C0 7−→ [Az, αz] ∈ Md

in the moduli space Md where [Az, αz] denotes the gauge class of (Az, αz). This
path is not arbitrary – it should be pseudoconvex with respect to a suitable almost
complex structure on Md (this condition corresponds, in a general context of the
adiabatic limit, to the adiabatic equation, cf. [8]).

In the reverse direction it can be shown (cf. [10]) that for any pseudoholomorphic
path γ in Md and, moreover, for any pseudoholomorphic section γ of the vortex
bundle

N ⊗U(1) Md −→ C0

over a pseudoholomorphic curve C0, sufficiently close to the zero section of N →
C0, there exists a SWλ-solution (Bλ, Φλ), which approximates γ for λ → ∞.
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