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Abstract. A general model is formulated for a universal fleet of all unmanned
vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles
(USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and
control system. Based on the Newton-Euler dynamics of each vehicle, a control
system for the universal autonomous fleet is designed as a combined Lagrangian
and Hamiltonian form. The associated continuous system representing a very large
universal fleet is given in Appendix in the form of the Kähler-Ricci flow.
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1. Introduction

As a motivation for the present work, consider a hypothetical city coastline that
has been attacked either by some natural disaster or by a terrorist group, leaving
many victims both on the ground and in the sea. Fast recovery action is necessary,
but the situation is still dangerous for humans. So, the only option for the quick re-
sponse is to send swarms of many heterogenous robots to perform an autonomous
search-and-rescue operation. The purpose of this paper is to develop a general
formal model for such a large-scale multi-robot operation, including swarms of
small UGVs (cars) and UAVs (quadcopters), as well as fleets of USVs (boats) and
UUVs (submarines). This paper is a natural extension of [14], where a symplectic
Hamiltonian dynamics [6, 9] and control [7, 11] model for swarms of UGVs and
UAVs only was developed. The reason for this extension will be articulated below.
Although there are not many realistic scenarios where such a universal autonomous
fleet would be needed, the existence of such a general model would provide a new
capability that can be easily specialized to suit a wide range of specific require-
ments.

To start this ambitious modeling attempt that would cover all possible unmanned
vehicles, we first recall a well-known fact from physics that all conservative sys-
tems can be described by either Lagrangian or Hamiltonian formalisms, so that
each degree-of-freedom (DOF) is governed either by a single second-order La-
grangian equation of motion or by two first-order Hamiltonian equations of mo-
tion. More generally, most non-conservative engineering systems (of mechani-
cal, electrical, thermal or hydraulic nature, or their combination) can be described
by dissipative and forced Lagrangian or Hamiltonian equations of motion. Even
more generally, in modern geometric control theory (see [11] and the references
therein), any nonlinear control system can be formulated as a general Lagrangian or
Hamiltonian control system, where appropriate controllers (including, e.g., a linear
PID controller, a quadratic Kalman regulator/filter, or higher-order nonlinear Lie-
derivative controllers) are added to dissipative and forced Lagrangian or Hamilto-
nian dynamics, to give the nonlinear generalization of Kalman’s state-space con-
trol theory. Still, it is possible to generalize this modeling approach and describe
any nonlinear high-dimensional system as a union of Lagrangian and Hamiltonian
control systems. This is the objective of this paper, called the Kähler dynamics,
introduced in [12] and developed in [13].

In terms of modern mechanics (see, e.g. [7] and the references therein), based on
the concept of the configuration n-manifoldM (that includes all DOFs coordinated
by generalized coordinates xi(t), (i = 1, ..., n) in the swarm/fleet under consider-
ation; see Figure 1 in [14]), the behavior of all vehicles is governed by the velocity
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vector-field vi(t), which is formally defined as a cross-section of the tangent bundle
TM of the configuration manifoldM . Thus, the 2n-manifold TM , coordinated by
[xi(t), vi(t)], is called the velocity phase space and it is the stage for (dissipative,
forced and controlled) Lagrangian dynamics, naturally endowed with Riemannian
geometry. Alternatively, the behavior of all vehicles is also governed by the mo-
mentum covector-field pi(t), which is formally defined as a cross-section of the
cotangent bundle T ∗M of the configuration manifold M . Thus, the 2n-manifold
T ∗M , coordinated by [xi(t), pi(t)], is called the momentum phase space which is
the stage for (dissipative, forced and controlled) Hamiltonian dynamics, naturally
endowed with symplectic geometry.

For some engineering/robotics systems, like e.g., vehicles moving in the air, the
Hamiltonian approach (presented in [14]) is stronger, as it allows both force and
velocity controllers, while the Lagrangian approach allows only force controllers.
However, for other systems like vehicles moving in the water, the Lagrangian
(or, more precisely, Kirchhoff-Lagrangian) approach is the only possibility. In
general, if we have a large-scale complex system, including four kinds of robots
(namely, ground and air vehicles, boats and submarines), in which some compo-
nents (ground and air vehicles) can be more naturally modeled via the Hamiltonian
formalism, while other components (boats and submarines) can be more naturally
modeled via the Lagrangian formalism, the union of both approaches, represent-
ing “the best of both worlds”, would clearly be preferable, naturally leading to the
universal autonomous ground-air-sea-underwater operation model.

Formally, both the standard formalisms, Lagrangian boats + submarines and Hamil-
tonian ground + air vehicles, can be unified in the basic definition of the multi-
geometric Kähler manifold K

K = TM + i T ∗M (1)

which states that the joint Kähler 4n-manifold is defined as the complexified sum
(i.e., the sum with the imaginary unit: i =

√
−1) of the Lagrangian 2n-manifold

TM (with Riemannian geometry) and the Hamiltonian 2n-manifold T ∗M (with
symplectic geometry). The Kähler dynamics are comprised of three mutually com-
patible geometrical and dynamical structures: (i) Lagrangian dynamics on the Rie-
mannian tangent bundle TM , (ii) Hamiltonian dynamics on the symplectic cotan-
gent bundle T ∗M , and (iii) general complex-valued dynamics on their complex-
ified sum manifold K. Put simply, this universal approach can be described as
follows: the output from the Lagrangian dynamics/control is a set of real num-
bers A and the output from the Hamiltonian dynamics/control is another set of real
numbers B; their complexified sum: C = A + iB is the set of complex numbers
that represents the Kähler dynamics.
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In this paper, using the Kähler dynamics formalism, we will develop a general
model for the universal unmanned ground-air-sea-underwater operation. Being an
extension of the previous purely-Hamiltonian model, in the present paper we will
mainly focus on the Lagrangian side of this universal unmanned vehicles problem.

2. Lagrangian and Hamiltonian Fleets

2.1. Individual Unmanned Vehicles: Basic Newton-Euler Mechanics

All unmanned/autonomous vehicles are Newtonian rigid bodies moving in 3D
space. Formally, each vehicle is represented by a 6-parameter Euclidean Lie group
SE(3) of rigid motions in 3D space R3, which consists of isometries of R3 and
is defined as a semidirect (noncommutative) product of 3D rotations SO(3) and
3D translations R3: SE(3) := SO(3) B R3 (see [9, 11, 17, 18] and the references
therein).

Basic Newton-Euler mechanics for each unmanned SE(3)-vehicle are given in vec-
tor form (with the overdot representing time derivative) as

Newton : ṗ ≡ Mv̇ = F + p× ω
Euler : π̇ ≡ Iω̇ = T + π × ω + p× v

(2)

and in tensor form, using Einstein’s summation convention over repeated indices
and the Levi-Civita permutation symbol εjik, as the following system of ordinary
differential equations (ODEs)

ṗi ≡Mij v̇
j = Fi + εjikpjω

k, i, j, k = 1, 2, 3

π̇i ≡ Iijω̇j = Ti + εjikπjω
k + εjikpjv

k.
(3)

In equations (2) and (3) the diagonal mass and inertia matrices

M ≡Mij = diag{m1,m2,m3} and I ≡ Iij = diag{I1, I2, I3}

define the vehicle’s mass–inertia distribution. The vehicle’s linear and angular
velocity vector fields are

v = ẋ ≡ vi = ẋi ≡ [v1, v2, v3]T = [ẋ1, ẋ2, ẋ3]T

ω = θ̇ ≡ ωi = θ̇i ≡ [ω1, ω2, ω3]T = [θ̇1, θ̇2, θ̇3]T

where xi are Cartesian coordinates of the vehicles center-of mass (CoM) and θi

are its Euler angles (roll, pitch and yaw). The co-vector fields (or one-forms) of
driving, gravitational and other external forces and torques acting on the vehicle
are

F ≡ Fi = [F1, F2, F3] and T ≡ Ti = [T1, T2, T3]
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while the corresponding linear and angular momentum co-vector fields are

p = Mv ≡ pi = [p1, p2, p3] = [m1v1,m2v2,m2v2]

π = Iω ≡ πi = [π1, π2, π3] = [I1ω1, I2ω2, I3ω3].

Now we move to a more general, Lagrangian formalism – in this subsection ap-
plied to individual vehicles only, to be generalized to the whole fleet in the next
subsection. equations (2) and (3) can be derived as Lagrangian equations of mo-
tion from the Lagrangian function L = L(v=ẋ;ω=θ̇) representing (translational +
rotational) kinetic energy of each individual vehicle

L =
1

2
vTMv +

1

2
ωT Iω =

1

2
Mijv

ivj +
1

2
Iijω

iωj . (4)

From this Lagrangian function, we can immediately derive the conservative (dissi-
pation-free and force-free) Lagrangian equations of motion for translations and
rotations, respectively, in both vector and tensor form (using index notation for
partial derivatives: Lz = ∂L

∂z )

L̇v = Lx ⇔ L̇vi = Lxi and L̇ω = Lθ ⇔ L̇ωi = Lθi (5)

(this conservative approach is formally derived and explained in a more general
settings in the next subsection).

Standard engineering extensions of conservative Lagrangian dynamics (5) include
friction forces derived from the Rayleigh dissipative function R = R(x, v) =
1
2

(
vixi

)2, and other external forces and torques, including gradient ones Evi and
Eωi derived from the vehicle’s total potential energy E(x, θ). In such a way, we
obtain the dissipative and forced Lagrangian dynamics in vector and tensor form

Translations : L̇v +Rv = Lx + F ⇐⇒ L̇vi +Rvi = Lxi + Fi
Rotations : L̇ω +Rω = Lθ + T ⇐⇒ L̇ωi +Rωi = Lθi + Ti .

(6)

However, for the case of a vehicle immersed in water, equations (6) still need to be
extended into the so-called Kirchhoff–Lagrangian equations, due to the addition
of strong water influences which result in several mixed cross-products (see e.g.
[15, 16] or the original work of Kirchhoff in German), which can be written in
vector form

L̇v +Rv = Lx + F + Lv × ω
(7)

L̇ω +Rω = Lθ + T + Lω × ω + Lv × v

and in tensor form
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L̇vi +Rvi = Lxi + Fi + εjikLvjω
k

(8)
L̇ωi +Rωi = Lθi + Ti + εjikLωjωk + εjikLvjv

k .

Using equations (4)–(8), each vehicle’s linear and angular momentum co-vector
fields (or, one-forms) are defined as

p = Lv ⇔ pi = Lvi , π = Lω ⇔ πi = Lωi

with their corresponding time derivatives defining conservative force F con and
torque T con one-forms (different from external/dissipative ones, F and T )

F con ≡ ṗ = L̇v ⇔ F con
i ≡ ṗi = L̇vi

T con ≡ π̇ = L̇ω ⇔ T con
i ≡ π̇i = L̇ωi .

2.2. Lagrangian Control for the Water Fleet

General Lagrangian dynamics for a large unmanned water fleet consisting of m
vehicles (boats-USVs and submarines-UUVs, each with 6 DOFs) are defined on
the fleet’s configuration n-manifold Mwat =

∏m
k=1 SE(3)k (similar to the Figure

1 in [14]) with local coordinates xi(t),for i = 1, ..., n = 6m and velocity vector-
fields defined on its Riemannian tangent bundle TMwat with local coordinates
(xi; ẋi=vi). We give a rigorous variational derivation of the water fleet’s dynamics
and finite control based on its Lagrangian energy function L(x, ẋ) : TMwat →
R,using the formalism of exterior differential systems on the (2n+1)-dimensional
time-extended tangent bundle, called the jet manifold JMwat = j1(R,Mwat) ∼=
R×TMwat,with local canonical variables (t;xi; ẋi) (for technical details, see [2,7]
and the references therein).

Consider a general variational problem (I, ω;ϕ) for the water fleet, where (I, ω)
represents the Pfaffian exterior differential system on JMwat, given in local coor-
dinates (t;xi; ẋi) as

θi = dxi − ẋiω = 0, ω ≡ dt 6= 0

with structure equations
dθi = −dẋi ∧ ω

where the symbols ∧ and d denote exterior product and derivative, respectively. In-
tegral manifoldsN ∈ j1(R,Mwat) of the Pfaffian system (I, ω) are locally defined
by 1-jets j1 : t→ [t, x(t), ẋ(t)] of curves x(t) : R→Mwat.
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Next, we introduce a one-form ϕ = Lω, where L = L(t, x, ẋ) is the system’s La-
grangian defined on JMwat, having unique coordinate and velocity partial deriva-
tives, denoted by Lxi and Lẋi , respectively. A variational problem (I, ω;ϕ) is said
to be strongly non-degenerate, or well-posed [2], if and only if (iff) the determi-
nant of the matrix of mixed velocity partials of the Lagrangian is positive definite:
det ‖Lẋiẋj‖ > 0.

The corresponding extended Pfaffian system

θi = 0, dLẋi − Lxi ω = 0, ω ≡ dt 6= 0

generates conservative (dissipation-free and force-free) Lagrangian equations for
the fleet of water vehicles (a generalization of equations (5))

L̇ẋi = Lxi . (9)

If an integral manifold N satisfies the Lagrangian equations (9) of a well-posed
variational problem, then d

dt

(∫
Nt
ϕ
)
t=0

= 0 for any admissible variation δ ∈ N
with fixed endpoint conditions: ω = θi = 0.

Under the above conditions, the Griffiths theorem [2] states that both the (conser-
vative) Lagrangian dynamics with initial conditions

L̇ẋi = Lxi , x(t0) = x0, ẋ(t0) = ẋ0

and the Lagrangian dynamics with endpoint conditions (also called the finite con-
trol system)

L̇ẋi = Lxi , x(t0) = x0, x(t1) = x1

have unique solutions (see [2] for the proof of this theorem).

To generalize this conservative theorem to include both dissipative and driving
forces (as we did in the previous section), we use the fact that the tangent bun-
dle TMwat naturally represents a Riemannian 2n-manifold, with the Riemannian
positive-definite metric form

gR = gij(x) dxidxj (10)

which defines both the material metric tensor gij (given by the smooth symmetric
matrix ‖gij(x)‖ and representing the mass-inertia distribution of the whole water
fleet Ξ) and the kinetic energy Ekin(x, ẋ) = 1

2gR of the fleet Ξ. In addition, if
the potential energy Epot(x) of the fleet Ξ is also a smooth function, then the au-
tonomous Lagrangian is defined as L(x, ẋ) = Ekin(x, ẋ)− Epot(x) and automat-
ically satisfies the condition of well-posedness: det ‖Lẋiẋj‖ = det ‖gij(x)‖ > 0.
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In the Riemannian settings, the covariant Lagrangian equations (9) can be immedi-
ately generalized to include both dissipative and driving (gradient) force one-forms
Fi(x, ẋ) according to equations (6), giving

d

dt

(
gij [x(t)] ẋj(t)

)
=

1

2

(
∂xigjk[x(t)]ẋj(t) ẋk(t)

)
− Fi [x(t), ẋ(t)] . (11)

Next, letting
∥∥gij(x)

∥∥ to be the inverse matrix of ‖gij(x)‖ and introducing classical
Christoffel symbols

Γijk = gilΓjkl, Γjkl =
1

2
(∂xjgkl + ∂xkgjl − ∂xlgjk) (12)

the equations (11) resolve to the classical contravariant form (see [7])

ẍi(t) + Γijkẋ
j(t) ẋk(t) = F i [x(t), ẋ(t)] . (13)

Then the Riemann-generalized Griffiths theorem implies that both the forced and
dissipative Lagrangian dynamics with initial conditions

ẍi(t) + Γijk ẋ
j(t) ẋk(t) = F i [x(t), ẋ(t)] , x(t0) = x0, ẋ(t0) = ẋ0 (14)

and the Lagrangian dynamics with endpoint conditions (the finite control system)

ẍi(t) + Γijk ẋ
j(t) ẋk(t) = F i [x(t), ẋ(t)] , x(t0) = x0, x(t1) = x1 (15)

have unique solutions.

However, to make Lagrangian equations of motion suitable for the sea/underwater
fleet dynamics, we need to generalize the external forces from (13), to include
Kirchhoff-type torques and forces coming from the water medium, an nD analog of
equations (8). If we denote such generalized torques and forces asF i [t, x(t), ẋ(t)],
we obtain the general form of the contravariant Lagrangian fleet dynamics

ẍi(t) + Γijk[x(t)] ẋj(t) ẋk(t) = F i [t, x(t), ẋ(t)] (16)

which can be rewritten in the classical covariant Lagrangian form as

L̇ẋi − Lxi = Fi (17)

with
Fi = Fi [t, x(t), ẋ(t)] = Fi [x(t), ẋ(t)] +R

where the term R represents an nD analog of Kirchhoff-type mixed rotational
terms (εjikLẋj ẋ

k, εjikLvjω
k , εjikLωjωk) of (8).

Equation (17) is our final Lagrangian dynamics model for the water fleet. How-
ever, due to Kirchhoff-type mixed rotational termsR, its existence and uniqueness
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cannot be demonstrated because it does not adhere to the conditions imposed by
the Griffiths theorem. Therefore, at present, we are unable to formulate a rigorous
finite control system for the general Lagrangian dynamics of the water fleet.

So, we move to a stronger alternative, the so-called affine Lagrangian control sys-
tem (see [11] and the references therein). For this we introduce the affine La-
grangian control function La(x, ẋ, u) : TMwat → R, which in local canonical
coordinates on TMwat given as

La(x, ẋ, u) = L0(x, ẋ)− Lj(x, ẋ)uj(t, x, ẋ)

where L0(x, ẋ) is the above physical Lagrangian, Lj(x, ẋ), j = 1, . . . ,m < n
are the coupling Lagrangians corresponding to the active nearest-neighboring ve-
hicles in the fleet, and the control one-forms uj = uj(t, x, ẋ) are defined via the
Lie derivative control formalism (see equation (11) in [14]) giving the control law
for asymptotic tracking of the predefined reference outputs. Then, the affine La-
grangian control system is governed by the following equations on TMwat

L̇ẋi − Lxi = Fi + Lj
xi
uj . (18)

2.3. Hamiltonian Control for the Air Swarm

As already mentioned, the Hamiltonian dynamics and control model for a joint
(UGV + UAV) swarm with the configuration n-manifold Mair =

∏m
k=1 SE(3)k

consisting of m unmanned air vehicles (each with 6 DOFs) have been presented in
detail in [14], based on the swarm’s Hamiltonian energy function which is defined
as a map H(x, p) : T ∗Mair → R on its symplectic cotangent bundle T ∗Mair with
the symplectic form

ωS = dpi ∧ dxi, for i = 1, ..., n. (19)

This Hamiltonian dynamics/control system can be summarized by the following
two equations

Dynamics: The forced and dissipative Hamiltonian dynamics for a joint swarm of
land/air vehicles are defined as

ẋi = Hpi −Rpi , ṗi = Fi −Hxi +Rxi (20)

where xi are the generalized coordinates associated to all active DOFs within
each swarm, pi are their corresponding momenta (both linear and angular),
Fi = Fi(t, x, p) are the generalized driving forces, while R = R(x, p) =
1
2p

2
ix

2
i denotes the Rayleigh dissipative function.
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Control: The affine Hamiltonian control system for a swarm of land/air vehi-
cles is derived from the affine Hamiltonian control function Ha(x, p, u) :
T ∗Mair → R, in local canonical coordinates on T ∗Mair given as

Ha(x, p, u) = H0(x, p)−Hj(x, p)uj(t, x, p), i = 1, . . . , n

where H0(x, p) is the physical Hamiltonian, Hj(x, p), (j = 1, . . . ,m < n)
are the affine Hamiltonians corresponding to the active nearest-neighboring
vehicles in the swarm, while the control one-forms uj , defined by the Lie
derivative control formalism (see equation (11) in [14]) represent the control
law for asymptotic tracking of reference swarm outputs. The whole control
system includes both the contravariant velocity controllers V i = V i(t, x, p)
and the covariant force controllers Fi = Fi(t, x, p), and is governed by the
following canonical equations on T ∗Mair

ẋi = V i +H0
pi −H

j
pi uj +Rpi

ṗi = Fi −H0
xi

+Hj
xi
uj +Rxi .

(21)

3. Kähler Dynamics for the Universal Fleet

A Kähler manifold, K ≡ (K, g) ≡ (K, ω), is a Hermitian manifold [8] with the
real dimension 4n (or, complex dimension 2n) that admits three mutually compati-
ble dynamical structures: (i) Riemannian/Lagrangian, (ii) symplectic/Hamiltonian,
and (iii) complex-valued, formally defined as follows.

We start with a universal configuration n-manifold M , including all autonomous
unmanned vehicles (UGVs, UAVS, USVs and UUVs, each of them formally de-
fined as an SE(3)-group). On the configuration n-manifold M we define two par-
tial bundles, each being a 2n-manifold: a Riemannian/Lagrangian tangent bun-
dle TMwat which governs the dynamics of water vehicles (USVs and UUVs)
and a symplectic/Hamiltonian cotangent bundle T ∗Mair which governs the dy-
namics of air vehicles (UGVs and UAVs). The ‘water bundle’ TMwat is for-
mally defined as a disjoint union of tangent spaces TxMwat at all water vehicles
xwat ∈ M : TMwat = txwat∈MTxMwat. Similarly, the ‘air bundle’ T ∗Mair is
formally defined as a disjoint union of cotangent spaces T ∗xMair at all air vehicles
xair ∈M : T ∗Mair = txair∈MT ∗xMair.

Now, the global Kähler 4n-manifold K, the stage of our dynamics, can be con-
structed in a similar way as a complexified tangent bundle of the configuration
manifold M, that is, a disjoint union of complexified tangent spaces TxMC at all
vehicles x = xwat + xair ∈M

K = TM ⊗ C = tx∈MTxMC.
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The manifold K admits a Hermitian metric form g, such that its real part is the
Riemannian metric form gR ∈ TMwat given by equation (10) and its imaginary
part is the symplectic form ωS ∈ T ∗Mair given by equation (19). Thus, we have

(K, g) = TMwat + iT ∗Mair with

g = gR + iωS = gij dxidxj + i dpi ∧ dxi.

The global Kähler manifold K has a very rich geometric and dynamical structure,
defined as follows.

Any local open chart U ⊂ K defines a set of 2n holomorphic coordinates, in which
x-components come from the Lagrangian water fleet on TMwat and y-components
come from the Hamiltonian air fleet on T ∗Mair . They locally identify C2n with
R4n, as {zj = xj + iyj ; j = 1, · · · , 2n}, with the corresponding holomorphic
differentials

dzj = dxj + idyj and dz̄j = dxj − idyj

and holomorphic velocities

żj = ẋj + iẏj and ˙̄zj = ẋj − iẏj .

The Hermitian metric tensor gij = gij(z
i, zj) of the Kähler manifold K represents

the whole mass/inertia-distribution of the universal (TMwat + iT ∗Mair)−fleet.
The metric gij(z

i, zj) obeys the following Kähler condition (independent of the
choice of local holomorphic coordinates zj ∈ U )

∂jgik = ∂igjk and ∂jgki = ∂igkj , (∂j ≡ ∂/∂zj , ∂j ≡ ∂/∂z
j) (22)

where ∂j ≡ ∂ : Ωp,q(K) → Ωp+1,q(K) and ∂j ≡ ∂̄ : Ωp,q(K) → Ωp,q+1(K)

are Dolbeault’s differential operators on the space Ωp,q(K) of exterior forms on
K, which are the additive components of the standard exterior derivative on K:
d = ∂ + ∂̄. In a local zk-coordinate chart U ⊂ K, for any holomorphic function
f ∈ U , ∂ and ∂̄ operators are given by

∂f =
(
∂xkf − i∂ykf

)
dzk, ∂̄f =

(
∂xkf − i∂ykf

)
dz̄k.

The Kähler metric form g = gR + iωS (defined by the Hermitian metric tensor
gij) is a positive-definite, symmetric (1,1)-form on K defined in local holomorphic
coordinates as

g = gij dzi ⊗ dz̄j > 0, i, j = 1, · · · , 2n
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which defines the complex kinetic-energy Lagrangian L0(ż, ˙̄z) : K → C of the
universal (TMwat + iT ∗Mair)−fleet, in holomorphic coordinates zi on K given
as

L0(ż, ˙̄z) =
1

2
g =

1

2
gij ż

i ⊗ ˙̄zj

so that the complex affine Lagrangian control function La(ż, ˙̄z, u) : K → C is
given in local coordinates on K as

La(ż, ˙̄z, u) = L0(ż, ˙̄z)− Lj(ż, ˙̄z)uj(t, z, ż), j = 1, . . . ,m < n

with coupling Lagrangians Lj(ż, ˙̄z) and complex control inputs uj(t, z, z̄). The
contravariant Lagrangian equations are now derived from La(ż, ˙̄z, u) as

z̈i(t) + Γı̄jk ż
j(t) ˙̄zk(t) = F i [t, z(t), ż(t)]

using the complex Christoffel symbols on K defined (via the Hermitian metric
tensor gij) as

Γkij = gkl∂jgil and Γk
i j

= gkl∂jgli, i, j, k = 1, · · · , 2n.

The covariant Lagrangian equations for the universal (TMwat + iT ∗Mair) fleet
(complexified and generalized from equation (18)) are

L̇żi − Lzi = Fi + Lj
zi
uj (23)

where Fi = Fi [t, z(t), ż(t)] represent the general force one-forms (including dis-
sipation and driving forces as well as Kirchhoff-type mixed rotational terms).

The associated Kähler symplectic form ω is a positive-definite exterior (1,1)-form
on K, which is also harmonic (δω ≡ ∗d ∗ ω = 0), a result from the Kähler-Hodge
theory (see, e.g. [20] and the references therein), given in holomorphic coordinates
zi on K as

ω = igij dzi ∧ dz̄j > 0, i, j = 1, · · · , 2n (24)

which is closed: dω = 0, that follows directly from the Kähler condition (22).
From the Kähler form (24) with z̄i as canonical momenta, the Hamiltonian formal-
ism can be derived from the complex kinetic-energy Hamiltonian H0(z, z̄) : K →
C of the universal (TMwat + iT ∗Mair)−fleet, in holomorphic coordinates zi on
K given as

H0(z, z̄) =
1

2
gij dzi ∧ dz̄j .

From the complexified affine Hamiltonian control function Ha(z, z̄, u) : K → C,
in local canonical coordinates on K given as

Ha(z, z̄, u) = H0(z, z̄)−Hj(z, z̄)uj(t, z, z̄), j = 1, . . . ,m < n
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(with coupling Hamiltonians Hj(z, z̄) and complex control inputs uj(t, z, z̄)), the
complex affine Hamiltonian control system (complexified and generalized from
equation (21)) can be defined for the whole (TMwat + iT ∗Mair)−fleet as

żi = V i +H0
z̄i
−Hj

z̄i
uj +Rz̄i

˙̄zi = Fi + εjikH
k
zj
z̄ −H0

zi
+Hj

zi
uj +Rzi

(25)

where V i = V i(t, z, z̄) and Fi = Fi(t, z, z̄) are the contravariant velocity con-
trollers and the covariant force controllers, while the term εjikH

k
zj
z̄ denotes (some-

what reduced) Kirchhoff-type mixed rotational terms in Hamiltonian form.

Equations (23) and (25) represent two alternative versions, Lagrangian and Hamil-
tonian, respectively, of the discrete dynamics for the universal (UGV,UAV,USV,
UUV) fleet. They are both complexified extensions of our previously defined La-
grangian and Hamiltonian dynamics/control systems for the (USV + UUV)-fleet
and (UGV + UAV)-swarm, respectively, each of them covering now the whole
universal fleet. These two temporal systems are generalized in Appendix 5 to the
spatiotemporal system called the complex Monge-Ampère equation.

4. Conclusion

The Kähler dynamics control model for a universal large-scale autonomous fleet
(or, swarm of UGVs, UAVS, USVs and UUVs) is presented. Both Lagrangian and
Hamiltonian formalisms, each capable of controlling the whole universal fleet, are
developed on the Kähler manifold. For the case of a very large universal fleet, this
Lagrangian/Hamiltonian model is extended in the Appendix to the Kähler–Ricci
flow (or, complex Monge–Ampère equation) with the closed-form solution. We
remark that the general dynamics formalism developed in this paper can be spe-
cialized to suit any kind of many-robot scenarios, be it on the ground, in the air, on
the water surface and under the water, or any combination of these.

5. Appendix: Continuous Kähler Dynamics for a Very Large Fleet

Topology of the Kähler manifoldK is based on the Kähler condition (22). Namely,
in a local open chartU ⊂ K, the Kähler symplectic form ω (24) can be alternatively
defined as

ω = i∂i∂jϕ = i∂∂ϕ > 0 , i, j = 1, · · · , 4n
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where ϕ ∈ U is a smooth real-valued function called the Kähler potential. This
means that Kähler geometry (and therefore, dynamics) can be alternatively de-
veloped independently of any reference to the prior Lagrangian/Riemannian or
Hamiltonian/symplectic geometry. So, although counter-intuitive, we could de-
velop the universal fleet dynamics and control, in either Lagrangian or Hamilto-
nian form, using Kähler potentials ϕ instead of coordinates, velocities and mo-
menta. Furthermore, as we can see below, using Kähler potentials ϕ we can de-
velop a general model of continuous dynamics for a very large-scale universal
(UGV,UAV,USV,UUV)-fleet.

In general, any p-form α defined on the Kähler manifold K is called ∂-closed iff
∂α = 0 and ∂-exact iff α = ∂η for some (p-1)-form η on K. The associated
Dolbeault cohomology group H1,1

∂
(K,R) is a complexification of the standard de

Rham cohomology group H2
d(K,R), defined on K as the quotient

H1,1

∂
(K,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms}

·

The space K[ω] of Kähler forms ω with the same Kähler class [ω] is given by

K[ω] = {[ω] ∈ H2(K,R) ; V = 0, ω + i∂∂ϕ > 0}

i.e., the functional space P(ω) of Kähler potentials ϕ on (K, ω) is given by

P(ω) = {ϕ ∈ C∞(K,R) ; ωϕ = ω + i∂∂ϕ > 0}.

More exactly, a Kähler form ω on K defines a nonzero element [ω] ∈ H1,1

∂
(K,R).

If a cohomology class α ∈ H1,1

∂
(K,R) can be written as α = [ω] for some Kähler

form ω on K then we say that α is a Kähler class (and write α > 0). Therefore,
the Kähler class of ω is its cohomology class [ω] ∈ H1,1

∂
(K,R). Alternatively, in

terms of H2
d(K,R), the Kähler class of ω is its cohomology class [ω] ∈ H2

d(K,R).
Usually, all this is simply written: the Kähler class of ω is the cohomology class
[ω] ∈ H2(K,R) represented by ω.

The ∂∂-Lemma (the holomorphic version of the Poincaré Lemma, also follows
from the Hodge theory) states: “Let K be a compact Kähler manifold and suppose
that 0 = [α] ∈ H1,1

∂
(K,R) for a real smooth ∂-closed (1, 1)-form α. Then there

exists a real smooth Kähler potential ϕ (uniquely determined up to the addition of
a constant) with α = i∂∂ϕ.” In other words, a real (1, 1)-form α is ∂-exact iff it
is ∂∂-exact. It is an immediate consequence of the ∂∂-Lemma that if ω and ωϕ
are Kähler forms in the same Kähler class on K, then ωϕ = ω + i∂∂ϕ for some
smooth Kähler potential function ϕ.
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Next we need to define curvatures on the Kähler manifold K. The mixed and
covariant Riemannian curvature tensors on K are

Rm
ikl

= −∂lΓ
m
ik and Rijkl = gmjR

m
ikl
.

Locally, in an open chart U ⊂ K, the covariant Riemann tensor reads

Rijkl = −∂i∂jgkl + gqp(∂igkq)(∂jgpl).

The curvature tensor Rijkl has the following three symmetries:

Rijkl = Rjilk (complex-conjugate)

Rijkl = Rkjil = Rilkj (I Bianchi identity), and

∇mRijkl = ∇iRmjkl (II Bianchi identity)

where∇i ≡ ∂i + gkqg
qjΓki j is the complex covariant derivative on (K, g).

Then, the Ricci curvature tensor is defined as its contraction

Rij = glkRijkl = glkRklij = Rk
k ij

while its trace is the scalar curvature: R = gjiRij . Locally, in an open chart
U ⊂ K, Ricci tensor is given by

Rij(g) = −∂∂ log[det(gij)], i, j = 1, · · · , 4n.

The associated Ricci form Ric(g) is the closed (1,1)-form on K given by

Ric(g) ≡ Ric(ω) = iRij(g) dzi ∧ dzj = −i∂∂ log[det(gij)]. (26)

Now we have all the necessary ingredients to derive the continuous dynamics
model for a very large-scale universal autonomous (UGV,UAV,USV,UUV) fleet.
For this, we recall that the Ricci flow on a Riemannian n-manifold M (introduced
by R. Hamilton [3–5] and subsequently used by G. Perelman to prove the 100-year
old Poincaré Conjecture), is governed by the nonlinear evolution equation of the
Riemannian metric

∂tgij(t) = −2Rij(t), i, j = 1, ..., n (27)

which in local harmonic coordinates on M can be rewritten as

∂tgij(t) = ∆Mgij +Qij(gij , ∂gij) (28)

where ∆M is the Laplace-Beltrami operator defined locally on M as

∆M ≡
1√

det(gij)
∂xi
(√

det(g)gij∂xi
)



82 Vladimir G. Ivancevic

while the tensor function Qij(gij , ∂gij) is quadratic in gij and its first order partial
derivatives ∂gij . Later, in [10], we proposed equations (27)-(28) as a general model
for all real-valued nonlinear reaction-diffusion systems [with symmetric, positive-
definite diffusion matrix D, concentration state vector u(x, t) and local reactions
R(u)] of the form

∂tu = D∆u + R(u)
l l l

∂tgij = ∆Mgij + Qij(gij , ∂gij).

To make the Kähler dynamics model, we need to generalize the Ricci flow (27)-
(28) from the Riemannian n-manifoldM to the Kähler 4n-manifoldK, as shown in
the previous subsection. To perform this generalization, we first remark that Käh-
ler manifolds are usually classified into the following three subcategories, based
on their first Chern class in Dolbeault cohomology. The first Chern class, de-
noted by c1(K), of a Kähler manifold (K, g), is defined as the cohomology class
[Ric(g)] ∈ H1,1

∂
(K,R). A compact (i.e., closed and bounded) Kähler manifold

(K, g) with positive first Chern class, c1(K) > 0, is called the Fano manifold (the
stage for our dynamics) in which case, [ω] = πc1(K). A compact Kähler manifold
with vanishing first Chern class, c1(K) = 0, is called the Calabi–Yau manifold
(the stage for super-string theory). A compact Kähler manifold with negative first
Chern class, c1(K) < 0, is called the Kähler–Einstein manifold (the stage for com-
plex gravity theory), it admits the metric g defined by: g = −Ric(g).

We remark that the metric g on K is called the Kähler–Einstein metric iff

Ric(ω) = λω, for a real constant λ =
2π

V

∫
K
c1(K) ∧ ωn−1

and if

Ric(g) = 0 then g is a Ricci–flat metric

where c1(K) is the first Chern class of K. If the manifold K admits a Ricci–flat
metric [Ric(g) = 0], then its first Chern class must vanish [c1(K) = 0]. This is the
Calabi conjecture, proven by S.-T. Yau [21].

A Fano n-manifold (K, g) admits the (normalized) Kähler–Ricci flow [with the
time-dependent Ricci form (26)]

∂tgij(t) = gij(t) − Ric [g(t)] (29)

which is locally, in an open chart U ⊂ K, starting from some smooth initial Kähler
metric tensor g0 = gij(0), given by

∂tgij(t) = gij(t)−Rij(t), i, j = 1, · · · , 4n.
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The Kähler–Ricci flow (29) preserves the Kähler class [ω]. It has a global solution
g(t) ≡ ω(t) when g0 = gij(0) has [ω] = 2πc1(K) as its Kähler class, which is
written as g0 ∈ 2πc1(K). In particular, by the ∂∂̄-Lemma, there exists a family
of real-valued functions u(t), called Ricci potentials of the metric g(t), which are
special Kähler potentials. They are determined by

gij̄ −Rij̄ = ∂i∂j̄u,
1

VR

∫
K

e−u(t)dvg = 1

where VR =
∫

dvg is the volume of the Kähler–Ricci flow (29).

In terms of time-dependent Kähler potentials ϕ = ϕ(t), the Kähler–Ricci flow (29)
can be expressed as

∂tϕ(t) = ϕ(t) + log
ωnϕ
ωn
− g(t) (30)

where the time-dependent Kähler metric form g = g(t) is defined by

i∂∂g(t) = Ric [ω(t)]− ω(t) and

∫
K

(eg(t) − 1)ωn = 0.

The nth power ωn of the Kähler symplectic form ω is the volume form onK, given
by

ωn =
1

n!
indet

(
gij

)
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

so that V =
∫
K ω

n is the standard volume on K.

The corresponding evolutions of the Ricci curvature Rij = Rij(t) and the scalar
curvature R = R(t) on (K, g) are respectively governed by

∂tRij = 4Rij +RijpqRqp −RipRpj , ∂tR = 4R+RijRji −R

starting from some smooth initial Ricci and scalar curvatures, Rij(0) and R(0).

The existence of the Kähler–Ricci flow in a time interval t ∈ [0, t1) can be estab-
lished as follows: If ω(t) is a solution of the Kähler–Ricci flow

∂tω(t) = −Ric [ω(t)] , ω(0) = ω0 (31)

then the corresponding cohomology class [ω(t)] with [ω(0)] = [ω0] evolves on K
as the following ODE

∂t[ω(t)] = −c1(K), with the solution
(32)

[ω(t)] = [ω0]− t c1(K) = [i∂∂ϕ(0)]− t c1(K) = [ig0 dzi ∧ dzj ]− t c1(K).

So, the Kähler–Ricci flow (31) exists for t ∈ [0, t1) iff [ω0]− t c1(K) > 0 (see [1]).
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Equation (31) can be rewritten as a complex parabolic Monge–Ampère equation
(see [19, 21])

∂tϕ = log
(ωϕ + i∂∂ϕ)n

ωn
, with ωϕ + i∂∂ϕ > 0

while, the normalized Kähler–Ricci flow (29) can be rewritten as a normalized
complex Monge–Ampère equation

∂tϕ = log
(ω0 + i∂∂ϕ)n

ωn
− ϕ, with ωϕ + i∂∂ϕ > 0.

The Kähler–Ricci flow (31) with the solution (32) is our continuous dynamics
model for a very large universal (UGV + UAV + USV + UUV)− fleet (swarm).
For further technical details on Kähler geometry and the Kähler–Ricci flow, see
(e.g. [13]) and the references therein.
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