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Abstract. The notion of ideal embeddings was introduced by the author at the
Third Pacific Rim Geometry Conference held at Seoul in 1996. Roughly speaking,
an ideal embedding is an isometrical embedding which receives the least possible
amount of tension from the surrounding space at each point.

In this article, we study ideal embeddings of irreducible compact homogenous
spaces in Euclidean spaces. Our main result states that if π : M → N is a covering
map between two irreducible compact homogeneous spaces with λ1(M) 6= λ1(N),
thenN does not admit an ideal embedding in a Euclidean space, althoughM could.
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1. Introduction

According to Nash’s embedding theorem [15], every Riemannian manifold can be
isometrically embedded in a Euclidean space with sufficiently large codimension.
In other words, every Riemannian manifold can live in the Euclidean world if the
codimension was sufficiently large.

Related to Nash’s theorem, my main question raised in [4, 5] is the following.

Main Question. Can a given Riemannian manifold live in a Euclidean world
ideally?

More precisely, can a given Riemannian manifold be isometrically embedded in
a Euclidean space in such way that it receives the least possible tension from the
surrounding space at each point?

It is well-known that the mean curvature vector field of a submanifold is exactly
the tension field for an isometric immersion of a Riemannian manifold in another
Riemannian manifold.
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A major concern of my main question is whether we can determine when a Rie-
mannian manifold can be embedded in a Euclidean space ideally. Several answers
to this question had been obtained (cf. [4–6, 8, 9, 11] among others).

For a compact Riemannian manifold M , we denote the first positive eigenvalue of
the Laplacian ∆M of M by λ1(M).

By a covering map π : M → N between two Riemannian manifolds we mean a
covering map which is isometric.

The following result on λ1 was proved by Yoshiji [16].

Theorem 1. Every non-orientable compact manifoldM , except the real projective
plane RP2, admits a Riemannian metric g for which the first eigenvalue coincides
with that of its Riemannian double cover M̂ , i.e., one has λ1(M) = λ1(M̂) with
respect to the metric g and its covering metric ĝ on M̂ .

A Riemannian manifold is called a homogeneous space if the group of isometries
of M acts transitively on M . For instance, symmetric spaces are homogenous
spaces (cf. [13]).

It is well-known that every homogeneous Riemannian manifold is complete (cf.
[14, Theorem 4.6]). In this article, a compact homogeneous Riemannian manifold
with irreducible isotropy action is simply called an irreducible compact homoge-
neous space.

Homogeneous spaces are important. From the point of view of the Erlangen pro-
gram, in a homogeneous space one may understand that “all points are the same”.
For example, Euclidean space and projective space are in natural ways homoge-
neous spaces for their respective symmetry groups. The same is true of the models
found of non-Euclidean geometry of constant curvature, such as hyperbolic space.

In this article, we will investigate the Main Question further. In particular, by
studying covering maps between irreducible homogeneous spaces, we are able
to obtain a solution to the Main Question for irreducible compact homogeneous
spaces.

The main result of this article is the following.

Main Theorem. Let π : M → N be a covering map between two irreducible
compact homogeneous spaces. If λ1(M) 6= λ1(N), then N does not admit an
ideal embedding in any Euclidean space, regardless of codimension.

In the last section, we give a simple example to illustrate that, under the hypothesis
of the Main Theorem, M may admit an ideal embedding in some Euclidean space,
although N cannot.
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2. δ-Invariants and a Fundamental Inequality

In order to define ideal embedding, we need to recall the notion of δ-invariants
(also known as the Chen invariants) and the fundamental inequality of Euclidean
submanifolds.

Let M be a Riemannian n-manifold. Let K(π) denote the sectional curvature of
M associated with a plane section π ⊂ TpM , p ∈ M . For a given orthonormal
basis e1, . . . , en of the tangent space TpM , the scalar curvature τ at p is defined to
be

τ(p) =
∑
i<j

K(ei ∧ ej).

Let L be a subspace of TpM of dimension r ≥ 2 and let {e1, . . . , er} be an or-
thonormal basis of L. We define the scalar curvature τ(L) of L by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r.

Given an integer k ≥ 1, we denote by S(n, k) the finite set consisting of unordered
k-tuples (n1, . . . , nk) of integers ≥ 2 satisfying n1 < n and n1 + · · · + nk ≤ n.
We put S(n) = ∪k≥1S(n, k).

For each k-tuple (n1, . . . , nk) ∈ S(n), Chen defined the δ-invariant δ(n1, . . . , nk)
in [5, 7, 9] as

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)} (1)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that
dimLj = nj , j = 1, . . . , k. In particular, we have

δ(∅) = τ (k = 0, the trivial δ-invariant)

δ(2) = τ − inf K, where K is the sectional curvature

δ(n− 1)(p) = maxRic(p), where Ric is the Ricci curvature of M .

We shall point out that the invariant δ(2) was introduced earlier in [2, 3].

The δ-curvatures are very different in nature from the “classical” scalar and Ricci
curvatures simply due to the fact that both scalar and Ricci curvatures are the “to-
tal sum” of sectional curvatures on a Riemannian manifold. In contrast, the δ-
curvature invariants are obtained from the scalar curvature by throwing away a
certain amount of sectional curvature. For history and motivation on δ-invariants,
see author’s surveys [8, 9, 11].
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For an isometric immersion of a Riemannian n-manifold M into the Euclidean
m-space Em. Let h and

−→
H denote the second fundamental form and the mean

curvature vector of M in Em, respectively. Then h and
−→
H are defined respectively

by

h(X,Y ) = ∇̃XY −∇XY (2)
−→
H =

1

n
trace(h) (3)

for vector fields X and Y tangent to M , where ∇̃ and ∇ denote the Levi-Civita
connection on Em and on Mn, respectively. We put H = |

−→
H |.

The fundamental inequality for Euclidean submanifolds obtained in [5, 6, 9] is the
following sharp inequality.

Theorem 2. For any isometric immersion of a Riemannian n-manifold M into a
Euclidean m-space Em and for any k-tuple (n1, . . . , nk) ∈ S(n), we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)H2 (4)

where c(n1, . . . , nk) is the positive real number defined by

c(n1, . . . , nk) =
n2(n+ k − 1−

∑
nj)

2(n+ k −
∑
nj)

· (5)

3. Ideal Embeddings - Best Ways of Living

The fundamental inequality (4) in Theorem 2 provides us the prime control on
the most important extrinsic curvature, the squared mean curvature H2, by the
δ-invariant δ(n1, . . . , nk) of the Riemannian manifold M .

If we put

∆̂0(M) = max {∆(n1, . . . , nk) ; (n1, . . . , nk) ∈ S(n)} (6)

with

∆(n1, . . . , nk) =
δ(n1, . . . , nk)

c(n1, . . . , nk)
(7)

then, for any isometric immersion x : M → Em, Theorem 2 yields

H2 ≥ ∆̂0(M) (8)

at each point p ∈M .

Inequality (8) allowed us to introduce the following notion of ideal immersions
in [5, 6, 9].
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Definition 3. An isometric immersion of a Riemannian n-manifold M in Em is
called an ideal immersion if it satisfies the equality case of (8) identically.

A Maximum Principle on ideal immersions from [5] states that if an isometric
immersion φ : N → Em of a Riemannian n-manifold M into Em satisfies the
equality sign of (6) for a given k-tuple (n1, . . . , nk) ∈ S(n), then it is an ideal
immersion automatically.

Physical Interpretation of Ideal Immersions. An isometric immersion x : M →
Em is an ideal immersion means that the submanifoldM receives the least possible
amount of tension (given by ∆̂0(M)) from the surrounding space at each point on
M . This is due to (8) and the well-known fact that the mean curvature vector field
is exactly the tension field for an isometric immersion of a Riemannian manifold
in another Riemannian manifold. Thus the squared mean curvature at each point
on the submanifold simply measures the amount of tension the submanifold is
receiving from the surrounding space at that point.

For this reason, an ideal embedding of a Riemannian manifold M in a Euclidean
space is also known as a best way of living of M (see [4, 5, 9]).

It was shown in [10] that some Riemannian manifolds may admit more than one
ideal embedding in a Euclidean space.

A major problem on ideal embeddings is to determine whether a given Riemannian
manifold admits or doesn’t admit an ideal embedding in a Euclidean space.

4. Proof of the Main Theorem

Let π : M → N be a covering map from a compact Riemannian n-manifold onto
another. Suppose that f ∈ C∞(N) is an eigenvalue function of the Laplacian ∆N

associated with the first positive eigenvalue λ1(N) of N . Then we have

∆M (f ◦ π) = λ1(N)f ◦ π. (9)

It follows from (9) that λ1(N) is an eigenvalue of the Laplacian ∆M of M . Thus
we have

λ1(N) ≥ λ1(M). (10)

Now, suppose that π : M → N is a covering map from a compact irreducible
homogeneous space M onto another irreducible compact homogeneous space N
and suppose that λ1(M) 6= λ1(N). Then, by combining λ1(M) 6= λ1(N) with
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(10) we obtain

λ1(N) > λ1(M). (11)

On the other hand, from Theorem 6.3 of [6] or Theorem 14.6 of [9] we know
that the first positive eigenvalue λ1(M) of the irreducible homogeneous space M
satisfies

λ1(M) ≥ n∆̂0(M). (12)

Since M is assumed to be a compact homogeneous Riemannian manifold, ∆̂0(M)
defined in (6) is a constant onM . Because the covering map π : M → N preserves
the metric tensors gM and gN of M and N , i.e., π∗gN = gM , we know that the
invariant ∆̂0(N) of N must equal ∆̂0(M) on M . Therefore, after combining (11)
and (12) we obtain

λ1(N) > n∆0(N). (13)

From Theorem 6.6 of [6] or Theorem 14.7 of my book [9] we also know that an
irreducible compact homogeneous space M admits an ideal immersion into some
Euclidean space if and only if it satisfies

λ1(M) = n∆̂0(M). (14)

Consequently, inequality (13) together with [9, Theorem 14.7] imply that N does
not admit an ideal embedding into Euclidean spaces, regardless of codimension.
This completes the proof of the Main Theorem.

5. An Example

Now, we provide a simple example to illustrate that under the hypothesis of the
Main Theorem, M may admit an ideal embedding in some Euclidean space, al-
though N cannot.

Let Sn(1) and RPn(1) denote the n-sphere and the real projective n-space of con-
stant sectional curvature one. It is well-known that there is a two-fold covering
map π : Sn(1) → RPn(1) which carries each pair of antipodal points on Sn(1) to
a single point in RPn(1).

Since both

Sn(1) = SO(n+ 1)/SO(n) and RPn(1) = SO(n+ 1)/SO(n)× {±1}
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are irreducible compact homogeneous spaces and moreover we have (cf. e.g. [1]
and [12, page 67])

n = λ1(Sn(1)) 6= λ1(RPn(1)) = 2(n+ 1),

the Main Theorem thus implies that RPn(1) never admits a best way of living in
any Euclidean space regardless of codimension.

On the other hand, it is easy to verify that the inclusion map of Sn(1) ⊂ En+1 is
an ideal embedding of Sn(1) in En+1.
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