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Abstract. Here we provide and explain the coordinate transformation accord-
ing to which every weighted quadratic form of the absolute Cartesian coordinates
or velocities of three particles is separable into quadratic terms of the relative and
centre-of-mass coordinates or velocities. This solution is applied to define a new
set of weighted colour coordinates Y JK in the colour space, and also to solve the
dynamical system Sun-Earth-Moon. The weighted Laplacian and hence the quan-
tum Hamiltonian operator for a system of three particles are also given in relative
coordinates, and applied to calculate the vibrational energy levels of carbon diox-
ide and the electronic energy of the ground state of the hydrogen-molecule-ion and
two-electron atomic systems like the helium atom.
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1. Introduction

The systems of many particles are of fundamental interest in statistical mechan-
ics, quantum physics and celestial mechanics. Since Lagrange submitted his prize
memoir Essai sur le Problème des Trois Corps in 1772, many investigations on the
three-body and the N-body problems have been carried out, especially related to
celestial mechanics [40, p 319]. However, the N-body problem is not integrable
in general as shown by Painlevé, and some techniques, like Laplace’s perturbation
theory and Poincaré’s topological methods, have been developed to approximate
the solutions [25, p 400]. On the other hand, the dynamics of N interacting bodies
is not always stable and can become chaotic even for the three-body system [49].
According to the König theorem, the kinetic energy of a system of particles is the
kinetic energy of the centre of mass plus the kinetic energy of the particles with
respect to the centre of mass. From now on, the coordinates and velocities of par-
ticles with respect to any origin (even the centre of mass) will be called absolute
coordinates and absolute velocities1. The differences of the absolute coordinates
and absolute velocities of every pair of particles will be called relative coordinates
and relative velocities respectively. The König theorem only provides a partial
solution to the N -body problem because it yields the internal kinetic energy as a
quadratic form of the absolute velocities with respect to the centre of mass. How-
ever, the potential energy is usually a function of the relative coordinates so that the
latter do not adapt well to the former. The question is whether the kinetic energy of
a system of three particles with respect to the centre of mass can be expressed as a
quadratic form of the relative velocities. Since the derivation with respect to time
is a linear operation, this question is equivalent to outlining the same problem with
coordinates instead of velocities. If this expression exists, it should be invariant
under the exchange of particles. In other words, it should contain all the relative
coordinates in a symmetrical way. It will be shown that this symmetry is the key
to find the answer to this question.

1The velocities with respect to the centre of mass and the corresponding kinetic energy are usually
called internal velocities and internal kinetic energy.
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2. Antecedents

Firstly, let us review some geometric theorems related to the three-body problem.
Leibniz’s theorem [57, p 97] states that, if P is any point in the Euclidean plane
and ∆ABC a triangle whose centroid is G, then the following identity is satisfied

PA2 + PB2 + PC2 =
1

3

(
AB2 +BC2 + CA2

)
+ 3PG2 . (1)

An alternative version equivalent to this theorem states that the geometric locus of
the points P such that PA2 + PB2 + PC2 = k2 is a circle with centre G and
radius

r = ‖GP‖ =

√
k2

3
− AB2 +BC2 + CA2

9
· (2)

Apollonius’ circle theorem states that, given two points A and B, the locus of the
points P such that ‖PA‖ = k‖PB‖ is a generalized2 circle having the centre O
and radius r given by

O =
A− k2B

1− k2
, r = ‖OP‖ =

k‖AB‖
1− k2

· (3)

For k = 1 the radius is infinite and the locus is the bisector of AB. Note that
‖PA‖ = k‖PB‖ implies PA2 − k2PB2 = 0, which is a special case of the
geometric outlining of the two-body problem: Given two points A and B, which is
the geometric locus of the points P such that a PA2 + b PB2 = k2 ? The solution
has been known since a long time ago: The points P lie on a circle centred at the
centre of mass G

G =
a A+ b B

a+ b
, ‖GP‖ =

√
k2

a+ b
− a b

(a+ b)2
AB2. (4)

This geometric solution is equivalent to writing

a PA2 + b PB2 = (a+ b)PG2 +
a b

a+ b
AB2. (5)

Defining the reduced mass of the binary system as µ = a b/(a + b) and denoting
with m = a+ b the total mass of the system, we have the usual notation in physics

a PA2 + b PB2 = m PG2 + µAB2. (6)

2Also admitting circles with infinite radius, which are lines.
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In reference [31, p 163] we find the following Satz von Leibniz: If a + b + c = 1,
G = a A+ b B + c C and X is any point, then

a XA2 + b XB2 + c XC2 −XG2 = a GA2 + b GB2 + c GC2 (7)

whose Korollar C is

a b AB2 + b c BC2 + c a CA2 = ρ2 −OG2 (8)

whereO is the circumcentre and ρ is the radius of the circumscribed circle. Finally,
in [3, p 59] the scalar function of Leibniz f(P ) is defined as

f(P ) =

k∑
i=1

ai PA
2
i (9)

and, assuming that
∑
ai 6= 0, then there exists a fixed vector v such that, for every

point P ′ the equation
f(P ′) = f(P ) + 2 PP ′ · v (10)

is satisfied.

3. Apollonius’ Lost Theorem

An essential question of the classical three-body problem is the following: How
can the internal kinetic energy of a system of three particles be written with rel-
ative velocities? The kinetic energy is a separable quadratic form of the absolute
velocities of each particle. Since the derivative with respect to time is a linear op-
erator and the relative velocities are differences of the absolute velocities, which
are also linear equations, this problem is equivalent to writing a A2 + b B2 + c C2

with relative and centre-of-mass coordinates, and concretely, to wondering whether
an expression like (1) and (5) can exist for every three vertices A, B and C of a
triangle having different weights.

Theorem 1 (Apollonius’ Lost Theorem [20, p 57], [21, p 78]) . Let ∆ABC be a
triangle in the Euclidean plane. The geometric locus of the points P such that
a PA2 + b PB2 + c PC2 = k2 with a, b and c ∈ R such that a + b + c 6= 0 is a
circle centred at the centre of mass G = (aA+ bB + cC)/(a+ b+ c).

Proof: Without loss of generality, one can take a + b + c = 1 in order to remove
denominators. After developing PG2 = [P − (a A + b B + c C)]2 by means of
the scalar product and gathering terms, we arrive at

PG2 = a PA2 + b PB2 + c PC2 − a b AB2 − b c BC2 − c a CA2 (11)
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whence ‖PG‖ =
√
k2 − (a b AB2 + b c BC2 + c a CA2) is constant, and P

therefore lies on a circle centred at G. �

Remark 2. If a + b + c = m instead of 1 and m 6= 0, the equation (11) then
becomes

a PA2 + b PB2 + c PC2 = m PG2 +
a b

m
AB2 +

b c

m
BC2 +

c a

m
CA2 . (12)

Remark 3. If a, b and c are the masses of the particles centred at the points A, B
and C, m is the mass of the system of three particles, G is their centre of mass,
and P can be taken as the origin of coordinates. This is just a simultaneous gen-
eralization of the solution to the two-body problem (5) and Leibniz’s theorem (1).

Remark 4. The equation (12), which was deduced for the plane, is also valid for
every N -dimensional Euclidean space because of the addition of squares.

4. Application to Colour Image Processing

The sensitivity of the human eye to light intensity follows a non-linear power law
(gamma law). When an electric voltage is applied to a CRT (cathodic ray tube)
monitor, the light power emitted by the electrons colliding with the screen phos-
phor also fits a non-linear law. Fortunately, both functions are almost coincident,
so that the applied voltage can be considered proportional to the light sensitivity
of human eye [47]. From now on, I will refer to lightness perceived by the human
eye, which is quite proportional to applied voltages.

The RGB (red, green, blue) space is the most frequently used colour space, al-
though a small part of colours perceived by the human eye falls out of it. The main
question to deal with is the fact that the human eye has different sensitivities to
the three colours, from green the highest to blue the lowest. This was taken into
account when defining the Y UV coordinates of the colour space used in the PAL
TV format. The Y (luma) colour coordinate was defined as

Y = wR R+ wG G+ wB B , RGB ∈ [0, 1]3 . (13)

The combination R = G = B = 0 corresponds to black, R = G = B = 1 to
white, and grey is the addition of equal amounts of the three fundamental colours
RGB. Luma is defined by the weights wR = 0.299, wG = 0.587 and wB = 0.114
[48, p 7] satisfying wR + wG + wB = 1, and it approximates to the lightness of
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colours. On the other hand, the chrominance components U and V were defined
as

U =
B − Y
1− wB

Umax ≈ 0.492(B − Y ) , Umax = 0.436

V =
R− Y
1− wR

Vmax ≈ 0.877(R− Y ) , Vmax = 0.615 .

(14)

In the space Y PbPr, the chromatic components are

PB = 0.5
B − Y
1− wB

, PR = 0.5
R− Y
1− wR

· (15)

Its digital version Y CbCr uses integers such that RGB ∈ [0, 255]3 and then Y ∈
[16, 235] and CB, CR ∈ [16, 240]. The JPEG image format enlarges these ranges
of integers to Y ∈ [0, 255] and CB, CR ∈ [0, 255].

We propose using new chrominance components corresponding to relative coordi-
nates defined in the following way

J = R−G ∈ [−1, 1], K = G−B ∈ [−1, 1], I = B −R ∈ [−1, 1] (16)

which are linear dependent since

I + J +K = 0 . (17)

Of course, two chrominance components are enough together with luma Y (13)
to define a colour and, since green is the lightest colour of the three fundamental
colours, it seems most suitable to take only J andK. Let us call this colour system
YJK, whose conversion matrix from RGB isYJ

K

 =

wR wG wB
1 −1 0
0 1 −1

 RG
B

 . (18)

If we consider the three fundamental colours as the coordinates of three masses
lying on the segment [0, 1], then luma Y is the centre of mass and I , J and K
are the relative coordinates, the distances between colours. From Apollonius’ lost
theorem (11), it seems natural to define a colour metric (colour norm) ‖c‖ given by
the scalar function of Leibniz [3, p 59]

‖c‖2 = ‖RGB‖2 = wR R
2 + wG G

2 + wB B
2 . (19)

Note that if R = G = B then the colour is grey and the colour norm is the
grey scale. Therefore, we define the square root of (19) as the grey level of every
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colour. This grey scale definition takes into account the different lightness of the
fundamental colours and is better than the rough definition of lightness as (R +
G+B)/3 in the LHS model [32, p 53]. By means of (12), the norm ‖c‖ (the grey
level) can be obtained from the Y JK coordinates as

‖c‖2 = ‖Y JK‖2 = Y 2 + wR wB I
2 + wR wG J

2 + wG wB K
2 . (20)

Moreover, this norm clearly defines a distance between two colours c1 and c2 in
the colour space

d(c1, c2) = ‖c2 − c1‖ =
√
wR (R2 −R1)2 + wG (G2 −G1)2 + wB (B2 −B1)2

(21)
=
√

(Y2 − Y1)2 + wR wB (I2 − I1)2 + wR wG (J2 − J1)2 + wG wB (B2 −B1)2.

Some properties of this distance are

a) The distance between black and white is one.

b) The distance from opposite fundamental colours is also one. For instance
yellow = (1, 1, 0)RGB and blue = (0, 0, 1)RGB then d(yellow, blue) = 1. In
the same way the distances between green and magenta, and between cyan
and red are one.

c) It satisfies the triangular inequality d(c1, c3) ≤ d(c1, c2) + d(c2, c3).

The chrominance components of the colour coordinates Y JK could be plotted in
a plane with Cartesian coordinates J and K like it is usually done for the U and V
coordinates. But if we wish to preserve the symmetry of the I , J and K chromi-
nance components, another graph must be plotted. Let us consider three unitary
vectors eI , eJ and eK forming angles of 120◦ and defining the corresponding co-
ordinate axes

eI = −
√

3

2
e1 −

1

2
e2 , eJ =

√
3

2
e1 −

1

2
e2 , eK = e2 . (22)

Then, the coordinates IJK of any point P(xe1 + ye2) in this plane are its orthog-
onal projections onto the axes, which are obtained through the scalar product

I = P · eI = (xe1 + ye2) · (−
√

3

2
e1 −

1

2
e2) = −

√
3

2
x− 1

2
y

J = P · eJ = (xe1 + ye2) · (
√

3

2
e1 −

1

2
e2) =

√
3

2
x− 1

2
y

K = P · eK = (xe1 + ye2) · e2 = y .

(23)
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Figure 1. Left: Plot of IJK coordinates for all the possible values of RGB
calculated for luma Y = 0.5. Right: Grey level of the same colours calcu-
lated according to (19).

The components IJK so obtained satisfy (17). Fig. 1 shows the coordinate plot.
Since−1 ≤ I, J,K ≤ 1, all the possible values of I , J andK lie inside a hexagon.
A point in the plane is obtained from IJK as

x e1 + y e2 =
2

3
(I eI + J eJ +K eK) . (24)

The main advantage of the Y JK codification is the fact that the chrominance com-
ponents J and K are only obtained from subtraction, which is a fast operation at
the CPU level. It is also easy to implement an electric circuit to encode and to
decode the Y JK signal. On the other hand, the J and K signals can be applied
directly as a voltage difference between adjacent pixels with different colours in
a screen, which reduces to 1/3 the arithmetic operations to decode video signal.
Since Y JK have been defined as the linear combinations (18) of RGB, Y JK
also satisfy Grassmann’s laws of additive colour mixtures [18, p 8].

5. Application to Classical Mechanics

Some known solutions to the classical three-body problem have been masterly ex-
plained by Hestenes [25, pp 398-418], and let us recall his treatment here keeping
his own notation. The dynamics of three bodies located at the points x1, x2 and
x3 in the Euclidean three-dimensional space under their mutual gravitational at-
traction can be written through the vector equations

ẍ1 = −m2
x1 − x2

‖x1 − x2‖3
−m3

x1 − x3

‖x1 − x3‖3

ẍ2 = −m3
x2 − x3

‖x2 − x3‖3
−m1

x2 − x1

‖x2 − x1‖3
(25)
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ẍ3 = −m1
x3 − x1

‖x3 − x1‖3
−m2

x3 − x2

‖x3 − x2‖3

where he absorbs the gravitational constant into the definition of mass. Then, after
the introduction of the relative coordinates

s1 = x3 − x2 , s2 = x1 − x3 , s3 = x2 − x1 (26)

he obtains the symmetric form of the dynamic equations3

s̈1 = −m s1
‖s1‖3

+m1G, s̈2 = −m s2
‖s2‖3

+m2G, s̈3 = −m s3
‖s3‖3

+m3G (27)

where m = m1 +m2 +m3 and G4 is

G =
s1
‖s1‖3

+
s2
‖s2‖3

+
s3
‖s3‖3

· (28)

From this point, Hestenes deduces Lagrange’s equilateral solution in one page (the
deduction by Erich Kähler took fifteen pages [30]) and he finds other solutions
very quickly, too. From now on, we leave Hestenes’ deduction and return to our
notation.

A theorem that is an extension of Apollonius’ lost theorem (12) has an immediate
application to the study of the dynamics of a system of three particles.

Theorem 5. Let D = B−A, E = C−B and F = A−C be the relative coor-
dinates where A, B and C are respectively the position vectors of the masses a, b,
c in the three-Euclidean space, and let the relative velocities be

Ḋ = Ḃ− Ȧ, Ė = Ċ− Ḃ , Ḟ = Ȧ− Ċ . (29)

Let G be the position vector of the centre of mass and let Ġ be its velocity

G =
aA + bB + c C

a+ b+ c
⇒ Ġ =

aȦ + bḂ + c Ċ

a+ b+ c
· (30)

Since the absolute and relative velocities are linked by the same algebraic equa-
tions as those for coordinates, they also satisfy an identity analogous to (12)

a Ȧ2 + b Ḃ2 + c Ċ2 = mĠ2 +
a b

m
Ḋ2 +

b c

m
Ė2 +

c a

m
Ḟ2 (31)

where m = a+ b+ c.
3According to Hestenes, the equations (27) were found by Broucke and Lass in 1973 [5].
4G is Hestenes’ notation, not to be mistaken for the centre of mass in our notation.
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Proof: By substitution of (29) and (30) into the rhs of (31) we find

mĠ2 +
a b

m
Ḋ2 +

b c

m
Ė2 +

c a

m
Ḟ2

=
1

m

[
(aȦ + bḂ + cĊ)2 + a b(Ḃ− Ȧ)2 + b c(Ċ− Ḃ)

2
+ c a(Ȧ− Ċ)

2
]

=
1

m

[
a(a+ b+ c)Ȧ2 + b(a+ b+ c)Ḃ2 + c(a+ b+ c)Ċ2

]
= a Ȧ2 + b Ḃ2 + c Ċ2. �

Therefore, the kinetic energy of a system of three particles with respect to an iner-
tial reference frame is equal to the kinetic energy of the centre of mass with respect
to the same frame plus a linear combination of the squares of the relative velocities.
The Lagrange functionL of a system of three bodies interacting gravitationally and
having masses a, b and c is then obtained from (31)

L =
m

2
Ġ2 +

a b

2m
Ḋ2 +

b c

2m
Ė2 +

c a

2m
Ḟ2 + k

(
a b

‖D‖
+

b c

‖E‖
+

c a

‖F‖

)
+ λ · (D + E + F). (32)

Here k is the gravitational constant, and the holonomic constraint D + E + F = 0
has been added through scalar multiplication by a Lagrange multiplier vector λ [5].
The linear dependence of relative coordinates can always be introduced into the
Lagrange equations of motion by means of Lagrange multipliers [38, p 60]. In
this way, the three relative coordinates become linearly independent, and Lagrange
equations dL/dqi = d(dL/dq̇i)/dt can be applied to each of them obtaining the
same equations as (27)

D̈ = − k m

‖D‖3
D+

m

a b
λ, Ë = − k m

‖E‖3
E+

m

b c
λ, F̈ = − k m

‖F‖3
F+

m

c a
λ (33)

where we now see that Hestenes’ G in (27) is in fact a Lagrange multiplier propor-
tional to λ. In order to see its meaning, add the three equations (33)

D̈ + Ë + F̈ = −k m
(

D

‖D‖3
+

E

‖E‖3
+

F

‖F‖3

)
+
( m
a b

+
m

b c
+
m

c a

)
λ = 0

to find

λ =
a b c k

m

(
D

‖D‖3
+

E

‖E‖3
+

F

‖F‖3

)
· (34)

Let us apply these equations to the system Sun-Earth-Moon.
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A 

B

C

D

F

E
X

c.m. 

Sun 

Earth 

Moon

 

Figure 2. Sketch of the system Sun-Earth-Moon. The centre of mass of the
system Earth-Moon is indicated by “c.m.”.

5.1. The Dynamic System Sun-Earth-Moon

We will only consider the gravitational interaction of the Sun, Earth and the Moon
taken as punctual masses. This problem was called the main problem of lunar
theory by Brown [4, p 298] [6, p 308]. Hill developed the theory of lunar motion,
whose modern treatment can be found at [10, p 180], and Brown worked on lunar
tables based on Hill’s theory. We show below that the Lagrangian (32) provides an
easier and clearer treatment of the lunar theory that permits the calculation of all
the perturbations to Moon’s Keplerian motion.

Let us assign the position A to the Sun, the position B to Earth and the position C
to the Moon as displayed in Fig. 2. If we build the linear combination

b D̈− c F̈ = −k m b
D

‖D‖3
+ k m c

F

‖F‖3
(35)

the Lagrange multiplier λ is removed. Let us introduce the Jacobi coordinate X
(see Fig. 2) as the vector going from the Sun to the centre of mass of the system
Earth-Moon

X =
bD− cF
b+ c

· (36)

Notice that D u −F u X, because ‖E‖/‖D‖ ≤ 2.56·10−3 according to the astro-
nomical data. Development in power series of ‖E‖/‖X‖ will give approximations
of different orders.
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5.1.1. Zero-Order Approximation

In this approximation, all the powers of ‖E‖/‖X‖ are disregarded. It does not have
enough precision to be compared with astronomical data but it provides a very
interesting and clear physical image of the Sun-Earth-Moon dynamical system.
With this approximation the equation (35) becomes

Ẍ =
bD̈− cF̈
b+ c

u −k m X

‖X‖3
(37)

or equivalently
a(b+ c)

m
Ẍ u −k a(b+ c)

X

‖X‖3
· (38)

On the left we can find the reduced mass of a two-body system formed by the
mass a of the Sun and the mass b + c of the system Earth-Moon times their mu-
tual acceleration. On the right we find their gravitational interaction. This is the
equation of the very well known and solved problem of two bodies interacting
gravitationally, which is integrable. It tells us that the orbit of the centre of mass
of Earth and the Moon is an ellipse with the Sun at one focus. The former approxi-
mation ‖E‖ � ‖D‖ u ‖F‖ u ‖X‖ reduces the Lagrange multiplier λ (34) of the
system Sun-Earth-Moon to

λ u
a b c k

m

E

‖E‖3
· (39)

Then, the equation of the relative motion Earth-Moon (second of (33)) is

Ë = −k m E

‖E‖3
+
m

b c
λ u −k(b+ c)

E

‖E‖3
(40)

or in a more recognizable form

b c

b+ c
Ë u −k b c E

‖E‖3
· (41)

On the left we can find the reduced mass of Earth and the Moon times their relative
acceleration, and on the right we recognize the force of gravitation between Earth
and the Moon according to Newton’s law. Therefore, the system Earth-Moon is
also integrable as a two-body problem. Notice that no fixed plane of the motion
of the whole system is assumed. This decomposition only says that Earth and
the Moon are moving in a plane, and that the centre of mass of Earth and the
Moon is moving around the Sun in another plane, the ecliptic. Both planes are not
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coincident but form an angle of about 5◦. The orbit of the Moon is then an ellipse
with the centre of mass of Earth and the Moon at one focus, which lies inside Earth.
This centre of mass follows another ellipse with the centre of the Sun at one focus.
Since the approximation ‖E‖ � ‖X‖ is very good, corrections to these motions
are small. The scalar multiplication by Ė in (40) and integration with respect to
time yield

Ė2

2
u
k(b+ c)

‖E‖
−K, K > 0. (42)

By introducing polar coordinates we have

ṙ2 + r2θ̇2 u
2k(b+ c)

r
− 2K (43)

where r = ‖E‖ is the radius of Moon’s orbit around Earth. Since the force is
central, the angular momentum of the system Earth-Moon is a constant of the mo-
tion. We introduce the constant K ′ = r2θ̇, which is proportional to the angular
momentum5, in order to replace θ̇

ṙ2 u −(K ′)2

r2
+

2k(b+ c)

r
− 2K. (44)

By dividing by the square of θ̇ = K ′/r2, one finds the differential equation of the
orbit (

ṙ

θ̇

)2

=

(
dr

dθ

)2

u r4

(
− 1

r2
+

2k(b+ c)

r(K ′)2
− 2K

(K ′)2

)
· (45)

Now we introduce the variable s = 1/r(
ds

dθ

)2

u −s2 +
2k(b+ c)s

(K ′)2
− 2K

(K ′)2
· (46)

Derivation with respect to θ and simplification yields

d2s

dθ2
+ s u

k(b+ c)

(K ′)2
(47)

whose general solution is a linear combination of a sine and a cosine plus the
constant on the rhs. If we want r and s to reach respectively the minimal and
maximal values at θ = 0, then the solution must come from the cosine

s =
k(b+ c)

(K ′)2
(1 + ε cos θ) ⇒ r =

(K′)2

k(b+c)

1 + ε cos θ
=
r0(1− ε2)

1 + ε cos θ
· (48)

5The constancy of r2θ̇ is also deduced from Kepler’s second law: The radius vector E from Earth
to the Moon sweeps out equal areas during equal intervals of time.
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This is the polar equation of a conic with eccentricity ε < 1 (an ellipse) and semi-
major axis r0, whence it follows that

(K ′)2

k(b+ c)
= r0(1− ε2). (49)

Hence, the total mass of the system Earth-Moon is calculated from

b+ c =
(K ′)2

kr0(1− ε2)
· (50)

The constant K ′ = r2θ̇ is determined from the orbital period T because

K ′
∫ T

0
dt =

∫ 2π

0
r2dθ = 2πr2

0

√
1− ε2 ⇒ K ′ =

2πr2
0

T

√
1− ε2 (51)

owing to the fact that this integral is twice the area of the ellipse. Substitution into
equation (50) yields

b+ c =
4π2r3

0

kT 2
(52)

expressed by Kepler’s third law. It permits finding the mass b + c of the system
Earth-Moon provided the gravitational constant k is known with enough accuracy.
The observed values are T = 27.321661 days (sidereal month) and r0 = 384, 400
km. Taking a value of k = 6.67408·10−11 N·m2kg−2 for the gravitational constant
[53, p 1-1], one finds b + c = 6.02944 · 1024 kg. For the known ratio 81.3:1 of
the masses of Earth and the Moon, one finally finds their values: 5.95618 · 1024

and 7.3262 · 1022 kg respectively, somewhat lower than the accepted values of
5.9736 · 1024 [53, p 14-2] and 7.3483 · 1022 kg [53, p 14-4]. Approximations
of higher orders of ‖E‖/‖X‖ imply corrections to the equation of motion and
also to the masses of Earth and the Moon, which are calculated from the orbital
parameters.

The parameter K is obtained from the differential equation (44), for which the
radial velocity vanishes at the maximum and minimum of r

(K ′)2

r2
0(1− ε)2

− 2k(b+ c)

r0(1− ε)
+2K = 0 ,

(K ′)2

r2
0(1 + ε)2

− 2k(b+ c)

r0(1 + ε)
+2K = 0. (53)

The arithmetic mean of both equations yields

(K ′)2(1 + ε2)

r2
0(1− ε2)2

− 2k(b+ c)

r0(1− ε2)
+ 2K = 0. (54)
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The introduction of equation (50) into (54) finally gives

K =
(K ′)2

2r2
0(1− ε2)

=
k(b+ c)

2r0
=

2π2r2
0

T 2
(55)

with the help of (52) in the last step. The last fraction in (55) allows us to calculate
the constant K from the orbital parameters. From (48) and from the constancy of
the angular momentum we have

θ̇ =
K ′

r2
=
K ′(1 + ε cos θ)2

r2
0(1− ε2)2

=
2π(1 + ε cos θ)2

T (1− ε2)3/2
(56)

after applying (51). Although this differential equation is separable, we want θ as
a function of time. Therefore, we develop in power series of ε

θ̇ =
2π

T

(
1 + 2ε cos θ +O(ε2)

)
. (57)

The zero-order approximation to its solution is θ = 2πt/T , which we introduce
into this differential equation up to the first power of ε

θ̇ u
2π

T

(
1 + 2ε cos

2πt

T

)
(58)

in order to find by integration the first-order approximation to the solution

θ u
2πt

T
+ 2ε sin

2πt

T
· (59)

Let us now approximate r as a function of time

r =
r0(1− ε2)

1 + ε cos θ
= r0

(
1− ε cos θ +O(ε2)

)
. (60)

Since cos(2ε sin(2πt/T )) = 1+O(ε2) and sin(2ε sin(2πt/T )) = 2ε sin(2πt/T )+
O(ε3), we have

cos θ = cos

(
2πt

T
+ 2ε sin

2πt

T

)
= cos

2πt

T
− 2ε sin2 2πt

T
+O(ε2) (61)

whence

r = r0

(
1− ε cos

2πt

T
+O(ε2)

)
. (62)

We judge this approximation as very simple and at the same time good enough for
the purposes that follow.
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5.1.2. First-Order Approximation

Let us go one step further by taking into account terms involving the first power
of ‖E‖/‖X‖ that we disregarded in the zero-order approximation. The Jacobi
coordinate X satisfies

X =
bD− cF
b+ c

= D +
c

b+ c
E = −F− b

b+ c
E (63)

whence

D2 = X2 − 2c

b+ c
X ·E +

c2

(b+ c)2
E2

F2 = X2 +
2b

b+ c
X ·E +

b2

(b+ c)2
E2.

(64)

We disregard the last term because it is of second order. Hence

1

‖D‖3
u

1

‖X‖3

(
1− 2c

b+ c

X ·E
‖X‖2

)− 3
2

u
1

‖X‖3

(
1 +

3c

b+ c

X ·E
‖X‖2

)
1

‖F‖3
u

1

‖X‖3

(
1 +

2b

b+ c

X ·E
‖X‖2

)− 3
2

u
1

‖X‖3

(
1− 3b

b+ c

X ·E
‖X‖2

)
·

(65)

Substitution of these approximations into the Lagrange multiplier (34) yields

λ u
a b c k

m

(
D

‖X‖3
+

E

‖E‖3
+

F

‖X‖3
+

3 X ·E
(b+ c)‖X‖5

(cD− bF)

)
=
a b c k

m

(
E

‖E‖3
− E

‖X‖3
+

3 X ·E
(b+ c)‖X‖5

(cD− bF)

)
·

(66)

From (63) we find
cD− bF
b+ c

= X +
b− c
b+ c

E (67)

and

λ u
a b c k

m

(
E

‖E‖3
− E

‖X‖3
+

3 X ·E
‖X‖5

(
X +

b− c
b+ c

E

))
u
a b c k

m

(
E

‖E‖3
− E

‖X‖3
+

3 X ·E
‖X‖5

X

)
·

(68)

because we limit the approximation to first-degree powers of ‖E‖/‖X‖. Then, the
equation of the relative motion Earth-Moon (second of (33)) is

Ë = −k m E

‖E‖3
+
m

b c
λ u −k

(
(b+ c)

‖E‖3
+

a

‖X‖3

)
E +

3kaX ·E
‖X‖5

X. (69)
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Figure 3. On the left, sketch of the orbital plane of the Moon and the ecliptic.
Their intersection is the line joining the ascending and descending nodes. The
right figure shows why the regression of the ascending node is obtained from
the division of the x-component of the variation of E× Ė by sin i.

Notice that, without the last term, the vectors E, Ė and Ë would lie in the same
plane (the orbital plane of the Moon), and this plane would be kept constant. How-
ever, owing to the inclination of the orbital plane of the Moon with respect to the
ecliptic, X does not lie in this plane, which means an oblique acceleration of the
Moon. Therefore, the last term changes the orbital plane of the Moon.

Variation of the Angular Momentum of the Moon

From (69) we find that the variation of the angular momentum with time is propor-
tional to

d(E× Ė)

dt
= E× Ë u

3kaX ·E
‖X‖5

E×X. (70)

Let us take a frame whose xy plane is the ecliptic. The vector e1 will be the
unitary vector with the direction of the ascending node, that is, the intersection of
the ecliptic with the orbital plane of the Moon when it goes over the ecliptic, and e2
will be the perpendicular vector in the ecliptic rotated 90◦ anticlockwise, that is, in
the direction of Earth motion (Fig. 3). According to the zero-order approximation,
the orbital plane of the Moon is invariant and both vectors are constant, but this
statement is not exact. Owing to the regression of the nodes, e1 and e2 really form
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a slowly rotating frame. The orbital motion of Earth (more exactly the motion of
the centre of mass Earth-Moon) is expressed by the rotation of the vector X, just
like the orbital motion of the Moon is also expressed by the rotation of the vector E.
The times taken for Earth and the Moon to complete one revolution with respect to
the ascending node are defined as the draconic year (346.62008 days) and draconic
month (27.21222 days). The regression of the nodes causes them to differ from the
sidereal year (365.25636 days) and sidereal month (27.32166 days), and it will be
calculated below.

Let r, θ be the polar coordinates of the orbit of the Moon, and R, φ be the polar
coordinates of the orbit of Earth in the ecliptic. Then

E = r(cos θ e1 + sin θ (cos i e2 + sin i e3)) (71)

X = R(cosφ e1 + sinφ e2)

where e3 is the unitary vector perpendicular to the ecliptic, and i is the inclination
of the orbital plane of the Moon, that is, the angle it forms with the ecliptic. Then

E ·X = Rr(cos θ cosφ+ cos i sin θ sinφ)

E×X = Rr[− sin i sin θ sinφ e1 + sin i sin θ cosφ e2 (72)

+(cos θ sinφ− cos i sin θ cosφ) e3].

By introducing the unitary vectors e′2 = cos i e2 + sin i e3 and e′3 = − sin i e2 +
cos i e3, which are respectively coplanar and perpendicular to the orbital plane of
the Moon (Fig. 3 left), we can write

E×X =Rr
[
sin i sinφ (− sin θ e1 + cos θ e′2)

+(− sin θ cosφ+ cos i cos θ sinφ) e′3
]
.

(73)

From (71) we also have

E = r
(
cos θ e1 + sin θ e′2

)
. (74)

By derivation

Ė = ṙ(cos θ e1 + sin θ e′2) + rθ̇ (− sin θ e1 + cos θ e′2) (75)

whence
E× Ė = r2θ̇ e′3 ⇒ ‖E× Ė‖ = r2θ̇ = K ′. (76)

Then, from equations (70), (72) and (73) we finally obtain

1

‖E× Ė‖
d(E× Ė)

dt
u

3kar2

K ′R3
(cos θ cosφ+ cos i sin θ sinφ)

(77)
×
[
sinφ sin i(− sin θe1 + cos θe′2) + (− sin θ cosφ+ cos i cos θ sinφ)e′3

]
.
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Since i u 5.15◦ = 0.045 � 1, we apply the approximation cos i = 0.99898 u 1.
We also change time t for θ taking into account that θ̇ = K ′/r2

1

‖E× Ė‖
d(E× Ė)

dθ
u

3kar4

(K ′)2R3
cos(θ − φ) · [− sin θ sinφ sin ie1

+ cos θ sinφ sin ie′2 − sin(θ − φ)e′3
]
.

(78)

The component in the direction of e1 implies regression of the nodes. The com-
ponent in the direction e′2 implies a change of the inclination of the orbit, and
the component in the direction of e′3 implies raising or lowering the norm of the
angular momentum. Let us consider each component separately.

The rate of increase in the ecliptic longitude l of the ascending node is obtained
from division of the first component by sin i (Fig. 3 right)

dl

dθ
= − 3kar4

(K ′)2R3
cos(θ − φ) sin θ sinφ

= − 3kar4

4(K ′)2R3
[1 + cos(2θ − 2φ)− cos 2θ − cos 2φ)] .

(79)

K ′ is obtained from (50) in the zero-order approximation

(K ′)2 = k(b+ c)r0(1− ε2) (80)

so that we find

dl

dθ
= − 3ar4

4(b+ c)r0(1− ε2)R3
[1 + cos(2θ − 2φ)− cos 2θ − cos 2φ)] . (81)

The oscillations on the right satisfy the inequality

−1

2
≤ 1 + cos(2θ − 2φ)− cos 2θ − cos 2φ ≤ 4 (82)

whence

− 3ar4

(b+ c)r0(1− ε2)R3
≤ dl

dθ
≤ 3ar4

8(b+ c)r0(1− ε2)R3
· (83)

The maximum regression rate takes place for θ = 90◦ or 270◦ and φ = 90◦

or 270◦, while the maximum of slight advance rate (opposite to the mean rate)
takes place for θ = 30◦ or 210◦ and φ = 150◦ or 330◦, or the other way round
since the expression is symmetric with respect to the exchange of θ and φ. The
actual extremes can differ somewhat from these values because r is not constant
but depends on θ.
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Now we introduce r given by the Keplerian elliptic orbit (60) into (81)

dl

dθ
= −3ar3

0(1− ε2)3(1 + cos(2θ − 2φ)− cos 2θ − cos 2φ)

4(b+ c)R3(1 + ε cosωθ)4
· (84)

In the zero-order approximation of the orbit (60) ω = 1, but the nodal regression
causes ω to differ slightly from this value. We define the constant

λ =
ar3

0(1− ε2)3

2(b+ c)R3
= 2.764188 · 10−3 (85)

calculated from the usually admitted masses of the Sun, Earth and the Moon, a =
1.9884 · 1030, b = 5.9736 · 1024 and c = 7.3483 · 1022 kg [53, pp 14-2 and 14-4],
mean semimajor axes of the orbits of Earth and the Moon, R = 149, 598, 023 km
and r0 = 384, 400 km, and mean eccentricity ε = 0.0549. By linearisation of the
denominator we have

dl

dθ
= −3λ

2
(1− 4ε cosωθ)(1 + cos(2θ − 2φ)− cos 2θ − cos 2φ) . (86)

If we suppose that φ changes uniformly with time (circular motion of Earth) but
θ is given by (59) obtained from the Keplerian elliptic orbit of the Moon in the
zero-order approximation then

φ u α(θ − 2ε sinωθ) (87)

where α = 27.21222/346.6201 = 0.07850734 is the quotient of the draconic
month and year, and ω u 1. The fact that ε� 1 allows us to approximate

cos 2φ u cos 2αθ + 4αε sin 2αθ sinωθ (88)

cos(2θ − 2φ) = cos(2θ − 2αθ + 4αε sinωθ)

u cos ηθ − 4αε sin ηθ sinωθ
(89)

where η = 2 − 2α = 1.84298532 is introduced in order of brevity. In the same
way

sin(2θ − 2φ) u sin ηθ + 4αε cos ηθ sinωθ . (90)

Since 4αε = 0.017� 1 we can go further in this approximation

cos 2φ u cos 2αθ, sin(2θ− 2φ) u sin ηθ, cos(2θ− 2φ) u cos ηθ (91)

which is good enough for many purposes. The introduction of this approximation
into (86) gives
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dl

dθ
u− 3λ

2
(1− 4ε cosωθ)(1 + cos ηθ − cos 2θ − cos 2αθ)

=− 3λ

2
[1 + cos ηθ − cos 2θ − cos 2αθ − 2ε(2 cosωθ

+ cos(ηθ − ωθ) + cos(ηθ + ωθ)− cos(2θ − ωθ)
− cos(2θ + ωθ)− cos(ωθ − 2αθ)− cos(ωθ + 2αθ))]

(92)

after transforming products of trigonometric functions into additions. The mean
value is then

dl

dθ
= −3λ

2
= −3ar3

0(1− ε2)3

4(b+ c)R3
(93)

which exhibits the regression of the ascending node. This expression is slightly
different from that obtained in [19, p 61] through a process of integration that is
absent here. In each orbital revolution of the Moon, the longitude of the ascending
node should decrease in the mean by

|∆l| = −2π
dl

dθ
=

3πar3
0(1− ε2)3

2(b+ c)R3
= 0.026052 = 1◦29′34′′. (94)

The nodes would turn 2π rad after 241.11 draconic months, that is, 6561 days or
17.96 years. The observed value is a decrease in the ecliptic longitude of the nodes
by 1◦26′27′′ and a returning period of 18.61 years. This discordance seems to
suggest that the masses of Earth and the Moon are 3.6% higher than the accepted
values. The regression of the nodes means that e1 and e2 are not constant vectors
but that they slowly rotate. In this way, the Moon and Earth find again the ascend-
ing node in a draconic month (27.21222 days) and year (346.62 days), which are
shorter than a sidereal month and year. The perigee of the Keplerian orbit found
in the zero-order approximation has constant ecliptic longitude, while the ascend-
ing node has retrograde motion. Since θ and φ are the angles with respect to the
ascending node, the Keplerian orbit now becomes

r =
r0(1− ε2)

1 + ε cosωθ
, ω = 1− 3λ

2
= 0.99585372 . (95)

Integration of (92) yields

l(θ) =− 3λ

2

[
θ +

sin ηθ

η
− sin 2θ

2
− sin 2αθ

2α
− 2ε

(
2 sinωθ

ω

+
sin(ηθ − ωθ)

η − ω
+

sin(ηθ + ωθ)

η + ω
− sin(2θ − ωθ)

2− ω

−sin(2θ + ωθ)

2 + ω
− sin(ωθ − 2αθ)

ω − 2α
− sin(ωθ + 2αθ)

ω + 2α

)]
·

(96)
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When the Moon crosses the ecliptic at the ascending node, θ = 2πn with n ∈ Z
and

ln = l(2πn) =− 3λ

2

[
2πn− sin 4απn

αη
− 2ε

(
8 sin 2ωπn

ω(4− ω2)

−2 sin(4απn+ 2ωπn)

(η − ω)(ω + 2α)
+

2 sin(4απn− 2ωπn)

(η + ω)(ω − 2α)

)] (97)

where we have taken into account that η = 2−2α. Discarding the last three terms,
the increase of the ecliptic longitude between two successive passages of the Moon
through the ascending node is

ln+1 − ln u −3λ

2

(
2π − sin 4απ(n+ 1)− sin 4απn

αη

)
· (98)

The discarded terms only contribute to the final result by at most 1.8% so that we
omit their calculation. By transforming differences of trigonometric functions into
their products, we find

ln+1 − ln u −3λπ +
3λ sin 2απ

αη
cos(2απ(2n+ 1)) . (99)

In order to repeat the same value of cos(2απ(2n+ 1)), the argument of the cosine
must increase by 2π, meaning n = 1/2α draconic months, which is half a draconic
year (173.31 days), just the observed period of the oscillation of the draconic month
[15]. The amplitude of this oscillation is∣∣ln+1 − ln + 3λπ

∣∣ ≤ 3λ sin 2απ

αη
= 0.027139 = 1◦33′18′′. (100)

That is, sometimes the node does not advance between two successive Moon’s
passages and others the node has retrograde motion at about twice the rate. From
θ = 2π(n + 1/2), it follows 2φ = 2απ(2n + 1), so that there is not any nodal
regression for φ = πk, k ∈ Z (syzygies), and their regression is maximum for
φ = π(k + 1/2) (quadratures) as already deduced by Newton [41, p 463] with the
approximation of circular orbit.

The component of e′2 in (78) provides how the inclination of Moon’s orbital plane
varies with θ. If the former is positive the latter decreases, whence

di

dθ
= − 3kar4

(K ′)2R3
cos(θ − φ) cos θ sinφ sin i

= −3kar4 sin i

4(K ′)2R3
[− sin(2θ − 2φ) + sin 2φ+ sin 2θ] .

(101)
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Under the approximation (91), and after introducing the Keplerian elliptic orbit
and K ′ given by (80), we find

di

dθ
u − 3ar3

0 sin i

4(b+ c)(1− ε2)R3
(1− 4ε cosωθ)[− sin ηθ + sin 2αθ + sin 2θ]

=− 3λ sin i

2
[− sin ηθ + sin 2αθ + sin 2θ + 2ε sin(ηθ − ωθ)

+ 2ε sin(ηθ + ωθ) + 2ε sin(ωθ − 2αθ)− 2ε sin(2αθ + ωθ)

− 2ε sin(2θ − ωθ)− 2ε sin(2θ + ωθ)]

(102)

after transforming products of trigonometric functions into additions. Its integra-
tion for a small variation of i yields

i− i u3λ sin i

2

(
−cos ηθ

η
+

cos 2αθ

2α
+

cos 2θ

2
+

2ε cos(ηθ − ωθ)
η − ω

+
2ε cos(ηθ + ωθ)

η + ω
+

2ε cos(ωθ − 2αθ)

ω − 2α
− 2ε cos(ωθ + 2αθ)

ω + 2α

−2ε cos(2θ − ωθ)
2− ω

− 2ε cos(2θ + ωθ)

2 + ω

)
·

(103)

Leaving aside the initial factor, the amplitudes of each oscillation are 0.5426 :
6.3688 : 0.50 : 0.1296 : 0.0387 : 0.1309 : 0.0952 : 0.1093 : 0.0367. Therefore,
the first three terms are the main terms, while the fourth, sixth, seventh and eighth
are a minor correction (not more than 6%), and the fifth and ninth can be discarded
(not more than 1%). The largest term is the second term, with a relative ampli-
tude of 80%. Its period is 1/(2α) = 6.36882 mean draconic months or 173.31
days, half a mean draconic year (346.62 days), which is just the observed main fre-
quency. Since the first three terms are the main ones, we can use the approximated
expression

i− i u 3λ sin i

2

(
−cos ηθ

η
+

cos 2αθ

2α
+

cos 2θ

2

)
· (104)

The mean value of the inclination of the orbit of the Moon is i = 5.145◦ for
the three-year period 2008-2010 [15]. With this value, the inclination calculated
from (104) has been plotted in Fig. 4 as a function of time t = θ T/(2π). If one
calculates the inclination from the full expression (103), no significant change on
the graph can be appreciated at a glance. Small differences can only be noticed
by the superposition of both graphs, which are mostly coincident. Anyway, the
agreement of the inclination (104) with observation is so good that the calculated
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Figure 4. Inclination of Moon’s orbit as a function of time calculated by
means of (104) for a period of three years. Maximums occur when the ecliptic
longitudes of the Sun and the ascending node are equal or differ by 180◦, so
that the main period is half a draconic year (173.31 days).

graph in Fig. 4 is indistinguishable from the plot of experimental data [15, Figs.
4-10].

The amplitude of oscillation could be obtained as

|i− i| ≤ 3λ sin i

2

(
1

1− α
+

1

α
+ 1 +

2ε

η − ω

)
= 9′29′′. (105)

However, the frequencies are not independent because η+2α = 2 and therefore the
amplitude of the variation of the calculated inclination shown by Fig. 4 is somewhat
less, 0.15◦ = 9′, which is identical to the observed value [15].

The component of e′3 in (78) reports the relative variation of the norm of the angu-
lar momentum

1

K ′
dK ′

dθ
= − 3kar4

(K ′)2R3
cos(θ−φ) sin(θ−φ) = − 3kar4

2(K ′)2R3
sin(2θ−2φ). (106)

We now apply the approximation (91) and introduce the Keplerian elliptic orbit
(95) corrected for the nodal regression

1

K ′
dK ′

dθ
u −3kar4

0(1− 4ε cosωθ)

2K ′2R3
sin ηθ (107)
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whence

dK ′2

dθ
u −3kar4

0

R3
(sin ηθ − 4ε cosωθ sin ηθ)

= −3kar4
0

R3
[sin ηθ − 2ε sin(ηθ − ωθ)− 2ε sin(ηθ + ωθ)] .

(108)

Integration yields

K ′2

K ′2
u 1 +

6λ

(1− ε2)4

[
cos ηθ

η
− 2ε cos(ηθ − ωθ)

η − ω
− 2ε cos(ηθ + ωθ)

η + ω

]
(109)

after taking as the mean value K ′2 = k(b + c)r0(1 − ε2) given by (80) obtained
in the zero-order approximation, and also considering the constant λ (85). In the
mean, the norm of the angular momentum does not change, but its perturbation is
a superposition of sinusoidal oscillations. The variation of the norm of the angular
momentum is obtained from linearisation of the square root

K ′

K
′ u 1 +

3λ

(1− ε2)4

[
cos ηθ

η
− 2ε cos(ηθ − ωθ)

η − ω
− 2ε cos(ηθ + ωθ)

η + ω

]
(110)

whence K ′ u
√
K ′2. Its relative amplitude satisfies

|∆K ′|
K
′ ≤

3λ

(1− ε2)4

(
1

η
+

2ε

η − ω
+

2ε

η + ω

)
= 5.97 · 10−3 (111)

The amplitudes of the three oscillations are in the ratio 0.54:0.13:0.04. The period
of the main oscillation is T/η = T/(2− 2α) = 14.765 days, half a synodic month
(29.53 days).

The Orbit of the Moon

From (69) we find

E · Ë u −k
(

(b+ c)

‖E‖
+
a‖E‖2

‖X‖3

)
+

3ka (X ·E)2

‖X‖5
· (112)

By derivation of r2 = E2 with respect to time, one finds r ṙ = E · Ė, and a new
derivation yields

ṙ2 + r r̈ = Ė2 + E · Ë . (113)

Since Ė2 = ṙ2 + r2θ̇2, which can be checked by derivation of (71), it follows

r r̈ = r2θ̇2 + E · Ë . (114)
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The introduction of (112) into (114) yields

r r̈ = r2θ̇2 − k
(

(b+ c)

‖E‖
+
a‖E‖2

‖X‖3

)
+

3ka (X ·E)2

‖X‖5
(115)

and the substitution of (72) with the approximation cos i u 1 gives

r r̈ = r2θ̇2 − k
(

(b+ c)

r
+
ar2

R3
− 3ar2 cos2(θ − φ)

R3

)
· (116)

By introducing the double angle, and extracting common factor, we obtain

r̈ = rθ̇2 − k(b+ c)

r2

(
1− ar3

2(b+ c)R3
− 3ar3 cos(2θ − 2φ)

2(b+ c)R3

)
· (117)

Now, taking into account that

ṙ =
dr

dθ
θ̇ ⇒ r̈ =

d2r

dθ2
θ̇2 +

dr

dθ
θ̈ (118)

and that θ̈ can be calculated by derivation of K ′ = r2θ̇

θ̈ =

[
1

r2

dK ′

dθ
− 2K ′

r3

dr

dθ

]
θ̇ =

[
1

K ′
dK ′

dθ
− 2

r

dr

dθ

]
θ̇2 (119)

we finally have

r̈ =

[
d2r

dθ2
− 2

r

(
dr

dθ

)2

+
1

K ′
dK ′

dθ

dr

dθ

]
θ̇2 (120)

and the substitution into equation (117) yields

d2r

dθ2
− 2

r

(
dr

dθ

)2

+
1

K ′
dK ′

dθ

dr

dθ
= r − k(b+ c)

r2θ̇2

(
1− ar3

2(b+ c)R3

−3ar3 cos(2θ − 2φ)

2(b+ c)R3

)
· (121)

We introduce the variable s = 1/r whence

d2s

dθ2
+

1

K ′
dK ′

dθ

ds

dθ
+s =

k(b+ c)

K ′2

(
1− a

2(b+ c)R3s3
− 3a cos(2θ − 2φ)

2(b+ c)R3s3

)
·

(122)
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The substitution of the square of the angular momentum (109) yields, for the coef-
ficient of the parenthesis in (122), the approximation

k(b+ c)

K ′2
u

1

r0(1− ε2)

(
1− 6λ

[
cos ηθ

η
− 2ε cos(ηθ − ωθ)

η − ω
− 2ε cos(ηθ + ωθ)

η + ω

])
that we have introduced together with the variable u = r0(1 − ε2)s into (122) to
give

d2u

dθ2
+

1

K ′
dK ′

dθ

du

dθ
+u u

(
1− 6λ

[
cos ηθ

η
− 2ε cos(ηθ − ωθ)

η − ω
(123)

−2ε cos(ηθ + ωθ)

η + ω

])
×
(

1− ar3
0(1− ε2)3

2(b+ c)R3u3
−3ar3

0(1− ε2)3 cos(2θ − 2φ)

2(b+ c)R3u3

)
·

With the help of the constant λ (85), we rewrite this differential equation

d2u

dθ2
+

1

K ′
dK ′

dθ

du

dθ
+ u u

(
1− 6λ

[
cos ηθ

η
− 2ε cos(ηθ − ωθ)

η − ω

−2ε cos(ηθ + ωθ)

η + ω

])
×
(

1− λ

u3
− 3λ cos(2θ − 2φ)

u3

)
·

(124)

After applying the distributive property and also discarding terms in λ2 because
λ� 1, we find

d2u

dθ2
+

1

K ′
dK ′

dθ

du

dθ
+ u u 1− λ

u3
− 3λ

u3
cos(2θ − 2φ)

− 6λ

η
cos ηθ +

12λε

η − ω
cos(ηθ − ωθ) +

12λε

η + ω
cos(ηθ + ωθ) .

(125)

By introducing v = u− 1� 1 we have

d2v

dθ2
+

1

K ′
dK ′

dθ

dv

dθ
+ v = − λ

(1 + v)3
− 3λ cos(2θ − 2φ)

(1 + v)3

− 6λ

η
cos ηθ +

12λε

η − ω
cos(ηθ − ωθ) +

12λε

η + ω
cos(ηθ + ωθ)

(126)

and the linear approximation yields

d2v

dθ2
+

1

K ′
dK ′

dθ

dv

dθ
+ (1− 3λ)v u −λ− 3λ(1− 3v) cos(2θ − 2φ)

− 6λ

η
cos ηθ +

12λε

η − ω
cos(ηθ − ωθ) +

12λε

η + ω
cos(ηθ + ωθ).

(127)
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With (80) and (85), the relative variation of the angular momentum (107) is

1

K ′
dK ′

dθ
u −3λ(sin ηθ − 4ε cosωθ sin ηθ) (128)

while the substitution into (127) yields

d2v

dθ2
+(1− 3λ)v = λ

[
−1 + 3(sin ηθ − 4ε cosωθ sin ηθ)

dv

dθ
− 6

η
cos ηθ

(129)
−3(1−3v) cos(2θ−2φ)+

12ε cos(ηθ − ωθ)
η − 1

+
12ε cos(ηθ + ωθ)

η + 1

]
·

The solution to its homogeneous differential equation
d2v

dθ2
+ (1− 3λ)v = 0 is

v = ε cosωθ, ω =
√

1− 3λ. (130)

Since λ� ε, this approximated solution can be introduced into the rhs of (129) in
order to find a better approximation

d2v

dθ2
+ ω2v = λ [−1− 3εω sin ηθ sinωθ + (9ε cosωθ − 3) cos(2θ − 2φ)

−6

η
cos ηθ +

12ε

η − ω
cos(ηθ − ωθ) +

12ε

η + ω
cos(ηθ + ωθ)

] (131)

where we have discarded the terms with ε2. In the first amplitude, we can use the
approximation ω = 0.99584 u 1. The introduction of this approximation into the
differential equation gives

d2v

dθ2
+ ω2v = λ [−1 + (12α− 3)ε sin ηθ sinωθ + 9ε cos ηθ cosωθ

−
(

6

η
+ 3

)
cos ηθ +

12ε

η − ω
cos(ηθ − ωθ) +

12ε

η + ω
cos(ηθ + ωθ)

] (132)

where we have discarded again all terms containing ε2. Transforming the products
of trigonometric functions into their additions we find

d2v

dθ2
+ ω2v = λ

[
−1 +

(
6α+ 3 +

12

η − ω

)
ε cos(ηθ − ωθ)

+

(
6− 6α+

12

η + ω

)
ε cos(ηθ + ωθ)−

(
6

η
+ 3

)
cos ηθ

] (133)
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Figure 5. Distance between Earth and the Moon as a function of time calcu-
lated from (136) with ω =

√
1− 3λ = 0.995845086 (the perigee advances

at 1◦29′45′′ per draconic month with respect to the ascending node and has
almost a constant ecliptic longitude).

and its solution according to Appendix 1, is

v(θ) = ε cosωθ + λ

[
− 1

ω2
+

(
6α+ 3 +

12

η − ω

)
ε cos(ηθ − ωθ)
ω2 − (η − ω)2

+

(
6− 6α+

12

η + ω

)
ε cos(ηθ + ωθ)

ω2 − (η + ω)2
−
(

6

η
+ 3

)
cos ηθ

ω2 − η2

]
·

(134)

By introducing the numerical values ε = 0.0549, λ = 2.764 · 10−3, η = 1.8430,
α = 0.078507, ω = 0.99585, we obtain

v(θ) = ε cosωθ +A cos(ηθ − ωθ) +B cos(ηθ + ωθ) + C cos ηθ +D (135)

where A = 9.77 · 10−3, B = −2.1 · 10−4, C = 7.19 · 10−3, D = −2.75 · 10−3.
Then, the orbital equation becomes

r =
r0(1− ε2)

1 + ε cosωθ +A cos(ηθ − ωθ) +B cos(ηθ + ωθ) + C cos ηθ +D
· (136)

The distance between the Earth and the Moon calculated from (136) is plotted in
Fig. 5 as a function of time t = T θ/(2π), where T is the draconic month. It
has the same shape as that of Figs. 4-7 in [15]. The calculated apogee distance
oscillates from 405,000 to 407,100 km, while the perigee distance oscillates from
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359,000 to 370,800 km, which is close to the observed values: the observed apogee
distance ranges from 404,168 to 406,602 km while the observed perigee distance
ranges from 356,568 to 370,216 km [15]. The calculated apogee and perigee are
synchronized with sidereal months. This is due to the fact that the frequency of the
main oscillation of the orbit is the same as that obtained from the regression of the
nodes

ω =
√

1− 3λ u 1− 3λ

2
(137)

within the experimental error. That is, the calculated advance of the perigee and
the nodal regression compensate each other. However, we know that the perigee
actually advances 3◦ in the mean with respect to stars in each anomalistic month.
There is also disagreement in the modulation of the orbital oscillation. According
to our calculations (Fig. 5), the period of modulation should be half a year, but
actually it is longer: half the time it takes for the angle between the perigee and
the Sun6 to complete one revolution, which is 205.9 days7. When one takes ω =
.987577, which accounts for the actual advance of the perigee, instead of (137), a
much better agreement is then obtained.

Variation of the Draconic Month

The equation (110) for the angular momentum can be written as

K ′ = K
′
[1 + E cos ηθ + F cos(ηθ − ωθ) +G cos(ηθ + ωθ)] (138)

where E = 4.55 ·10−3, F = −1.09 ·10−3 and G = −3.2 ·10−4. Since K ′ = r2θ̇,
the draconic month T is

T =

∫ 2π(n+1)

2πn

r2

K ′
dθ , n ∈ Z .

From linearization of the square of (136) and the inverse of (138), we find

T u
r2

0(1− ε2)2

K
′

∫ 2π(n+1)

2πn
[1− 2ε cosωθ − (2A+ F ) cos(ηθ − ωθ)

−(2B +G) cos(ηθ + ωθ)− (2C + E) cos ηθ − 2D] dθ

6The ecliptic longitude φ of X, the vector going from the centre of the Sun to the centre of mass
of the system Earth-Moon, which lies inside Earth, differs by 180◦ from the ecliptic longitude of the
Sun observed from Earth.

7The longitudes of the perigee and the Sun advance 0.11140◦ and 0.98561◦ per day respectively
[15], whence their difference increases by 0.87421◦ per day and completes one revolution in 411.80
days.
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=
r2

0(1− ε2)2

K ′

[
(1− 2D)2π − 2ε

ω
[sin(ω2π(n+ 1))− sin(ω2πn)]

− 2A+ F

η − ω
[sin((η − ω)2π(n+ 1))− sin((η − ω)2πn)]

− 2B +G

η + ω
[sin((η + ω)2π(n+ 1))− sin((η + ω)2πn)]

−2C + E

η
[sin(η2π(n+ 1))− sin(η2πn)]

]
·

(139)

The mean value is

T =
r2

0(1− ε2)2

K ′
(1− 2D)2π . (140)

Transforming the differences of sine functions into products we have

∆T

T
=− 1

(1− 2D)2π

[
4ε sinωπ

ω
cos(ωπ(2n+ 1))

+
(4A+ 2F ) sin(η − ω)π

η − ω
cos((η − ω)π(2n+ 1))

+
(4B + 2G) sin(η + ω)π

η + ω
cos((η + ω)π(2n+ 1))

+
(4C + 2E) sin ηπ

η
cos(ηπ(2n+ 1))

]
·

(141)

The relative amplitudes of each term are 21.9%:53.2%:0.7%:24.4%, so that we
discard the third term. We also use the approximation 1− 2D u 1

∆T

T
u− 1

2π

[
4ε sinωπ

ω
cos(ωπ(2n+ 1))

+
(4A+ 2F ) sin(η − ω)π

η − ω
cos((η − ω)π(2n+ 1))

+
(4C + 2E) sin ηπ

η
cos(ηπ(2n+ 1))

]
·

(142)

Let us introduce also the approximation ω u 1 into the amplitudes. If we take into
account that η = 2− 2α, we have

∆T

T
u− 1

2π
[4ε sinωπ cos(ωπ(2n+ 1))

− (4A+ 2F ) sin 2απ

1− 2α
cos((2α+ ω)π(2n+ 1))

− (4C + 2E) sin 2απ

2− 2α
cos(2απ(2n+ 1))] .

(143)
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Figure 6. Variation of the draconic month T in hours as function of time in
years calculated from (141) for ω = 0.987577 (perigee separating by 4.4723◦

per month from the ascending node). Bars are draconic months, and numbers
indicate years approximately. Graph begins at n = 0, where the angle be-
tween the perigee and the ascending node is zero.

Notice that these three frequencies are not independent. The main fast oscilla-
tion has the same period of half a draconic year (173.31 days) as the increment of
the ecliptic longitude of the nodes (see comment to (99)). The amplitude of this
oscillation is modulated by another long-range oscillation with frequency ω. Ac-
cording to our calculations, ω = 0.995845 and the perigee would advance 1◦30′

with respect to the ascending node every month, so that it would take 240 draconic
months=17.88 years to complete a revolution. Actually, the perigee advances about
4.5◦ with respect to the ascending node each month, which means that it takes 6
years for them to meet again 8. This is just the observed period of the modulation
in the oscillation of the draconic month. Its maximum relative amplitude is

∆T

T
≤ 1

2π

(
4ε sinωπ +

(4A+ 2F ) sin 2απ

1− 2α
+

(4C + 2E) sin 2απ

2− 2α

)
(144)

which yields 3h 26min for ω = 0.995845. For the actual value of ω = 0.987577,
the maximum amplitude would be 4h 9 min. In Fig. 6, the variation of the dra-
conic month T calculated from (141) for ω = 0.987577 (perigee progressing at
4.4723◦ per month with respect to the ascending node) is plotted as a function of
time9. The comparison with [15, Figs. 4-11] shows that the actual draconic month
can differ up to 6 h from the mean value. The shape and periods of both figures

8The mean rates of the perigee and the ascending node are respectively 0.11140◦ east and
0.05295◦ west per day [15], that is, the perigee separates 0.16435◦ per day from the ascending
node so that it takes 2190.45 days or 6 years for the angle between them to complete a revolution.

9For ω = 0.987577, the orbital parameters of (136) are A = 10.90 · 10−3, B = −2.1 · 10−4

and C = 7.14 · 10−3, which slightly differ from those given above for ω = 0.995845.
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are similar although agreement is not complete. Fig. 6 also shows that oscillations
reach the maximum and minimum amplitudes respectively when the perigee meets
the ascending and descending nodes in concordance with observations. Calcula-
tion of ∆T for ω = 0.995845 (perigee separating by 1.5◦ per month from the
ascending node) yields a modulation of the amplitude with a period of 18 years
that completely disagrees with observations and, therefore, it is not displayed here.
Summarizing, the first-order approximation gives a good enough description of all
the perturbations to Moon’s motion except for the perigee advance. Although our
lunar theory needs further refinement, it already permits identifying the amplitudes
and frequencies of the main oscillations of the orbital parameters. Approximations
of higher orders can be carried out, but the number of terms then arising would
need much more space, so that a more refined lunar theory shall wait for a future
paper exclusively devoted to it.

6. Application to Quantum Mechanics

Our interest in the N -body problem came from Hylleraas’ treatment of the he-
lium atom [26] [33, p 221], which seems unsatisfactory and suggested to us that
the three-body problem should be reviewed, at least from a geometrical point of
view, in order to find the corresponding Hamiltonian. On the other hand, molecular
spectra (IR10, 13C-NMR and 1H-NMR11) seem to indicate that some kind of so-
lution to the N-body problem for quantum systems should exist. For instance,
every functional group (such as carboxylic acid, ketone, amide, alcohol, anhy-
dride, nitrile, etc.) has a characteristic absorption frequency in the IR spectra that
is shifted in some degree by other neighbouring atoms and bonds in the molecules.
Also, the main NMR frequencies of 1H or 13C are slightly shifted by neighbouring
atoms. When outlining the Schrödinger equation for a system of many particles,
the potential energy V is usually known as a function of the relative coordinates
xij = xj − xi while the kinetic energy operator T̂ is a linear combination of the
second partial derivatives with respect to the absolute coordinates xi, and each op-
erator does not adapt well to the other. We wondered whether an expression for T̂
as a combination of derivatives of the relative coordinates xij exists or not. This
transformation of coordinates has not been carried out before, except for the two-
particle system or some special cases of more particles. Up to now, the Jacobi
coordinates ξi

ξi =

∑j
k=1mkxk∑j
k=1mk

− xj+1 (145)

10Infrared spectroscopy.
11Nuclear magnetic resonance spectroscopy of atomic nuclei having non null spin like 1H or 13C.
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may be the most consistent approach to write the Laplacian operator with relative
coordinates, because they satisfy [22, pp 221-224]

N∑
k=1

1

mk

∂2ψ

∂x2
k

=
1

M

∂2ψ

∂ξ2
N

+
N−1∑
j=1

1

µj

∂2ψ

∂ξ2
j

(146)

where
1

µj
=

1

Mj
+

1

mj+1
, Mj =

j∑
k=1

mk . (147)

However, they do not satisfy the principle of symmetry between relative coordi-
nates xij . Therefore, a general and symmetric expression of the Laplacian and
Hamiltonian operators expressed with relative coordinates was still needed. In this
way, let us remind the following theorem.

Theorem 6 (Internal Laplacian theorem [21, p 79]) . The Laplacian ∆ of three
particles located at the pointsA,B andC on a line with weights a, b and c satisfies
the identity

∆ =
1

a

∂2

∂A2
+

1

b

∂2

∂B2
+

1

c

∂2

∂C2
=

1

m

∂2

∂G2
+
a+ b

a b

∂2

∂D2
+
b+ c

b c

∂2

∂E2

+
a+ c

a c

∂2

∂F 2
− 2

a

∂2

∂D∂F
− 2

b

∂2

∂D∂E
− 2

c

∂2

∂E∂F

(148)

where D = B − A, E = C − B and F = A − C are the relative coordinates,
m = a+ b+ c 6= 0 and G = (a A+ b B + c C)/m is the centre of mass.

Proof: By applying the properties of the partial derivatives. For more detailed
steps see [21, p 255]. �

Corollary 7. The internal Laplacian ∆int (without the centre-of-mass coordinate)
of three particles in the three-dimensional Euclidean space is

∆int =
a+ b

a b
∇2

D +
b+ c

b c
∇2

E +
a+ c

a c
∇2

F

− 2

a
∇D · ∇F −

2

b
∇D · ∇E −

2

c
∇E · ∇F

(149)

where D, E and F are their relative vectors, and ∇D is the gradient operator in
the direction of D

∇D = e1
∂

∂xD
+ e2

∂

∂yD
+ e3

∂

∂zD
· (150)
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Proof: By addition of the three equations (148) obtained for each Cartesian coor-
dinate. �

Recently, Turbiner et al deduced the 3-D internal Laplacian for the special case of
three equal masses [59, eq 10].

In quantum mechanics, the kinetic energy operator T̂ of a system of three particles
is proportional to the weighted three-dimensional Laplacian [44, p 85]

T̂ = −~2

2

(
1

a
∇2

A +
1

b
∇2

B +
1

c
∇2

C

)
· (151)

On the other hand, the first term on the rhs of (148) accounts for the kinetic energy
of the centre of mass. In three dimensions, this becomes

T̂MC = − ~2

2m
∇2

G (152)

and it is excluded when calculating the internal energy levels of molecules because
the total wavefunction is the internal wavefunction times the translational wave-
function, and the total energy is equal to the internal energy plus the translational
energy12. Therefore, the operator of the internal kinetic energy is proportional to
the internal Laplacian (149)

T̂int = −~2

2
∆int. (153)

6.1. Energy Levels of the Linear Vibrations of CO2

The first time we applied the Laplacian (149) was in order to calculate the vi-
brational levels of carbon dioxide. The CO2 molecule is linear and has a central
carbon atom bonded to two adjacent oxygen atoms at the same mean distances.
Since the relative coordinates D, E and F are linearly dependent, we can choose
without loss of generality a wavefunction ψ(D,F ) only dependent on the relative
coordinates D (from one oxygen atom to the carbon) and F (from the carbon atom
to the other oxygen). In this case, the unidimensional internal Laplacian is

∆intψ(D,F ) =
1

µab

∂2ψ

∂D2
+

1

µbc

∂2ψ

∂F 2
− 2

b

∂2ψ

∂D∂F
· (154)

There are several stable isotopes of carbon (12C, 13C) and oxygen (16O, 17O, 18O),
and the most frequent molecule (98.4 %) is 12C16O2, whose vibrational levels

12The translational energy and wavefunction are obtained from the well-solved Schrödinger equa-
tion for a free particle in a potential box.
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were computed. The relative isotopic masses of 12C and 16O are respectively 12
(by definition) and 15.9949. By introducing the coordinates x1 = D − Deq and
x2 = F − Feq, where Deq and Feq are the oriented distances at the minimum
of the vibrational potential energy, and approximating the C=O bond vibration by
the harmonic oscillator, which is a well-known and solved quantum system, the
Schrödinger equation for the CO2 linear vibrations then becomes

−~2

2

(
1

µCO

∂2ψ

∂x2
1

+
1

µCO

∂2ψ

∂x2
2

− 2

mC

∂2ψ

∂x1∂x2

)
+
kCO(x2

1 + x2
2)

2
ψ = Eψ (155)

where x1 and x2 are the increases in the lengths of both CO bonds with respect
to the equilibrium length, kCO is the force constant (in the harmonic oscillator
approximation) of each CO bond, µCO = mC mO/(mC +mO) is the reduced mass
of the carbon and oxygen atoms, and E is the energy of the linear vibrations. This
equation can be written as

∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

− 2µCO

mC

∂2ψ

∂x1∂x2
−
µCOkCO

(
x2

1 + x2
2

)
~2

ψ = −2EµCO

~2
ψ · (156)

The Schrödinger equation in the harmonic oscillator approximation of a single
bond is

d2ψ

dx2
− µCOkCO x

2

~2
ψ = −2EµCO

~2
ψ · (157)

By introducing the vibrational frequency of the bond νCO = 1
2π

√
kCO
µCO

we have

d2ψ

dx2
−

4π2µ2
COν

2
COx

2

~2
ψ = −2EµCO

~2
ψ · (158)

In order to compute the energy levels of the linear vibrations of (156), a basis of
64 functions obtained from the multiplication of pairs of 8 eigenstates of each CO
bond satisfying (158) was used. The computation itself splits into two separate
computations, one for even states and the other for odd states. The wavefunctions
of the even states are linear combinations of products of harmonic oscillator eigen-
states of both bonds whose quantum number addition is even (for instance 2+0,
1+1, 0+2, 3+1, ...), and for the odd states the addition of quantum numbers is odd
(0+1, 1+0, 3+0, 2+1, ...). Both sets of wavefunctions do not mathematically inter-
act between them and each computation is carried out separately for even and odd
states. The results of these computations for 12C16O2 are included in Table 1.

The symmetric and antisymmetric vibrational states are indicated as usual with
g and u respectively (from the German words gerade and ungerade). The total
wavefunction remains invariant under the exchange of both 16O nuclei because
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Table 1. Energy levels of linear vibrations of 12C16O2 and infrared transi-
tions from the ground state computed from (156) by means of the approxi-
mation of harmonic oscillator potential energy for each CO bond, which is
supposed to have a frequency of ν̄CO = 1794 cm-1. e and o respectively in-
dicate even and odd states, and g and u indicate respectively symmetric and
antisymmetric states under the exchange of both oxygen nuclei. Experimen-
tal data [51, 61] recorded at 296K.

Level Energy Transition frequency from 0e to higher levels

Calculated Calculated Experimental Intensity [51, 61]
hνCO hνCO cm-1 cm-1 10-22cm-1/molec·cm-2

0e 0.954110g –
0o 1.608763g 0.654653 1174.4 1063.8 [51] 9.75
1o 2.207676u 1.253546 2248.9 2283.5 [1, 51] 9602
1e 2.263418g 1.309308 2348.9 2349.1 [1, 61] 955900
2e 2.862330g,u 1.908220 3423.3 3612.8 [1, 61] 10400
2o 2.918076g 1.963966 3523.4 3714.8 [1, 61] 15800
3e 3.461243g 2.507133 4497.8 4853.6 [51, 61] 77.8
3o 3.516985u 2.562875 4597.8 4977.8 [51, 61] 352
4e 3.572743g 2.618633 4697.8 5099.7 [51, 61] 109

they are bosons with spin 0. Since the product of the rotational and vibrational
wavefunctions13 must be symmetric, the g vibrational states will only exist for
symmetric rotational wavefunctions, which have even values of J (the rotational
quantum number), while the u states will only exist for odd values of J . On the
other hand, according to Boltzmann’s distribution law, the most populated energy
level at room temperature is the ground state with a factor exp(∆E1←0/kBT )
with respect to the first excited state14. Therefore, the absorption bands in the
IR (infrared) spectrum are the transitions from the ground state. IR absorption
and emission bands are composed by many single rotational-vibrational transitions
caused by the thermal population of several rotational levels at room temperature.

13The electronic wavefunction of all the molecules in the ground state is always symmetric.
14The parameter νCO = 1794 cm-1 allows us to calculate the relative population of vibrational

levels at room temperature (298.15K) N(0o)/N(0e) = 3.44 · 10−3 and N(1e)/N(0e) = 1.18 ·
10−5.
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The centres of these IR bands are the pure vibrational frequencies 15 considered in
Table 1.

The electric dipole moment of the CO2 molecule is null, but it has an electric
quadrupole moment Q that is a symmetric function of second degree of the rela-
tive coordinates. Therefore, the main IR transitions will be from 0e to other even
and symmetric states because 〈e|Q|o〉 = 0 and 〈g|Q|u〉 = 0. Other transitions
forbidden by the selection rule of the electric quadrupole moment can take place
by other ways with lower intensities. The fundamental IR absorption band of CO2

is observed at 2349 cm-1 overlapping a minor band at 2308 cm-1 up to the point
that they are usually considered a unique band. They can only be resolved in high
resolution spectra. A pair of two minor bands are observed at 3613 and 3715
cm-1 [1]. If we assign 2349 cm-1 to the 1e ← 0e transition, we obtain νCO=1794
cm-1 as a parameter. This value is similar to the observed vibration frequencies
of the C=O bond in organic molecules going from 1630 to 1850 cm-1 [7, p 487].
Then, our computations predict that the transitions 2e ← 0e and 2o ← 0e should
have frequencies of 3423 cm-1 and 3523.4 cm-1, while the experimental bands lie
at 3612.8 cm-1 and 3714.8 cm-1. The frequency difference between both bands
of 100.1 cm-1 (calculated) and 102 cm-1 (experimental) are very similar. The cal-
culated frequencies of the transitions 3e ← 0e, 3o ← 0e and 4e ← 0e are about
380 cm-1 lower than the experimental ones. The theoretical separation between
them is 100 cm-1 while the experimental one is about 120 cm-1. All these are good
qualitative and semi-quantitative predictions with systematic deviations that can
easily be explained by anharmonicity16. The CO2 laser emits at 961.34 cm-1 (main
band) and 1064.12 cm-1 (secondary band) [62, p 24], which correspond to the tran-
sition 0e ← 0o. The spontaneous emission is forbidden by the selection rule of
the electric quadrupole moment, which facilitates the inversion of population and
accumulation of excited molecules in the 0o state.

Another strong IR band is observed at 667 cm-1, which corresponds to the bending
of the CO2 molecule and is not considered in our computations. It can be treated
as a pure harmonic oscillator. An intense transition in the Raman spectrum at
1333 cm-1, not visible in the IR spectrum and usually attributed to the symmetric
stretching of CO2, has been misunderstood since this transition does not appear

15Energy E (in J), frequency ν (in Hz) and wave number ν (in m-1) are proportional quantities
according to E = hν = hcν where h and c are respectively Planck’s constant and the speed of
light. It is customary to measure IR transitions in cm-1 so that Table 1 includes their wave numbers.
However, in order to make it easy for non-acquainted readers to understand the text, we are calling
wave numbers frequencies.

16The potential curve does not exactly fit a quadratic function and the Morse potential [14, p 135],
which is not symmetric with respect to the minimum, is usually applied to calculate the vibrational
energy levels of diatomic molecules [24, p 106].
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Figure 7. Sketch of the hydrogen molecule-ion H+
2 . p+ indicate the hy-

drogen nuclei, which are usually protons, and e− indicates the surrounding
electron.

in our computations of the energy levels of linear vibrations. In fact, it is easy
to see that it simply corresponds to the transition 2 ← 0 of bending, because
667 × 2 = 1334. The method of analysis using the normal modes of vibration
leads to uncertainties in the assignment of the IR and Raman bands for molecules
with as few atoms as CO2 [29, p 53], and it should be reviewed under the scope
of the ab initio calculation of the vibrational energy levels and wavefunctions by
means of the internal Hamiltonian here outlined. On the other hand, if one omits
the mixed partial derivative in the Hamiltonian (155), the Schrödinger equation
reduces to two independent harmonic oscillators without mathematical interaction.
In other words, it is then impossible to obtain the full structure of the vibrational
energy levels of the molecule. It could explain why scholars resorted to the classic
treatment of normal modes of vibration [24, p 135] [34, p 217] [50, p 281], which
led them to wrong conclusions like in the case of CO2.

6.2. Electronic Energy of the Hydrogen Molecule-Ion

The internal Laplacian (149) of the hydrogen molecule-ion H+
2 is

∆int =
1

µe
∇2

1 +
1

µe
∇2

2 +
2

mp
∇2
R+

2

mp
∇1 ·∇R+

2

me
∇1 ·∇2−

2

mp
∇2 ·∇R (159)

where, if Xi indicate the vectors going from each nuclei to the electron, then r1 =
‖X1‖ , r2 = ‖X2‖, and R = ‖X1 −X2‖ as displayed by Fig. 7. The reduced
mass of the electron is µe = mpme/(mp + me). Since mp � me and then



40 Ramon González Calvet

µe u me, we can take the approximation

∆int u
1

me
∇2

1 +
1

me
∇2

2 +
2

me
∇1 · ∇2 . (160)

Hence, the Hamiltonian for computing the electronic energy is

Ĥ = − ~2

2me
∇2

1 −
~2

2me
∇2

2 −
~2

me
∇1 · ∇2 −

e2

4πε0r1
− e2

4πε0r2
+

e2

4πε0R
(161)

where e is the elementary charge, and ε0 is the vacuum permittivity. In atomic
units, that is, by taking me = 1, ~ = 1, e = 1 and 4πε0 = 1, which implies that
lengths are measured in Bohr radii (a0 = 5.291 · 10−11 m) and energy in Hartrees
(1Ha = 27.2114 eV), the Hamiltonian is rewritten as

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −∇1 · ∇2 −
1

r1
− 1

r2
+

1

R
· (162)

According to the Born-Oppenheimer approximation, nuclei move very slowly in
comparison with electrons, so that R only enters this equation as a parameter of
the electronic energy. We will now consider a wavefunction ψ for the ground state
of H+

2 having rotational symmetry around the axis p − p, which corresponds to a
σ bond and does not therefore depend on the azimuthal angle φ. When ψ is given
as a function of the spherical coordinates, ψ(r1, r2) is enough and no additional
dependence on θ1 or θ2 is required because it would be redundant. The Schrödinger
equation then becomes

Ĥψ =− 1

2

(
∂2ψ

∂r2
1

+
2

r1

∂ψ

∂r1

)
− 1

2

(
∂2ψ

∂r2
2

+
2

r2

∂ψ

∂r2

)
− r2

1 + r2
2 −R2

2r1r2

∂2ψ

∂r1∂r2
+

(
− 1

r1
− 1

r2
+

1

R

)
ψ = Eψ

(163)

where
r2

1 + r2
2 −R2

2r1r2
= cosα (164)

according to the law of cosines, since α is the angle between the vectors X1 and X2

(see Fig. 7). It is easy to check that this Hamiltonian is the same as the Hamiltonian
of one electron expressed in cylindrical coordinates (without dependence on the
azimuthal coordinate φ) with the p − p axis taken as the z-axis. In the same way,
if we introduce the elliptic coordinates17 ξ = (r1 + r2)/R and η = (r1 − r2)/R,

17The elliptic coordinates ξ and η together with the azimuthal angle φ that accounts for the rotation
of the elliptic coordinate system around the z-axis are called prolate spheroidal coordinates [56,58].
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the Hamiltonian (163) becomes

Ĥ =
1

R
− 2

R2(ξ2 − η2)

(
∂

∂ξ

[
(ξ2 − 1)

∂

∂ξ

]
+
∂

∂η

[
(1− η2)

∂

∂η

]
+ 2Rξ

)
(165)

which is coincident with that of Pauling and Wilson [44, p 333] but omitting the
explicit dependence on the azimuthal angle φ as explained above. The Schrödinger
equation is separable in this case, a fact that was used by Burrau [8] to solve exactly
the Schrödinger equation for the electronic energy of the hydrogen molecule-ion
(see also [12]). However, the Hamiltonian given in (163) is better adapted to the
coordinate dependence of the electrostatic potential energy and can provide easier
calculations. Before evaluating the energy from 〈ψ|Ĥ|ψ〉, we must calculate dV .
From the Pythagorean theorem (Fig. 7) we have

r2
1 = r2 sin2 θ +

(
r cos θ +

R

2

)2

= r2 +Rr cos θ +
R2

4

r2
2 = r2 sin2 θ +

(
r cos θ − R

2

)2

= r2 −Rr cos θ +
R2

4
·

(166)

The differentiation of the above equation yields

r1dr1 = rdr +
R

2
cos θdr − R

2
r sin θdθ

r2dr2 = rdr − R

2
cos θdr +

R

2
r sin θdθ

(167)

whence
r1r2dr1 ∧ dr2 = Rr2 sin θdr ∧ dθ =

R

2π
dV (168)

because the differential of the volume element in the spherical coordinates is dV =
2πr2 sin θdr∧dθ (after integration of dφ from 0 to 2π). Then, the volume element
is

dV =
2π

R
r1r2dr1 ∧ dr2. (169)

In order to carry out integration, we must take into account that r1 and r2, although
being independent variables, cannot have any values. Look at Fig. 7 and notice
that R, r1 and r2 are sides of a triangle that satisfy the triangular inequalities

R+ r1 ≥ r2 , R+ r2 ≥ r1 , r1 + r2 ≥ R (170)

whose intersection is the semi-infinite stripe shown in Fig. 8, which is the region
of integration. We introduce the elliptic coordinates u = r1 + r2, v = r2 − r1,
which are more adapted to its boundaries, to have

r1 =
u− v

2
, r2 =

u+ v

2
(171)
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Figure 8. The allowed values of r1 and r2 for H+
2 are the points included

inside the semi-infinite stripe.

dr1 ∧ dr2 =
1

2
du ∧ dv , dV =

π

4R
(u2 − v2)du ∧ dv . (172)

6.2.1. LCAO Computations

The LCAO (Linear Combination of Atomic Orbitals) wavefunction was early ap-
plied to H+

2 [17]. The bonding wavefunction of the ground state is an addition of a
variational modification of the 1s states of each hydrogen atom [14, p. 233]

ψ = N(e−ar1 + e−ar2) (173)

where a is a variational parameter. In order to calculate the normalization constant
N , one computes

1 = 〈ψ|ψ〉 = N2

∫
V

(e−2ar1 + e−2ar2 + 2e−a(r1+r2))dV

=
N2π

2R

∫ +∞

R

∫ R

−R
e−au(cosh av + 1)(u2 − v2)du ∧ dv

=
2πN2

a3

(
1 + e−aR

(
a2R2

3
+ aR+ 1

)) (174)

according to Appendix 2, whence

N2 =
a3

2π
(

1 + e−aR
(
a2R2

3 + aR+ 1
)) · (175)
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If one applies the Schrödinger equation (163) to this wavefunction taking into ac-
count that

∂2ψ

∂r1∂r2
= 0 (176)

one obtains

Ĥψ=N

[(
1

R
− a

2

2
− 1

r1
− 1

r2

)(
e−ar1 + e−ar2

)
+ a

(
e−ar1

r1
+

e−ar2

r2

)]
· (177)

The fact that the mixed partial derivative of the LCAO wavefunction is null is not a
minor detail. Likely, it explains the success this kind of wavefunctions have had in
quantum chemistry. Wrong Hamiltonians of most atoms and molecules omit mixed
partial derivatives, but if (∇i ·∇j)ψ = 0, they can then provide right results. From
(177), we have

〈ψ|Ĥ|ψ〉= 1

R
− a2

2
−N2

∫
V

r1 + r2

r1r2

(
e−2ar1 +e−2ar2 +2e−ar1−ar2

)
dV

+N2a

∫
V

(r2e−ar1 + r1e−ar2) (e−ar1 + e−ar2)

r1r2
dV

=
1

R
− a

2

2
+
N2aπ

R

∫ +∞

R

∫ R

−R
e−au(u cosh av + v sinh av)du ∧ dv (178)

+
N2(a− 2)π

R

∫ +∞

R
ue−audu

∫ R

−R
dv− 2N2π

R

∫ +∞

R
ue−audu

∫ R

−R
cosh avdv

=
1

R
− a2

2
+

2πN2e−aR

a2

[
aeaR + (aR+ 1)

(
a− 2− 2 sinh aR

aR

)]
after integration. By introducing the normalization constant, one finds that the
energy of the ground state of the hydrogen molecule-ion is [33, p. 365]

〈ψ|Ĥ|ψ〉 =
1

R
− a2

2
+
a
[
aeaR + (aR+ 1)

(
a− 2− 2 sinh aR

aR

)]
eaR + a2R2

3 + aR+ 1
· (179)

The minimum energy E = −0.58650649 Ha occurs at a = 1.238 and Rm =
2.003 a0 = 1.0598 · 10−10 m, which means a bonding energy of −0.08650649
Ha= −2.354 eV since the energy of the hydrogen atom is approximately −0.5
Ha. The experimental values are 1.06 · 10−10 m and −2.6507101 eV. With the
help of equation (179), we computed the electronic energy for several values of
R close to Rm. In each case, we took the value of the variational parameter a
yielding the minimum energy. The progressive change of the variational parameter
with R reflects how the cloud of electronic charge self-adapts to the change of the
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internuclear distance. Results are shown in Table 2. The dependence of E (in Ha)
on R (in a0, Bohr radii) fits the quadratic function

E u 0.046787 R2 − 0.187578 R− 0.398498 (180)

which implies a force constant k = 0.093574 Ha/a2
0 = 145.685 N/m. The reduced

mass of both protons is µ = mp/2 = 8.36311 · 10−28 kg. The relation between
the force constant and the frequency of the harmonic oscillator is

ν =
1

2π

√
k

µ
(181)

which finally gives a vibrational frequency of the H-H bond of 6.6427 · 1013 Hz =
2215.77 cm-1 to be compared with the experimental value of 2255.5 cm-1 [42].

6.2.2. Variational Computations

Firstly, we tested the wavefunction ψ = Ne−
a(r1+r2)

2 where a is the variational
parameter. The electronic energy Ee that follows from the Schrödinger equation
(163) is

Ee = 〈ψ|Ĥ|ψ〉 =
1

R
+

(3a2 − 12a)(aR+ 1)

2(a2R2 + 3aR+ 3)
· (182)

The minimum energy E = −0.58136837 Ha occurs at a = 1.364 and R =
1.8472 a0 = 0.977 · 10−10 m, which yields a minimum of the bonding energy
of −0.08136837 Ha= −2.2141 eV. Notice that, at the axial points between both
nuclei, r1 + r2 = R and ψ is then constant, which is hardly realistic. Therefore,
we improved it by including the profile of a catenary between both nuclei

ψ = Ne−
a(r1+r2)

2 cosh
b(r2 − r1)

2
= Ne−

au
2 cosh

bv

2
· (183)

Now, ψ is no longer constant on the axis between both H atoms. A wavefunction
equivalent to (183) was already outlined in 1929 [23], but nowadays we can access
computer tools that were not available at that time. Application of the Schrödinger
equation (163) to (183) yields

Ĥψ =

[
1

R
− a2 + b2

4
+
(a

2
− 1
)( 1

r1
+

1

r2

)
+
b2 − a2

4
·

r2
1 + r2

2 −R2

2r1r2

]
ψ +

b

2

(
1

r1
− 1

r2

)
Ne−

a(r1+r2)
2 sinh

b(r2 − r1)

2
·

(184)
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Let us calculate the following integral

1 =

∫
V
ψ2dV =

πN2

8R

∫ +∞

R

∫ R

−R
e−au(1 + cosh bv)(u2 − v2)du ∧ dv

=
πN2e−aR

6a3b3R

[
a2b3R3 + 3ab3R2 + 3b3R

+3(ab2R− a2 + b2) sinh bR+ 3a2bR cosh bR
]

(185)

whence the normalization constant is

N2 =
6a3b3ReaR

πL
(186)

with L given by

L = a2b3R3 + 3ab3R2 + 3b3R+ 3(ab2R− a2 + b2) sinh bR

+ 3a2bR cosh bR .
(187)

With the help of Appendix 2, we calculate the other integrals∫
V

r1 + r2

r1r2
ψ2dV =

πN2

2R

∫ +∞

R
u e−audu

∫ R

−R
(1 + cosh bv)dv

=
6ab2(aR+ 1)(bR+ sinh bR)

L

(188)

∫
V

r2
1 + r2

2 −R2

2r1r2
ψ2dV =

πN2

8R

∫ +∞

R

∫ R

−R
e−au(u2 + v2 − 2R2)

×(1 + cosh bv)du ∧ dv =
1

L

[
−a2b3R3 + 3ab3R2 + 3b3R

+3(ab2R+ a2 + b2) sinh bR− 3a2bR cosh bR
] (189)

N2

∫
V

r2 − r1

r1r2
e−a(r1+r2) sinh

b(r2 − r1)

2
cosh

b(r2 − r1)

2
dV

=
πN2

2R

∫ +∞

R
e−audu

∫ R

−R
v sinh bvdv =

6a2b(bR cosh bR− sinh bR)

L

(190)

whence the electronic energy Ee = 〈ψ|Ĥ|ψ〉 follows

Ee =
1

R
− a2 + b2

4
+
(a

2
− 1
) 6ab2(aR+ 1)(bR+ sinh bR)

L

+
b2 − a2

4L

[
−a2b3R3 + 3ab3R2 + 3b3R

+3(ab2R+ a2 + b2) sinh bR− 3a2bR cosh bR
]

+
3a2b2

L
(bR cosh bR− sinh bR) .

(191)
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The minimum energy −0.6024431 Ha occurs at a = 1.3544, b = 0.9191 and
R = 1.9977 a0 = 1.0571 · 10−10 m, yielding a minimum of the bonding energy of
−0.1024431 Ha = −2.7876 eV. In comparison, Scott et al. [56] obtained a mini-
mum electronic energy of −0.6026 3461 9106 5398 Ha and R =1.997 1933 1996
9992 a0 by solving the Schrödinger equation in prolate spheroidal coordinates. For
several values of the internuclear distance R, we have calculated the values of a
and b that minimize the energy (Table 2). The values of the electronic energy Ee
for these values of R are plotted in Fig. 9 and fit the quadratic function

Ee u 0.0506293R2 − 0.2024291R− 0.4001012 (192)

Table 2. Electronic energy Ee of the ground state of H+
2 as a function of R

(the internuclear H-H distance) calculated by means of the equations (179)
(LCAO) and (191) (biparametric variational). The values of the variational
parameters that minimize the energy for each value of R are indicated to-
gether with the minimum energy.

LCAO Biparametric variational
R a E a b E

(a0) (Ha) (Ha)

1.94 1.225 −0.5863073 1.3647 0.9224 −0.6022616
1.95 1.227 −0.5863671 1.3629 0.9221 −0.6023199
1.96 1.229 −0.5864153 1.3611 0.9210 −0.6023666
1.97 1.231 −0.5864530 1.3593 0.9206 −0.6024019
1.98 1.233 −0.5864805 1.3575 0.9201 −0.6024262
1.99 1.235 −0.5864981 1.3558 0.9197 −0.6024398
2.00 1.237 −0.5865059 1.3540 0.9188 −0.6024428
2.01 1.239 −0.5865044 1.3523 0.9182 −0.6024357
2.02 1.241 −0.5864936 1.3505 0.9181 −0.6024185
2.03 1.243 −0.5864738 1.3488 0.9177 −0.6023916
2.04 1.245 −0.5864453 1.3471 0.9172 −0.6023553
2.05 1.247 −0.5864084 1.3454 0.9162 −0.6023097
2.06 1.249 −0.5863631 1.3437 0.9159 −0.6022551
2.07 1.250 −0.5863098 1.3420 0.9153 −0.6021916

which implies a force constant of 0.1012586 Ha/a2
0 = 157.649 N/m. For the

H-H system, the reduced mass is respectively a half of the proton mass, i.e.,
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Electronic energy of H2
+ y = 0.0506293x2 - 0.2024291x - 0.4001012
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Figure 9. Electronic energy (in Ha) as function of the internuclear distance
(in Bohr radii) calculated by means of (191) for the wavefunction (183). The
squares are calculated data from Table 2 and the continuous line is the fitting
quadratic function (192).

µHH = mp/2 = 8.363108 · 10−28 kg. By means of (181), we obtain a frequency
νHH = 6.9100564 · 1013 Hz = 2304.947 cm-1. For the H-D system, the reduced
mass is µHD = mpmd/(mp +md) = 1.114896629 · 10−27 kg, which yields a fre-
quency νHD = 5.9847796·1013 Hz = 1996.308 cm-1. The experimental values are
2255.5 cm-1 [42] and 1914.7 cm-1 (centre of the roto-vibrational band, [9]). The
vibrational energy of the ground vibrational state is then given by Evib = hν/2
because protons are not at rest in this state but they also have kinetic energy18,
which added to the electronic energy yields the total energy [11]. The calculated
vibrational energies are 5.251055 · 10−3 Ha for H+

2 and 4.547923 · 10−3 Ha for
HD+, which added to the electronic energy yield a total energy of the lowest roto-
vibrational level of −0.5971920 and −0.5978952 Ha respectively. As a compari-
son, the electronic energies obtained from a variation method by Moss [39] were
−0.597 139 063 1234 and −0.597 897 968 6450 Ha respectively, without includ-
ing the zero-point vibrational energy. The energy necessary for the dissociation of
these ions into a hydrogen atom and a proton or deuteron is obtained through

Ed = −Ee − 0.5− Evib (in Ha) (193)

18Therefore, the experimental internuclear distance of 1.06 · 10−10 m is only a mean value with a
strong oscillation.
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because the electronic energy of a hydrogen atom is −0.5 Ha under the approx-
imation µe u me. The total molecular energy includes electronic energy, vi-
brational energy and rotational energy, which is not considered here. In the dis-
sociation, all the energies contribute to the balance of energy, but we consider
the molecule at the lowest rotational state with Erot = 0. In this way, our pre-
diction for the H+

2 is Ed = 0.602443054 − 0.5−5.251055 ·10−3 = 0.0971920
Ha= 2.644729 eV. Recently, Liu et al [36] have determined that the ionization and
dissociation energies of the hydrogen molecule are Ei(H2) = 124417.49113(37)
cm-1 and Ed(H2) = 36118.06962(37) cm-1. They are related to the dissociation
energy of the H+

2 by

Ed(H+
2 ) = Ed(H2) + 0.499733567− Ei(H2) (in Ha). (194)

Because the experimental ionization potential of the H atom is 13.598443 eV=
0.499733567 Ha [53, p 10-208], this differs somewhat from 0.5 Ha owing to the
reduced mass of the electron. Therefore, the experimental value of Ed(H+

2 ) is
2.6507101 eV. The calculated value only differs by 0.2% from the experimental
one. Notice that the well of the electronic energy would yield −2.7876 eV as the
bonding energy of H+

2 , lower than the experimental value (−2.6507101 eV) so that
at this level of precision the vibrational energy must be taken into account in order
to avoid contradiction with the variational theorem, which states that the varia-
tional energy is always higher than or equal to its true (experimental) value. Can
these results be improved? The answer is yes by considering the full Laplacian
(159) instead of its approximation (160), that is, by taking into consideration the
correction for the reduced mass of the electron. Moreover, the Born-Oppenheimer
approximation is no longer valid in (159) because of the terms∇1·∇R and∇2·∇R.
According to that approximation, the Hamiltonian is the addition of the vibrational
and electronic Hamiltonians, and the wavefunction becomes a product of the vibra-
tional and electronic wavefunctions. Then, the energy of the ground state without
rotation is the addition of the electronic and vibrational energies, as done above.
However, the mixed terms break this simplification. The consequent exact treat-
ment remains to be developed in the future.

6.3. Electronic Energy of the Ground State of Two-Electron Atomic Systems

The two electron atomic systems like He, Li+ and so on are formed by one nucleus
and two electrons. Therefore, the internal Laplacian (149) can also be applied to
calculate their electronic energy levels. If we take A = X(e1), B = X(n) and
C = X(e2) then D = B−A = X(n) −X(e1), E = C−B = X(e2) −X(n)
and F = A−C = X(e1) − X(e2). Since one usually denotes X1 = X(e1) −
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Figure 10. Sketch of the helium atom with two electrons (e−) moving
around the helium nucleus (n+2).

X(n), X2 = X(e2) −X(n) and X12 = X(e2) −X(e1) (see Fig. 10), it follows
that D = −X1, E = X2 and F = −X12, whence the internal Laplacian (149) for
these systems is

∆int =
1

µe
∇2

1+
1

µe
∇2

2+
2

me
∇2

12−
2

me
∇1 ·∇12+

2

mn
∇1 ·∇2+

2

me
∇2 ·∇12 (195)

where µe = me mn/(me +mn) is the reduced mass of the electron, very close to
its actual mass me. Since mn � me, a very good approximation to this Laplacian
is

∆int u
1

me
∇2

1 +
1

me
∇2

2 +
2

me
∇2

12 −
2

me
∇1 · ∇12 +

2

me
∇2 · ∇12 . (196)

At the beginning of quantum mechanics, Hylleraas was the first to calculate the
energy of the ground state of the helium atom [26, 28]. If the Laplacian (196) is
compared with Hylleraas’ Hamiltonian for the helium atom (equation 13 of [26],
equation 12 of [28]) one sees that Hylleraas omitted the last three terms. For the
ground state of helium, the product of two 1s functions without angular variables
was proposed by Hylleraas (equation 13b of [28]). By introducing the dependence
on the interelectronic distance r12 in order to take into account the electron corre-
lation, the wavefunction becomes

ψ = 1s(r1)1s(r2)f(r12) . (197)
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In this case, the Schrödinger equation in spherical coordinates reduces to

Ĥψ =

(
−1

2

∂2

∂r2
1

− 1

r1

∂

∂r1
− 1

2

∂2

∂r2
2

− 1

r2

∂

∂r2
− ∂2

∂r2
12

− 2

r12

∂

∂r12
(198)

− cos θ1,12
∂2

∂r1∂r12
− cos θ2,21

∂2

∂r2∂r12
− Z

r1
− Z

r2
+

1

r12

)
ψ = Eψ

where r = ‖X‖. This equation is given in atomic units, which were explained
above for H+

2 . Let us apply (198) to the wavefunction (197) by taking f (r12) =
exp (r12/2)

ψ = N exp(−Zr1) exp(−Zr2) exp
(r12

2

)
(199)

where N is the normalization constant. Since each factor is an eigenfunction of
the corresponding pair of terms in the Hamiltonian (from the first to the sixth), one
must only evaluate the integral

I(Z) = −
∫

Ω
ψ

(
cos θ1,12

∂2ψ

∂r1∂r12
+ cos θ2,21

∂2ψ

∂r2∂r12

)
dΩ

=
Z

2

∫
Ω

(cos θ1,12 + cos θ2,21)ψ2dΩ .

(200)

This integral has been calculated analytically for Z = 2

I(2) =

∫
Ω

(cos θ1,12 + cos θ2,21)e−4r1−4r2+r12dΩ∫
Ω

e−4r1−4r2+r12dΩ

=
152

109
· (201)

Then, the electronic energy of the helium atom (Z = 2) is

E = −22 − 1

4
+

152

109
u −2.85550 Ha (202)

which is−77.702 eV, close to the experimental value of−79.005 eV obtained from
the addition of the first and second ionization potentials of the helium atom [53, p
10-208]. In order to improve this result, we changed ψ for the variational wave-
function ψ = N exp −ar1−ar2+br12

2 . The application of the Schrödinger equation
(198) to this function yields

Ĥψ =

[
−a

2 + b2

4
+
(a

2
− Z

)( 1

r1
+

1

r2

)
+

1− b
r12

+
ab

4
(cos θ1,12 + cos θ2,21)

]
N exp

−ar1 − ar2 + br12

2
·

(203)
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Then

E = 〈ψ|Ĥ|ψ〉 = −a
2 + b2

4
+N2

∫
Ω

[(a
2
− Z

)( 1

r1
+

1

r2

)
+

1− b
r12

+
ab

4
(cos θ1,12 + cos θ2,21)

]
e−ar1−ar2+br12dΩ .

(204)

The normalization constant is obtained from

1 = 〈ψ|ψ〉 = N2

∫
Ω

e−ar1−ar2+br12dΩ . (205)

We introduce the variables u = r1 + r2 and v = r2 − r1. The boundaries of
integration are conditioned by the inequalities |r1−r2| ≤ r12 ≤ r1 +r2, which are
equivalent to −r12 ≤ v ≤ r12 and r12 ≤ u. After the introduction of the volume
element (230) (see Appendix 3), integration is carried out in the following way

〈ψ|ψ〉 = N2π2

∫ +∞

0
e−audu

∫ u

0
ebr12dr12

∫ r12

−r12
(u2 − v2)dv

(206)

=
4N2π2

b5

(
4

a
− 2b2

a3
+

8b4

(a− b)5
− 2b3

(a− b)4
− 2b2

(a− b)3
+

4b

(a− b)2
− 4

a− b

)
.

In the same way, the following results are found∫
Ω

(
1

r1
+

1

r2

)
e−au+br12dΩ =

16π2

b3

(
3b2

(a− b)4
− 2b

(a− b)3

+
1

(a− b)2
− 1

a2

) (207)

∫
Ω

e−au+br12

r12
dΩ =

4π2

b4

(
2b3

(a− b)4
− b

(a− b)2
+

1

a− b
+
b2

a3
− 1

a

)
(208)

∫
Ω

(cos θ1,12 + cos θ2,21)e−au+br12dΩ = 2

∫
Ω

u(r2
12 − v2)e−au+br12

(u2 − v2)r12
dΩ

=
16π2

b4

(
4b3

(a− b)5
− 3b2

(a− b)4
+

2b

(a− b)3
− 1

(a− b)2
+

1

a2

)
·

(209)

The lowest energy obtained from the variational computation is −2.889618 Ha for
a = 3.716 and b = 0.509, that is, −78.63 eV. However, if one applies the old
wrong version of the Hamiltonian

Ĥw = −1

2

∂2

∂r2
1

− 1

r1

∂

∂r1
− 1

2

∂2

∂r2
2

− 1

r2

∂

∂r2
− Z

r1
− Z

r2
+

1

r12
(210)
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to the same wavefunction, one obtains

Ew = 〈ψ|Ĥw|ψ〉 = −a
2

4
+
(a

2
− Z

)
〈ψ| 1

r1
+

1

r2
|ψ〉+ 〈ψ| 1

r12
|ψ〉· (211)

For Z = 2 (helium atom), the minimum energy is Ew = −3.225560 Ha for the
parameters a = 4.85 and b = 0.7, that is, −87.77 eV, not satisfying the variational
theorem because it is lower than the experimental value of −79.005 eV.

These results clearly show the exactness of the three-body Hamiltonian (196) and
the necessity of their mixed terms, because their omission leads to wrong values
of the energy. By introducing the dependence of ψ on r12 through the angular
variables into the Laplacian of two electrons, Hylleraas guessed [27, eq 5] the right
Schrödinger equation for the ground state of helium, whence Pluvinage [46] ex-
tracted in 1950 the right Hamiltonian (equation 3 of [52]) identical to our equation
(198) after writing cos θi as a function of r1, r2 and r12 by means of the cosine
theorem.

In Hylleraas’s review of the two-electron atomic problem [28] of 1964, the terms
containing∇2

12,∇1 ·∇12 and∇2 ·∇12 in (196) are still missing in his Hamiltonian.
Although he had guessed the right expression as function of r1, r2 and r12 [28,
equation 45b], he was not aware that it is only valid for s states having spherical
symmetry, such as the ground state of helium, but not for other states having an-
gular dependence, such as p or d, to which (196) must be applied. With Hylleraas’
Hamiltonian, further authors obtained good results [45,55,60] for the ground state
of helium. Notwithstanding this, the lack of consciousness contributed to spread
wrong Hamiltonians. This error was continued over time by most authors, such as
Pauling (equation 23-32 of [44, p 162]), Dawydow [13, p 306] and Levine (equa-
tion 9.49 of [33]), and propagated to students for many years. In recent handbooks,
such as [2, p 221], [14, p 179], [35, p 255], [37, p 166] and [54, p 590], the wrong
Hamiltonian for the helium atom is still present. The first time we have seen a right
Hamiltonian for multielectron atoms including mixed terms is in Ruiz’s paper [52].
Thanks to it, she could make very good computations of the electronic energy of
the ground state of the boron atom with 0.5% of error. However, this raises the
question about how scholars of quantum mechanics could compute results very
close to the experimental values by means of wrong Hamiltonians. In 1958, Peck-
eris [45] wrote “Pending a derivation of the exact solution, the practice has been to
follow the classical method of Hylleraas [26] ... leading to”, and he then gave the
right Schrödinger equation (198).

In Table 3, the energies calculated for two-electron atomic systems from the vari-
ational treatment of (204) are compared with the experimental ones obtained by
adding the two last ionization potentials of each atom. They show good enough
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Table 3. Electronic energy E of two-electron atomic systems calculated by
means of (204). The values of the variational parameters a and b that mini-
mize the energy together with its minimum value are indicated. Experimen-
tal energies are obtained by adding the last two ionization potentials given
in [53, p 10-208].

Variational treatment Experimental
Z a b E E

(Ha) (eV) (eV)

He 2 3.716 0.509 −2.889618 −78.6305 −79.005147
Li+ 3 5.720 0.528 −7.266819 −197.7402 −198.09429
Be+2 4 7.722 0.537 −13.642909 −371.2424 −371.61526
B+3 5 9.723 0.543 −22.018560 −599.1555 −599.60101
C+4 6 11.724 0.547 −32.393992 −881.4854 −882.08034

agreement. The parameter a approaches 2Z while b approaches 0.5, the values
corresponding to the eigenfunctions of the Hamiltonian (198) without the terms
containing cos θ1,12 and cos θ2,21. On the other hand, the energies calculated from
the wrong Hamiltonian (210) never satisfy the variational theorem (they lie below
the experimental values) and are therefore not listed in this table.

7. Conclusions

The transformation of a quadratic form of the absolute coordinates of three par-
ticles into a quadratic form of their centre-of-mass and relative coordinates has
applications to the colour space, classical dynamics and quantum mechanics. In
the colour space a new set of chromatic coordinates I , J , K are defined as the dif-
ference of pairs of the RGB coordinates, which is a fast arithmetic operation with
low charge of work for a computer CPU. Luma Y together with two of them form
a new system of colour coordinates Y JK whose metric gives different weights to
the three fundamental colours according to the different sensitivities with which
the human eye perceives them. This metric permits defining the norm of a colour,
which is identified with its grey level, and the distance between two colours. In
Newtonian mechanics, the transformation from the absolute to the relative and
centre-of-mass velocities provides a Lagrangian that facilitates obtaining analytic
solutions to the dynamics of the three-body problem. The linear dependence of
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the relative coordinates is introduced as a holonomic constraint by means of a La-
grange multiplier into the Lagrange equations of motion, which are solved for the
system Sun-Earth-Moon. In the first-order approximation, the orbit and the varia-
tions of the orbital parameters of the Moon are well described by means of simple
periodic functions yielding a treatment that supersedes former complex and non-
intuitive theories of Moon’s motion. Calculations show very good agreement with
observations and fully explain the main problem of the lunar theory. In order to find
the Hamiltonian of a quantum system composed by three particles, the transforma-
tion of the absolute coordinates into the centre-of-mass and relative coordinates
is introduced into their weighted Laplacian. In this way, the internal kinetic en-
ergy operator and the Hamiltonian of three particles are obtained and applied to
the calculation of the vibrational energy levels of CO2. Results are consistent with
experimental data, but they differ from the analysis based on the method of normal
modes of vibration, which seems to have contradictions. The internal Hamilto-
nian has also been applied to variational computations of the electronic energy of
the ground state of the hydrogen molecule-ion, the helium atom and some two-
electron atomic systems, and their results agree well with experimental values. On
the other hand, wrong Hamiltonians omitting partial derivatives with respect to
interelectronic distances yield electronic energies below the experimental values
in contradiction with the variational theorem, which states that variational ener-
gies are always higher than or equal to the true energy. The introduction of these
missing terms into the Hamiltonians will provide faster and better computations
yielding a significant economic saving, because nowadays the main part of CPU
computation time in college servers is spent on quantum mechanics calculations.
This article deals only with the three-body problem owing to lack of space. The
more general transformation from the absolute to the relative and centre-of-mass
coordinates of N particles was already given in [21, pp 248 and 256] and its appli-
cations will be the subject of a future paper.

8. Appendices

Appendix 1. The Forced Oscillator

The general problem to be solved is the differential equation of the forced oscillator
under periodic perturbations. It can be described by the differential equation

d2f(t)

dt2
+ ω2

0f(t) = c+

n∑
i=0

(ai cosωit+ bi sinωit) , ωi > 0 (212)
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where all the ωi are distinct frequencies, i.e., ωi 6= ωj for i 6= j, and ai, bi, c ∈ R.
After applying Laplace transforms to this differential equation one finds

s2F (s)− sf(0)− f ′(0) + ω2
0F (s) =

c

s
+

n∑
i=0

ais+ biωi
s2 + ω2

i

(213)

where F (s) =

∫ ∞
0

e−stf(t)dt is the Laplace transform of f(t). By isolating F (s)

we obtain

F (s) =
sf(0) + f ′(0)

s2 + ω2
0

+
c

s(s2 + ω2
0)

+
1

s2 + ω2
0

n∑
i=0

ais+ biωi
s2 + ω2

i

=
sf(0) + f ′(0)

s2 + ω2
0

+
c

ω2
0s
− c s

ω2
0(s2 + ω2

0)
+
a0s+ b0ω0

(s2 + ω2
0)2

+
n∑
i=1

(
1

s2 + ω2
0

− 1

s2 + ω2
i

)
ais+ biωi
ω2
i − ω2

0

(214)

after resolving it into simple fractions. The inverse Laplace transform is

f(t) =
c

ω2
0

+

(
f(0) +

n∑
i=1

ai
ω2
i − ω2

0

+
c

ω2
0

)
cosω0t

+

(
f ′(0)

ω0
+

b0
2ω2

0

+

n∑
i=1

bi
ω2
i − ω2

0

)
sinω0t

+ t
a0 sinω0t− b0 cosω0t

2ω0
+

n∑
i=1

(
ai cosωit

ω2
0 − ω2

i

+
bi sinωit

ω2
0 − ω2

i

)
(215)

which can be written in a more simplified way as

f(t) =
c

ω2
0

+A cosω0t+B sinω0t+ t
a0 sinω0t− b0 cosω0t

2ω0

+
n∑
i=1

(
ai

ω2
0 − ω2

i

cosωit+
bi

ω2
0 − ω2

i

sinωit

)
·

(216)

This treatment can also be applied to any periodic perturbation g(t) with period
T 6= 2π/ω0

d2f(t)

dt2
+ ω2

0f(t) = g(t) (217)
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by resolving g(t) into Fourier series

g(t) = c+
∞∑
i=1

(ai cosωit+ bi sinωit) , ωi =
2iπ

T
· (218)

Then, the solution to the differential equation (217) is

f(t) =
c

ω2
0

+ f(0) cosω0t+ f ′(0) sinω0t

+

∞∑
i=1

(
ai

ω2
0 − ω2

i

cosωit+
bi

ω2
0 − ω2

i

sinωit

) (219)

which is a convergent series because it behaves like the sum of the inverse of the
squares of the natural numbers.

Appendix 2. Some Definite Integrals

Here, we calculate some definite integrals that are useful for quantum calculations
of the system H+

2∫ +∞

R
e−auu2du

∫ R

−R
dv =

2e−aR

a3
(a2R3 + 2aR2 + 2R)∫ +∞

R
e−audu

∫ R

−R
v2dv =

2e−aR

3a
R3

(220)

whence∫ +∞

R

∫ R

−R
e−au(u2 − v2)du ∧ dv =

4e−aR

3a3
(a2R3 + 3aR2 + 3R)∫ +∞

R

∫ R

−R
e−au(u2 + v2)du ∧ dv =

4e−aR

3a3
(2a2R3 + 3aR2 + 3R) .

(221)

We also calculate∫ +∞

R
e−auu2du

∫ R

−R
cosh bv dv =

2e−aR

a3b
(a2R2 + 2aR+ 2) sinh bR

(222)∫ +∞

R
e−audu

∫ R

−R
v2 cosh bv dv =

2e−aR

ab3
[(b2R2 + 2) sinh bR− 2bR cosh bR]
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whence∫ +∞

R

∫ R

−R
e−au(u2 − v2) cosh bv du ∧ dv

=
4e−aR

a3b3
[(ab2R− a2 + b2) sinh bR+ a2bR cosh bR]

(223)

∫ +∞

R

∫ R

−R
e−au(u2 + v2) cosh bv du ∧ dv

=
4e−aR

a3b3
[(a2b2R2 + ab2R+ a2 + b2) sinh bR− a2bR cosh bR] .

(224)

Appendix 3. The Internal Hypervolume Element of the Helium Atom

In order to calculate the internal hypervolume element of the helium atom or any
other two-electron atomic system, we can arbitrarily fix the vector X1 in the z-axis,
and then take spherical coordinates for X2. For fixed values of r1 and r2, ψ only
depends on r12, that is, on θ1,2 so that we can integrate the φ coordinate

dV2 = 2πr2
2 sin θ1,2dr2 ∧ dθ1,2 . (225)

Finally, we integrate the 4π steradians of X1

dΩ = dV1 ∧ dV2 = 8π2r2
1r

2
2 sin θ1,2dr1 ∧ dr2 ∧ dθ1,2 . (226)

Now, let us change the variable θ1,2 for r12. From the cosine theorem we have

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ1,2 (227)

which, by differentiation and exterior product, results in

r12dr1 ∧ dr2 ∧ dr12 = r1r2 sin θ1,2dr1 ∧ dr2 ∧ dθ1,2 (228)

whence
dΩ = 8π2r1r2r12dr1 ∧ dr2 ∧ dr12 . (229)

By introducing the change of variables u = r1 + r2 and v = r2 − r1 we arrive at
the hypervolume element

dΩ = π2(u2 − v2)r12du ∧ dv ∧ dr12 (230)

that was already used by Hylleraas19 [28].
19Hylleraas’ hypervolume element only differs from (230) in a constant factor that plays no role

because it is simplified in the quotient 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉.
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