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Abstract. We study deformations of symplectic structures on a smooth manifold
M via the quasi-Poisson theory. We can deform a given symplectic structure ω with
a HamiltonianG-action to a new symplectic structure ωt parametrized by some ele-
ment t in Λ2g. We can obtain concrete examples for the deformations of symplectic
structures on the complex projective space and the complex Grassmannian. More-
over applying the deformation method to any symplectic toric manifold, we show
that manifolds before and after deformations are isomorphic as a symplectic toric
manifold.
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1. Introduction

In the context of symplectic geometry, deformation-equivalence assumptions and
conditions are often appeared, for example, in the statement of Moser’s theo-
rem [9], Donaldson’s four-six conjecture [10] and so on. However, it seems that a
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method of constructing deformation-equivalent symplectic structures specifically
is not well known. In this paper, we construct a method of producing new sym-
plectic structures deformation-equivalent to a given symplectic structure with a
Hamiltonian action. Our approach to deformations of symplectic structures is
to use quasi-Poisson theory which was introduced by Alekseev and Kosmann-
Schwarzbach [1], and this approach is carried out by using the fact that a moment
map for a symplectic-Hamiltonian action σ is also a moment map for a quasi-
Poisson action σ. The former moment map satisfies conditions for only one sym-
plectic structure, whereas the latter does conditions for a family of quasi-Poisson
structures parametrized by elements in Λ2g. From here we call these elements
twists. Regarding the quasi-Poisson structure induced by a symplectic structure
as that with twist 0, which is denoted by π0, we can find different quasi-Poisson
structures πt which induce symplectic structures ωt by the choice of “good” twists
t. The quasi-Poisson structure inducing a symplectic structure must be a non-
degenerate Poisson structure. We describe the conditions for the quasi-Poisson
structure with a twist t to be a non-degenerate Poisson structure. Our method of
using the family of quasi-Poisson structures is one of interesting geometry frame-
works [1].

From here, we explain briefly the difference among moment maps for symplectic,
Poisson and quasi-Poisson actions on a smooth manifold.

I) Symplectic-Hamiltonian actions

In symplectic geometry, a moment map µ : M → g∗ for a symplectic action σ of a
Lie group G on a symplectic manifold (M,ω) is defined with two conditions: one
is for the symplectic structure ω

dµX = ιXM
ω, X ∈ g. (1)

Here µX(p) := 〈µ(p), X〉 and XM is a vector field on M defined by

XM,p :=
d

dt
σexp tX(p)

∣∣∣∣
t=0

(2)

for p in M . The other is the G-equivariance condition with respect to the action σ
on M and the coadjoint action Ad∗ on g∗

µ ◦ σg = Ad∗g ◦ µ (3)

for all g inG. In this paper, we call symplectic actions with moment maps symplectic-
Hamiltonian actions to distinguish it from other actions with moment maps.

II) Poisson-Hamiltonian actions
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A Poisson Lie group, which was introduced by Drinfel’d [4], is a Lie group with a
Poisson structure π compatible with the group structure. Namely, the structure π
satisfies

πgh = Lg∗πh +Rh∗πg (4)

for any g and h in G, where Lg and Rh are the left and right translations in G by
g and h, respectively. Such a structure is called multiplicative. Then the simply
connected Lie group G∗ called the dual Poisson Lie group is obtained uniquely
from a Poisson Lie group (G, π) and a local action λ of G on G∗ is defined nat-
urally. We call a multiplicative Poisson structure π on G complete if the action λ
is global. Then (G, π) is called a complete Poisson Lie group. A moment map
µ : M → G∗ for a Poisson action σ of a Poisson Lie group (G, π) on a Poisson
manifold (M,πM ) is defined with a condition

XM = π]M (µ∗(XL)) (5)

for any X in g, where XL is the left invariant one-form on G∗ with value X at e.
In this paper, we call Poisson actions with moment maps Poisson-Hamiltonian ac-
tions. If (G, π) is complete, we can also consider the G-equivariance of a moment
map with respect to σ and λ. An equivariant moment map for a Poisson action
of a Poisson Lie group on a complete Poisson manifold is a generalization of a
moment map for a symplectic action on a symplectic manifold, which was given
by Lu in [5].

III) Quasi-Poisson-Hamiltonian actions (See Section 2 for details.)

Quasi-Poisson theory, which was originated with [1] by Alekseev and Kosmann-
Schwarzbach, is a generalization of Poisson theory with Poison actions. More
specifically, the theory gives an unified view for various moment map theories [9],
[5], [7], [2]. In quasi-Poisson geometry, quasi-triples (D,G, h) and its infinites-
imal version, Manin quasi-triples (d, g, h), play important roles. A quasi-triple
(D,G, h) defines a quasi-Poisson Lie group Gh

D and we can obtain the notion of
a quasi-Poisson action of such a quasi-Poisson Lie group Gh

D. A moment map µ
for the action is a map from M into the quotient D/G and satisfies a condition
not for one quasi-Poisson structure but for a family of quasi-Poisson structures
parametrized by elements in Λ2g. In this paper, we call quasi-Poisson actions with
moment maps quasi-Poisson-Hamiltonian actions. An equivariant moment map
for a Poisson action in (II) is an example of a moment map for a quasi-Poisson
action. We use the moment map theory for quasi-Poisson actions to deform sym-
plectic structures on a smooth manifold.

This paper is constructed as follows. It is the contents of Section 2 to review
the moment map theory for quasi-Poisson actions. In Section 3, we describe a
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deformation method of symplectic structures on a smooth manifold via the quasi-
Poisson theory. This method is the subject of this paper. Theorem 14 gives a
sufficient condition for a twist to deform a symplectic structure to a new one. In
addition, Theorem 16 gives a simple condition for a twist to satisfy the assumption
of Theorem 14. In Section 4, we introduce concrete examples and applications
for deformations of symplectic structures. We give deformations of the Fubini-
Study and the Kirillov-Kostant forms on CPn and the complex Grassmannians,
respectively. Moreover, as an application of our deformation, we show that for any
symplectic toric manifold, manifolds before and after deformations are isomorphic
as a symplectic toric manifold.

2. Moment Maps for Quasi-Poisson Actions on Quasi-Poisson
Manifolds

In this section, we shall recall the quasi-Poisson theory [1]. We start with the
definition of quasi-Poisson Lie groups, which is a generalization of Poisson Lie
groups.

Definition 1. Let G be a Lie group with the Lie algebra g. Then a pair (π, ϕ) is
a quasi-Poisson structure on G if a multiplicative two-vector field π on G and an
element ϕ of Λ3g satisfy

1

2
[π, π] = ϕR − ϕL,

[
π, ϕL

]
=
[
π, ϕR

]
= 0 (6)

where the bracket [·, ·] is the Schouten bracket on the multi-vector fields on G, and
ϕL and ϕR denote the left and right invariant three-vector fields on G with value
ϕ at e respectively. A triple (G, π, ϕ) is called a quasi-Poisson Lie group.

Remark 2. In a quasi-Poisson structure (π, ϕ) on G, the two-vector field π is a
multiplicative Poisson structure if ϕ = 0. Namely, (G, π) is a Poisson Lie group.

We use a “quasi-triple” to obtain a quasi-Poisson Lie group. To define a quasi-
triple, we describe its infinitesimal version, a Manin quasi-triple.

Definition 3. Let d be a 2n-dimensional Lie algebra with an invariant non-degene-
rate symmetric bilinear form of signature (n, n), which is denoted by (·|·). Let g be
an n-dimensional Lie subalgebra of d and h be an n-dimensional vector subspace
of d. Then a triple (d, g, h) is a Manin quasi-triple if g is a maximal isotropic
subspace with respect to (·|·) and h is an isotropic complement subspace of g in d.
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Remark 4. For a given Lie algebra d and a Lie subalgebra g of d, a choice of an
isotropic complement subspace h of g in d is not unique.

A Manin quasi-triple (d, g, h) defines the decomposition d = g⊕h. Then the linear
isomorphism

j : g∗ → h, (j(ξ)|x) := 〈ξ, x〉, ξ ∈ g∗, x ∈ g (7)

is determined by the decomposition. We denote the projections from d = g⊕ h to
g and h by pg and ph respectively. We introduce an element ϕh in Λ3g which is
defined by the map from Λ2g∗ to g, denoted by the same letter

ϕh(ξ, η) = pg([j(ξ), j(η)]) (8)

for any ξ, η in g∗. We define the linear map Fh : g→ Λ2g by setting

F ∗h (ξ, η) = j−1(ph([j(ξ), j(η)])) (9)

for any ξ, η in g∗, where F ∗h : Λ2g∗ → g∗ is the dual map of Fh. These elements
will be used later to define a quasi-Poisson structure and a quasi-Poisson action
respectively.

Next we define a quasi-triple (D,G, h) and construct a quasi-Poisson structure on
G using (D,G, h).

Definition 5. Let D be a connected Lie group with a bi-invariant scalar product
with the Lie algebra d andG be a connected closed Lie subgroup ofD with the Lie
algebra g. Let h be a vector subspace of d. Then a triple (D,G, h) is a quasi-triple
if (d, g, h) is a Manin quasi-triple.

A method of constructing a quasi-Poisson structure by a quasi-triple is as follows.
Let (D,G, h) be a quasi-triple with a Manin quasi-triple (d, g, h). Using the inverse
j−1 : h → g∗ of the linear isomorphism (7), we identify d with g ⊕ g∗. Consider
the map

rh : d∗ → d, ξ +X 7→ ξ

for any ξ in g∗ and X in g. This map defines an element rh ∈ d ⊗ d which we
denote by the same letter. We set

πhD := rLh − rRh

where rLh and rRh is denoted as the left and right invariant two-tensors on D with
value rh at the identity element e in D respectively, and we can see that it is a
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multiplicative two-vector field on D. Furthermore, the two-vector field πhD and the
element ϕh defined by (8) satisfy (6). We set

πhG,g := πhD,g (10)

for any g in G. Then we can see that πhG is well-defined and that πhG is a mul-
tiplicative two-vector field on G. Moreover, πhG and ϕh satisfy (6). Therefore
(G, πhG, ϕh) is a quasi-Poisson Lie group. We sometimes denote a Lie group with
such a structure by Gh

D.

From here, we consider only connected quasi-Poisson Lie group Gh
D defined as

above by a quasi-triple (D,G, h). For a smooth manifold M with a two-vector
field πM , a quasi-Poisson action is defined as follows. It is a generalization of
Poisson actions of connected Poisson Lie groups [7].

Definition 6. Let Gh
D be a connected quasi-Poisson Lie group acting on a smooth

manifoldM with a two-vector field πM . The action σ ofG onM is a quasi-Poisson
action if for each X in g

1

2
[πM , πM ] = (ϕh)M , LXM

πM = Fh(X)M (11)

where xM is a fundamental multi-vector field for any x in ∧∗g. Here Fh is the dual
of the map (9). Then a two-vector field πM is called a quasi-Poisson Gh

D-structure
on M and (M,πM ) is called a quasi-Poisson Gh

D-manifold.

Remark 7. A quasi-Poisson Lie group Gh
D with the natural left action is not a

quasi-Poisson Gh
D-manifold. In fact, (ϕh)G = ϕRh .

Finally we define a moment map for a quasi-Poisson action to carry out the defor-
mation of symplectic structures using the moment map theory for quasi-Poisson
actions in Section 3. We need some preliminaries to define a moment map. For
any quasi-triple (D,G, h), since G is a closed subgroup of D, the quotient space
D/G is a smooth manifold, which is the range of moment maps. The action of
D on itself by left multiplication induces an action of D on D/G. We call it
dressing action ofD onD/G and denote the corresponding infinitesimal action by
X 7→ XD/G for X in d. Let pD/G : D → D/G be the natural projection. Then

πhD/G := pD/G∗π
h
D

is a two-vector field onD/G. We consider the dressing action onD/G restricted to
G, and can see that πhD/G satisfies (11). Therefore (D/G, πhD/G) is a quasi-Poisson
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Gh
D-manifold. The following definition is one of the important notions to define

moment maps.

Definition 8. An isotropic complement h of g in d is called admissible at a point s
in D/G if the infinitesimal dressing action restricted to h defines an isomorphism
from h onto Ts(D/G), that is, the map h → Ts(D/G), ξ 7→ ξD/G,s is an iso-
morphism. A quasi-triple (D,G, h) is complete if h is admissible everywhere on
D/G.

It is clear that any isotropic complement h of g is admissible at eG in D/G. If
the complement h is admissible at a point s in D/G, then it is also admissible on
some open neighborhood U of s. For a quasi-triple (D,G, h), we assume that h
is admissible on an open subset U of D/G. Then for any X in g, we define the
one-form X̂h on U by

〈X̂h, ξD/G〉 = (X| ξ) (12)

for any ξ in h. If a quasi-triple (D,G, h) is complete, then X̂h is a global one-
form on D/G. Next we define a twist between isotropic complement subspaces
h and h′ of g in d. Twists also play an important role in the moment map theory
for quasi-Poisson actions. Let j and j′ be the linear isomorphism (7) defined by
Manin quasi-triples (d, g, h) and (d, g, h′) respectively. Consider the map

t := j′ − j : g∗ → d.

It is easy to show that t takes values in g and that it is anti-symmetric, so that
the map t defines an element t in Λ2g which we denote by the same letter. The
element t is called the twist from h to h′. Fix a quasi-triple (D,G, h). Let ht be
an isotropic complement of g with a twist t from h. Then we can represent the
elements ϕht , Fht and πhtG defined by a quasi-triple (D,G, ht) as follows

ϕht = ϕh +
1

2
[t, t] + ϕt, Fht = Fh + Ft, πhtG = πhG + tL − tR (13)

where [t, t] := [tL, tL]e, ϕt(ξ) := ad∗ξt and Ft(X) := adXt. Here ad denotes the
adjoint action of g on Λ2g and ad∗ξt denotes the projection of ad∗ξt onto Λ2g ⊂ Λ2d,
where d∗ including g∗ acts on Λ2d by the coadjoint action. Let {ei} be a basis on
g and {εi} be the basis on h identified with the dual basis of {ei} on g∗ by j−1.
Then the basis {εit} on ht identified with the dual basis of {ei} on g∗ by j′−1 can
be written by

εit = εi + tijej (14)
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where t = 1
2 t
ijei ∧ ej . Moreover components of ϕt with respect to the basis {εi}

are written as

ϕijkt = (Fh)
jk
l t

il − (Fh)
ik
l t

jl. (15)

This indication is useful later. Let (M,πhM ) be a quasi-Poisson Gh
D-manifold. We

set that πhtM := πhM − tM . Then it follows that (M,πhtM ) is a quasi-Poisson Ght
D-

manifold. Now we define moment maps for quasi-Poisson actions.

Definition 9. Let Gh
D be a connected quasi-Poisson Lie group defined by a quasi-

triple (D,G, h) and (M,πhM ) be a quasi-Poisson Gh
D-manifold. Then a map

µ : M → D/G which is equivariant with respect to the G-action on M and
the dressing action on D/G is a moment map for the quasi-Poisson action of Gh

D

on (M,πhM ) if for any open subset Ω ⊂ M and any isotropic complement h′ ad-
missible on µ(Ω)

(πh
′

M )](µ∗(X̂h′)) = XM (16)

on Ω for any X in g. Here 〈(πh
′

M )](α), β〉 := πh
′

M (α, β). We call a quasi-Poisson
action with a moment map a quasi-Poisson-Hamiltonian action.

Actually we need not impose the equation (16) on all admissible complements
because we have the following proposition.

Proposition 10 ([1]) . Let h and h′ be two complements admissible at a point s in
D/G, and p in M be such that µ(p) = s. Then, at the point p, conditions (16) for
h and h′ are equivalent, namely

(πhM )](µ∗(X̂h))p = (πh
′

M )](µ∗(X̂h′))p.

For a quasi-Poisson manifold with a quasi-Poisson-Hamiltonian action, the follow-
ing theorem holds.

Theorem 11 ([1]) . Let (M,πhM ) be a quasi-Poisson manifold on which a quasi-
Poisson Lie group Gh

D defined by a quasi-triple (D,G, h) acts by a quasi-Poisson-
Hamiltonian action σ . For any p in M , if both h′ and h′′ are admissible at µ(p) in
D/G, then

im(πh
′

M )]p = im(πh
′′

M )]p

where µ is a moment map for σ.

Now we show important examples for quasi-Poisson-Hamiltonian actions.
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Example 12 (Poisson manifolds [1], [3], [7]) . Let (M,π) be a Poisson manifold
on which a connected Poisson Lie group (G, πG) acts by a Poisson action σ. Then
(M,π) is a quasi-Poisson (G, πG, 0)-manifold and σ is a quasi-Poisson action
on (M,π). In fact, the Manin triple (g ⊕ g∗, g, g∗) corresponding to (G, πG) is
a Manin quasi-triple and the multiplicative two-vector field πG on G coincides
with the two-vector field πg

∗

G defined by the corresponding quasi-triple (D,G, g∗).
Since [π, π] = 0 and the Poisson action σ satisfies

LXM
π = Fg∗(X)M (17)

for any X in g, the action σ is a quasi-Poisson action by Definition 6. Here the
dual of Fg∗ coincides with the bracket on g∗ defined by (G, πG).

We assume that πG is complete and that there exists a G-equivariant moment map
µ : M → G∗ for the Poisson action σ, where G∗ is the dual Poisson Lie group
of (G, πG) and G acts on G∗ by the dressing action (see Lu and Weinstein [7]).
Then σ is a quasi-Poisson-Hamiltonian action. Actually, by the definition, the map
µ satisfies

π](µ∗(XL)) = XM (18)

for any X in g, where XL is a left-invariant one-form on G∗ with value X at e in
G∗. The quotient manifold D/G is diffeomorphic to G∗ as a manifold. The quasi-
triple (D,G, g∗) is complete since πG is complete. Then one-form X̂g∗ defined
by (12) is global for any X in g. Furthermore the one-form X̂g∗ on D/G ∼= G∗

coincides with XL. The complement g∗ is admissible at any point in D/G, so that
the map µ : M → G∗ ∼= D/G is a moment map for the quasi-Poisson action σ
because of (18) and Proposition 10.

Example 13 (Symplectic manifolds [1]) . Let (M,ω) be a symplectic manifold
on which a connected Lie group G acts by a symplectic-Hamiltonian action σ.
Since the symplectic structure ω induces a Poisson structure π, the pair (M,π)
is a Poisson manifold. Then the action σ is a Poisson action of a trivial Poisson
Lie group (G, 0) on (M,π). The trivial Poisson structure 0 on G is complete and
the quasi-triple corresponding to (G, 0) is (T ∗G,G, g∗), where T ∗G ∼= G × g∗

is the cotangent bundle of G equipped with the group structure of a semi-direct
product with respect to coadjoint action ofG on g∗ (see [1]). The dual groupG∗ of
(G, 0) is the additive group g∗ and the moment map µ for symplectic action σ isG-
equivariant with respect to σ on M and Ad∗ on g∗ by the definition. Furthermore
the dressing action of G on G∗ = g∗ coincides with the coadjoint action Ad∗.
Thus the map µ : M → g∗ = G∗ is a moment map for the Poisson action σ.
Therefore, by Example 12, the map µ : M → g∗ ∼= T ∗G/G is a moment map for
the quasi-Poisson action σ on the quasi-Poisson (G, 0, 0)-manifold (M,π).
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3. Main Result

Here, we carry out deformations of symplectic structures on a smooth manifold.
We use the moment map theory for quasi-Poisson actions for it. A moment map
for the quasi-Poisson action on a quasi-PoissonGh

D-manifold (M,πhM ) are defined

with the conditions for the family of quasi-Poisson Gh′

D-structures
{
πh
′

M

}
h′

on M .

For each complement h′, there exists a twist t in Λ2g such that h′ = ht, so that
the family

{
πh
′

M

}
h′

is regarded as the family parametrized by twist,
{
πhtM

}
t∈Λ2g

.

When the quasi-Poisson Ght
D-structure with twist t = 0 is induced by a given sym-

plectic structure, we will give the method of finding a quasi-Poisson Ght
D-structure

which induced a symplectic structure in
{
πhtM

}
t
. That is, we can deform a given

symplectic structure to a new one by a twist t. This deformation can be carried
out due to using the family

{
πhtM

}
t

as moment map conditions for quasi-Poisson
actions. In this regard, it is described as follows in [1]: It would be interesting to
find a geometric framework for considering the family

{
πhtM

}
t
. Our deformation

is one of the answers for this proposal.

Let (M,ω) be a symplectic manifold on which an n-dimensional connected Lie
group G acts by symplectic-Hamiltonian action σ with a moment map µ : M →
g∗. Let π be the non-degenerate Poisson structure on M induced by ω. Then µ is
a moment map for the quasi-Poisson-Hamiltonian action σ of (G, 0, 0) on (M,π)
by Example 13 in Section 2.

Let (g ⊕ g∗, g, g∗) be the Manin triple corresponding to the trivial Poisson Lie
group (G, 0), where g⊕ g∗ has the Lie bracket

[X,Y ] = [X,Y ]g, [X, ξ] = ad∗Xξ, [ξ, η] = [ξ, η]g∗ = 0 (19)

for any X,Y in g and ξ, η in g∗. Here the bracket [·, ·]g and [·, ·]g∗ are the brack-
ets on g and g∗ respectively. Then the Manin (quasi-)triple (g ⊕ g∗, g, g∗) defines
F := Fg∗ = 0 and ϕ := ϕg∗ = 0 (see (8) and (9)). Since the corresponding quasi-
triple (T ∗G,G, g∗) is complete by Example 12 and Example 13, an isotropic com-
plement g∗ is admissible at any ξ in g∗ by Definition 8, and hence it is admissible
at any ξ in µ(M).

Let g∗t be an isotropic complement of g in g ⊕ g∗ with a twist t in Λ2g from g∗.
When we deform π to πtM := π − tM by a twist t, the quasi-Poisson Lie group
(G, 0, 0) is deformed to (G, πtG, ϕg∗t

), where πtG = tL − tR and ϕg∗t
= 1

2 [t, t] +ϕt
by (13). Moreover it follows from F = 0 and (15) that ϕt = 0. So ϕg∗t

= 1
2 [t, t].
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On the other hand, it follows from Definition 6 that the quasi-Poisson (G, πtG, ϕg∗t
)-

manifold (M,πtM ) satisfies

1

2

[
πtM , π

t
M

]
= (ϕg∗t

)M , LXM
πtM = Fg∗t

(X)M . (20)

If (ϕg∗t
)M = 0, i.e., [t, t]M = 0, then the two-vector field πtM is a Poisson structure

on M by (20).

Assume that a twist t in Λ2g is an r-matrix, namely that [t, t] is ad-invariant. Then
πtG = tL−tR is a multiplicative Poisson structure (see [7]). Therefore (G, πtG) is a
Poisson Lie group. Then it follows that Fg∗t

coincides with the dual of the bracket
map [·, ·]πt

G
: g∗ ∧ g∗ → g∗ on g∗ defined by the Poisson Lie group (G, πtG). In

fact, by the relation (18), we have

F ∗g∗t (ξ, η) = adt](ξ)η − adt](η)ξ (21)

where 〈t](ξ), η〉 := t(ξ, η). In addition, the bracket on g∗ induced by a multi-
plicative Poisson structure defined by an r-matrix is represented by the right-hand
side of (21) (see [6], Ex.2.19). Therefore, since G is connected, the condition
(20) means that the action σ is a Poisson action of (G, πtG) on (M,πtM ) under the
assumption that t is an r-matrix and that [t, t]M = 0.

Let {ei} be a basis on g, a set {εi} the dual basis of {ei} on g∗. Then we can write
by (14)

g∗t = span{εi + tijej ; i = 1, . . . , n} (22)

where t = 1
2 t
ijei ∧ ej in Λ2g. If g∗t is admissible at any point in µ(M), then it

satisfies imπ]p = im(πtM )]p for any p in M by Theorem 11. The non-degeneracy of
π means that imπ]p = TpM for any p inM . Therefore, by the fact that im(πtM )]p =
TpM for any p in M , a quasi-Poisson structure πtM is also non-degenerate.

Here we shall examine the condition for a isotropic complement to be admissible
at a point in g∗ in more detail. Let (ξi) be the linear coordinates for {εi}. Then it
follows that for i = 1, . . . , n

(εi + tijej)g∗ = − ∂

∂ξi
+ tijckjlξk

∂

∂ξl (23)
= −tij

∑
l 6=i

ckljξk
∂

∂ξl
− (1 + tijckijξk)

∂

∂ξi

where X 7→ Xg∗ , for X in g⊕ g∗, is the infinitesimal action of the dressing action
on g∗ ∼= T ∗G/G. The isotropic constant g∗t is admissible at ξ = (ξ1, . . . , ξn) in
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g∗ if and only if the elements (23) form a basis on Tξ(g∗) ∼= g∗. Hence this means
that the matrix

At(ξ) :=


−1− t1jck1jξk −t1jck2jξk · · · −t1jcknjξk
−t2jck1jξk −1− t2jck2jξk · · · −t2jcknjξk

...
...

. . .
...

−tnjck1jξk −tnjck2jξk · · · −1− tnjcknjξk

 (24)

is regular.

Since any non-degenerate Poisson structure on M defines a symplectic structure
on M , the following theorem holds.

Theorem 14. Let (M,ω) be a symplectic manifold on which a connected Lie group
G with the Lie algebra g∗ acts by a symplectic-Hamiltonian action σ, and µ a mo-
ment map for σ. Then the following holds

1. If a twist t in Λ2g satisfies that [t, t]M = 0, then t deforms the Poisson
structure π induced by ω to a Poisson structure πtM := π − tM . Moreover,
if t is an r-matrix, then σ is a Poisson action of (G, πtG) on (M,πtM ), where
πtG = tL − tR.

2. For a twist t in Λ2g, if the isotropic complement g∗t is admissible on µ(M),
then t deforms the non-degenerate two-vector field π induced by ω to a non-
degenerate two-vector field πtM . This condition is equivalent to that the ma-
trix At(ξ) defined by (24) is regular for any ξ in µ(M).

Therefore, if a twist t satisfies both assumptions in Theorem 14, then t deforms ω
to a symplectic structure ωt induced by the non-degenerate Poisson structure πtM .

Remarks 15. i) In Section 4, we will show that the condition in Theorem 14 is not
a necessary condition for πtM to be a non-degenerate Poisson structure.

ii) If a twist t satisfies both assumptions in Theorem 14 and is an r-matrix, then the
Poisson action σ of (G, πtG) on a symplectic manifold (M,ωt) has a moment map
(although not necessarily G-equivariant) due to Theorem 3.16 in [6].

The following theorem gives a sufficient condition for a twist to deform a symplec-
tic structure in the sense of Theorem 14.

Theorem 16. Let (M,ω) be a symplectic manifold on which an n-dimensional
connected Lie group G acts by a symplectic-Hamiltonian action σ. Assume that
X,Y in g satisfy [X,Y ] = 0. Then the twist t = 1

2X ∧ Y in Λ2g deforms the
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symplectic structure ω to a symplectic structure ωt. For example, a twist t in Λ2h,
where h is a Cartan subalgebra of g, satisfies the assumption of the theorem.

Proof: For X and Y in g, we set

X = Xiei, Y = Y jej

where {ei}ni=1 is a basis on the Lie algebra g. Then since [X,Y ] = XiY jckijek =
0, we obtain the following conditions:

XiY jckij = 0 for any k

where ckij are the structure constants of g with respect to the basis {ei}. Moreover,
since we have

[t, t] =

[
1

2
X ∧ Y, 1

2
X ∧ Y

]
=

1

2
X ∧ [X,Y ] ∧ Y = 0

the twist t is an r-matrix such that [t, t]M = 0 obviously. Hence πtM is a Poisson
structure, and if πtM is non-degenerate, then the twist t induces the symplectic
structure ωt.

We shall show the non-degeneracy of πtM . Let µ be the moment map for a given
symplectic-Hamiltonian action ψ. We must show that g∗t is admissible at any point
in µ(M). We prove a stronger condition that the quasi-triple (T ∗G,G, g∗t ) is com-
plete.

Let {εi} be the dual basis of {ei} on g∗ and (ξi) be the linear coordinates for {εi}.
Since t = 1

2X
iY jei ∧ ej

g∗t = span{εi +XiY jej ; i = 1, · · ·n}.

Then it follows that for i = 1, . . . , n

(εi +XiY jej)g∗ = −XiY j
∑
l 6=i

ckljξk
∂

∂ξl
− (1 +XiY jckijξk)

∂

∂ξi
· (25)

The quasi-triple (T ∗G,G, g∗t ) is complete if and only if the elements (25) form a
basis on Tξ(g∗) ∼= g∗ for any ξ = (ξ1, . . . , ξn). Therefore we shall prove that the
matrix 

−1−X1Y jck1jξk −X1Y jck2jξk · · · −X1Y jcknjξk
−X2Y jck1jξk −1−X2Y jck2jξk · · · −X2Y jcknjξk

...
...

. . .
...

−XnY jck1jξk −XnY jck2jξk · · · −1−XnY jcknjξk

 (26)
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is regular. In the case of X = 0, this matrix is equal to the opposite of the identity
matrix, so that it is regular. In the case of X 6= 0, using XiY jckij = 0, we can
transform the matrix to the opposite of the identity matrix. Thus the matrix (26)
is regular. Therefore g∗t is admissible at any point in g∗. That is, (T ∗G,G, g∗t ) is
complete. �

Remark 17. We try to generalize the assumption of Theorem 16 and consider
X,Y in g such that [X,Y ] = aX + bY (a, b ∈ R), that is, the subspace spanned
by X,Y is also a Lie subalgebra. We set t = 1

2X ∧ Y in Λ2g. Since [t, t] = 0, the
twist t is an r-matrix such that [t, t]M = 0. Therefore the symplectic action ψ is a
Poisson action of (G, πtG) on (M,πtM ). Then we research whether g∗t is admissible
at each point in g∗. Similarly to the proof of Theorem 16, a matrix to check the
regularity can be deformed to

−1− (aXk + bY k)ξk 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 .

Therefore this matrix is regular if and only if

−1− (aXk + bY k)ξk 6= 0.

In the case of [X,Y ] = 0, by Theorem 16, the space g∗t is admissible at all points
in g∗. In the case of [X,Y ] 6= 0, the above condition means

〈[X,Y ], ξ〉 6= −1.

Let ξ′ be an element satisfying that 〈[X,Y ], ξ′〉 6= 0. By setting

ξ := − ξ′

〈[X,Y ], ξ′〉

we obtain 〈[X,Y ], ξ〉 = −1, so that g∗t is not admissible at ξ. Eventually, to make
sure of the admissibility of g∗t , we need check whether such a point ξ is included in
µ(M).

4. Examples on CPn and Gr(r,Cn)

In this section, we compute specifically which element t in Λ2g defines a different
symplectic structure ωt from given one ω on a smooth manifold. One example is
the complex projective line (CP1, ωFS), where ωFS is the Fubini-Study form, with
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an action of SU(2). The other is the complex Grassmannian (Gr(r,Cn), ωKK),
where ωKK is the Kirillov-Kostant form, with an action of SU(n+ 1).

First we review the relation between SU(n+ 1) and CPn. For any [z1 : · · · : zn+1]
in CPn and g = (aij) in SU(n+ 1), the action is given by

g · [z1 : · · · : zn+1] :=

n+1∑
j=1

a1jzj : · · · :
n+1∑
j=1

an+1,jzj

 .
The isotropic subgroup of [1 : 0 : · · · : 0] is

S(U(1)×U(n)) =

{(
eiθ O
O B

)
∈ SU(n+ 1); θ ∈ R, B ∈ U(n)

}
.

Therefore it follows

SU(n+ 1)/S(U(1)×U(n)) ∼= CPn.

The complex projective space CPn has the coordinate neighborhood system {(Ui, ϕi)}i
consisting of n+ 1 open sets Ui given by

Ui := {[z1 : · · · : zn+1] ∈ CPn ; zi 6= 0}, ϕi : Ui → Cn ∼= R2n

[z1 : · · · : zn+1] 7→
(
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
7→
(
<z1

zi
,=z1

zi
, . . . ,<zn+1

zi
,=zn+1

zi

)
for i = 1, . . . , n+ 1. By using this coordinate system, the Fubini-Study form ωFS

on CPn is defined by setting

ϕ∗j

(
i

2
∂∂̄ log

(∑
k

|zk|2 + 1

))

on each Uj .

The action of SU(n+1) on (CPn, ωFS) is a symplectic-Hamiltonian action and its
moment map µ satisfies

〈µ([z1 : · · · : zn+1]), X〉 =
1

2
im
〈t(z1, . . . , zn+1), Xt(z1, . . . , zn+1)〉
〈t(z1, . . . , zn+1), t(z1, . . . , zn+1)〉
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for any [z1 : · · · : zn+1] in CPn and X in su(n+ 1). We use

Xjk : the (j, k)-element is 1, the (k, j)-element is −1, and the rest are 0

Yjk : the (j, k)- and (k, j)-elements are i, and the rest are 0

Zl : the (l, l)–element is i, the (n+ 1, n+ 1)-element is −i

and the rest are 0

for 1 ≤ j < k ≤ n+ 1 and l = 1, . . . , n, as a basis of su(n+ 1) which is defined
by a Chevalley basis of the complexified Lie algebra sl(n + 1,C) of su(n + 1).
The subspace spanned by Zl’s is a Cartan subalgebra of su(n+ 1).

We consider the case of n = 1. The complex projective line CP1 has the coordinate
neighborhood system {(U1, ϕ1), (U2, ϕ2)}. The Fubini-Study form ωFS on CP1 is

ωFS =
dx1 ∧ dy1

(x2
1 + y2

1 + 1)2

on U1, where (x1, y1) :=
(
< z2z1 ,=

z2
z1

)
. Then e1 := X12, e2 := Y12 and e3 := Z1

form a basis of su(2). Let {εi} be the dual basis of su(2)∗. We obtain

µ(x1, y1) =
y1

1 + x2
1 + y2

1

ε1 +
x1

1 + x2
1 + y2

1

ε2 +
1− x2

1 − y2
1

2(1 + x2
1 + y2

1)
ε3.

Hence µ(CP1) ⊂ su(2)∗ is the two-sphere with center at the origin and with radius
1
2 .

Let (ξi) be the linear coordinates for {εi}. We set g := su(2). Any twist t is an
r-matrix on g because e1 ∧ e2 ∧ e3 is ad-invariant. Since CP1 is two-dimensional,
it follows that [t, t]CP1 = 0. Therefore we can deform the Poisson structure πFS

induced by ωFS to a Poisson structure πtFS on CP1 by t and the natural action is a
Poisson action of (SU(2), tL − tR).

Let g∗t be the space twisted g∗ by t in Λ2g. We consider what is the condition for t
under which g∗t is admissible on µ(CP1). For any twist

t =
∑
i<j

1

2
λijei ∧ ej ∈ Λ2g, λij ∈ R

we obtain

g∗t = span{ε1 + λ12e2 + λ13e3, ε
2 − λ12e1 + λ13e3, ε

3 − λ13e1 − λ23e2}.

Then g∗t is admissible at ξ = (ξ1, ξ2, ξ3) in g∗ if and only if the matrix

At(ξ) =

1 + 2λ12ξ3 − 2λ13ξ2 2λ13ξ1 −2λ12ξ1

−2λ23ξ2 1 + 2λ12ξ3 + 2λ23ξ1 −2λ12ξ2

−2λ23ξ3 2λ13ξ3 1− 2λ13ξ2 + 2λ23ξ1


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is regular. By computing the determinant of the matrix, we have

detAt(ξ) = (1 + 2λ23ξ1 − 2λ13ξ2 + 2λ12ξ3)2.

So the complement g∗t is admissible at ξ = (ξ1, ξ2, ξ3) if and only if 1 + 2λ23ξ1 −
2λ13ξ2 + 2λ12ξ3 6= 0.

Therefore g∗t is admissible on µ(CP1) if and only if the “non-admissible surface”
{ξ = (ξ1, ξ2, ξ3) ∈ g∗ ; 1 + 2λ23ξ1 − 2λ13ξ2 + 2λ12ξ3 6= 0} for g∗t and the image
µ(CP1) have no common point. Since µ(CP1) is the two-sphere with center at
the origin and with radius 1

2 , we can see that this condition is equivalent to the
condition

λ2
12 + λ2

13 + λ2
23 < 1.

From the above discussion, we obtain the following theorem.

Theorem 18. If a twist t :=
∑

i<j
1
2λijei ∧ ej satisfies λ2

12 + λ2
13 + λ2

23 < 1, then
the Fubini-Study form ωFS on CP1 can be deformed by t in the sense of Section 3.

We shall see an example of a concrete twists on CP1.

Example 19. We use a twist t = 1
2X12 ∧ Y12 in Λ2su(2) and a real number λ,

where −1 < λ < 1. The symplectic structure ωλtFS deformed ωFS by λt is written
by

ωλtFS =

{(
1 +

1

2
λ

)
(x2

1 + y2
1)2 + 2(x2

1 + y2
1) +

(
1− 1

2
λ

)}−1

dx1 ∧ dy1

on U1. Then it follows from an elementary calculation that the symplectic volume
vol(CP1, ωλtFS) of (CP1, ωλtFS) is

vol(CP1, ωλtFS) =

{
π, λ = 0
π
λ log

∣∣∣2+λ
2−λ

∣∣∣ , λ 6= 0.
(27)

Next, we consider a cohomology class of each ωλtFS. Since H2
DR(CP1) = R, there

exists a real number kλ in R such that
[
ωλtFS

]
= kλ [ωFS]. By integrating, we obtain

kλ =
1

λ
log

∣∣∣∣2 + λ

2− λ

∣∣∣∣
where λ 6= 0. Since the function kλ of λ is smooth, even and strictly monotone
increasing when λ is positive, ωλtFS and ω−λtFS are cohomologous. This means that
we obtain a lot of non-trivial symplectic structures different from original ωFS and
non-trivial symplectomorphisms (M,ωλtFS) −→ (M,ω−λtFS ).
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In the above example, the condition −1 < λ < 1 is not a necessary condition
for ωλtFS to be a symplectic structure. In fact, it follows that ωλtFS is a symplectic
structure for −2 < λ < 2. Therefore in general, the non-degeneracy for πt is not
equivalent to that the isotropic complement g∗t is admissible on µ(M).

The next example is the complex Grassmannian Gr(r,Cn) := SU(n)/(S(U(r) ×
U(n− r))) with the Kirillov-Kostant form ωKK. With respect to ωKK, the natural
SU(n)-action is symplectic-Hamiltonian.

Then we consider the following r-matrix of su(n)

t =
1

4n

∑
1≤i<j≤n

Xij ∧ Yij

where the r-matrix t is the canonical one defined on any compact semi-simple Lie
algebra over R (for example, see [4]). This is an r-matrix such that [t, t] 6= 0. We
show that it satisfies [t, t]M = 0, where M := Gr(r,Cn). Since t is an r-matrix,
the element [t, t] is ad-invariant by the definition. Therefore [t, t] is Ad-invariant
because SU(n) is connected. By the definition of the SU(n)-action on Gr(r,Cn),
it follows that

[t, t]M = p∗[t, t]
R

where p : SU(n) → Gr(r,Cn) = SU(n)/(S(U(r) × U(n − r))) is the natural
projection. Since any point m in Gr(r,Cn) is represented by gH , where g is in
SU(n) and H := S(U(r)×U(n− r)), we compute

[t, t]M,m = p∗[t, t]
R
g = p∗Rg∗[t, t].

Because of the Ad-invariance of [t, t], we obtain

p∗Rg∗[t, t] = p∗Lg∗Lg−1∗Rg∗[t, t] = p∗Lg∗Adg−1 [t, t] = p∗Lg∗[t, t].

Let h be the Lie algebra of H . For any X in h and g in SU(n), we compute

p∗Lg∗X = p∗Lg∗
d

ds
exp sX

∣∣∣∣
s=0

=
d

ds
(g exp sX)H

∣∣∣∣
s=0

=
d

ds
gH

∣∣∣∣
s=0

= 0

where we have used that exp sX is in H in the third equality. Therefore it holds
that [t, t]M = 0 if each term of [t, t] includes elements in h. We notice that

h = spanR{Xij , Yij , Zk ; 1 ≤ i < j ≤ r or r+1 ≤ i < j ≤ n, k = 1, . . . , n−1}.

If Xij , Yij ∈ h, then

[ · , Xij ∧ Yij ] = [ · , Xij ] ∧ Yij −Xij ∧ [ · , Yij ] .
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So these terms include an element in h. Hence we investigate terms of the form

[Xij ∧ Yij , Xkl ∧ Ykl] = − [Xij , Xkl] ∧ Yij ∧ Ykl −Xij ∧ [Yij , Xkl] ∧ Ykl
−Yij ∧ [Xij , Ykl] ∧Xkl −Xij ∧Xkl ∧ [Yij , Ykl]

where Xij , Yij , Xkl and Ykl are not in h. In the case of i = k and j = l, we get

[Xij , Xij ] = [Yij , Yij ] = 0, [Xij , Yij ] = 2(Zi − Zj) ∈ h

where we set Zn := 0. In the case of i = k and j < l (resp. l < j), since it follows
that r + 1 ≤ j, l ≤ n, we obtain

[Xij , Xkl] = [Yij , Ykl] = −Xjl, respectively Xlj ∈ h

[Yij , Xkl] = [Ykl, Xij ] = −Yjl, respectively Ylj ∈ h.

We can also show the case of i < k respectively k < i and j = l in the similar way.
Therefore all terms of [t, t] include elements in h, so that [t, t]M = 0. Therefore
πtKK is Poisson by Theorem 14, where πKK is the Poisson structure induced by
ωKK. Since Gr(r,Cn) is compact, for sufficiently small |λ|, the Poisson structure
πλtKK is non-degenerate. Example 19 is the special case of this example.

5. Symplectic Toric Manifolds

In this section, we consider deformations of symplectic toric manifolds, i.e., 2n-
dimensional symplectic manifolds with effective Hamiltonian n-dimensional torus
actions. First, we consider the case of CPn.

Example 20. A symplectic toric manifold CPn has the torus action σ

(eiθ2 , eiθ3 , . . . , eiθn+1) · [z1 : · · · : zn+1] := [z1 : eiθ2z2 : · · · : eiθn+1zn+1]

for any θi in R. The moment map µ : CPn → Rn for this action on (CPn, ωFS) is

µ([z1 : · · · : zn+1]) := −1

2

(
|z2|2

|z|2
, . . . ,

|zn+1|2

|z|2

)
where z = (z1, . . . , zn+1) in Cn. We set X1 := (1, 0, . . . , 0), . . . , Xn := (0, . . . ,
0, 1). Since Tn is commutative, the brackets [Xi, Xj ] vanish for all i and j. Hence
for any λ12 in R, the twist t12 := λ12X1 ∧X2 deforms ωFS to a symplectic struc-
ture ωt12FS induced by a Poisson structure πt12FS := πFS − (t12)CPn by Theorem 16.
On the other hand it follows πtTn := tL − tR = 0 for any twist t by the commu-
tativity of Tn. Therefore, after deformation, the multiplicative Poisson structure
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0 on Tn is invariant and the action σ is a symplectic action. Then moreover σ
is a symplectic-Hamiltonian action on (CPn, ωFS)t12 . In fact, since the action σ
is symplectic-Hamiltonian on (CPn, ωFS), the actions of each of the factor circles
is Hamiltonian. Since H1

DR(CPn;R) = H2n−1
DR (CPn;R) = {0}, the condition

means that the actions of each of the factor circles have fixed point (see [9, Theo-
rem 5.5]). This condition is independent on a symplectic structure on CPn, so that
the action σ is symplectic-Hamiltonian on (CPn, ωt12FS ). Therefore, by Theorem 16
again, the twist t13 := λ13X1 ∧X3 deforms ωt12FS to (ωt12FS )t13 = ωt12+t13

FS induced
by (πt12FS )t13 = πt12+t13

FS . Then we see that the trivial Poisson structure on Tn is
invariant and that the action σ is symplectic-Hamiltonian. By repeating this oper-
ation, it follows that we can deform ωFS to ωtFS for any twist t =

∑
i<j λijXi∧Xj

and that σ is symplectic-Hamiltonian. Hence (CPn, ωtFS) is a symplectic toric
manifold. On U1, since we obtain

(Xi ∧Xj)CPn = yiyj
∂

∂xi
∧ ∂

∂xj
− yixj

∂

∂xi
∧ ∂

∂yj

−xiyj
∂

∂yi
∧ ∂

∂xj
+ xixj

∂

∂yi
∧ ∂

∂yj
, 1 ≤ i < j ≤ n

where xi := < zi+1

z1
and yi := = zi+1

z1
, for example on CP2, it follows that

ωt12FS = ωFS +
λ12

(
(x2

1 + y2
1)(x2

2 + y2
2)− 1

)
(x2

1 + y2
1 + x2

2 + y2
2 + 1)4

(x1x2dx1 ∧ dx2

+x1y2dx1 ∧ dy2 + y1x2dy1 ∧ dx2 + y1y2dy1 ∧ dy2).

Obviously the above example can be generalized to any 2n-dimensional compact
connected symplectic toric manifold (M,ω) satisfying that the map

∧ωn−1 : H1
DR(M ;R) −→ H2n−1

DR (M ;R) (28)

is an isomorphism, which is the assumption of Theorem 5.5 in [9]. Moreover the
following theorem holds.

Theorem 21. For any 2n-dimensional compact connected symplectic toric mani-
fold (M,ω) such that the map (28) is an isomorphism, and any twist t in Λ2Rn,
the manifold (M,ωt) deformed by t in the sense of Section 3 is a symplectic toric
manifold with the same action as on (M,ω). Moreover (M,ωt) is isomorphic to
(M,ω) as a symplectic toric manifold. Therefore each element in Λ2Rn gives a
canonical transformation on (M,ω).

Proof: We shall prove the latter claim. It is sufficient to prove the claim for t =
X1 ∧ X2 (Xi ∈ Rn) due to the same argument as in Example 20. Let σ be
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the symplectic-Hamiltonian action on the symplectic toric manifold (M,ω) with a
moment map µ. Then, by Delzant theorem (for example, see [9]), it is sufficient to
show that the action σ on (M,ωt) has the same moment map µ. Since the map µ
satisfies (3), the map µ is a moment map on (M,ωt) if and only if

dµX = ιXM
ωt (29)

for any X in Rn. This condition is equivalent to

t]MdµX = 0 (30)

for any X in Rn since µ satisfies (1) with respect to ω. Then we calculate

t]MdµX = ω(X1,M , XM )X2,M − ω(X2,M , XM )X1,M .

Using the facts that for any Hamiltonian G-space (M,ω,G, µ),

ω(YM , ZM ) = µ[Y,Z]

for any Y and Z in g, and that the Lie algebra Rn is commutative, we obtain the
condition (30). �
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