
JGSP 43 (2017) 73–105

CLIFFORD ALGEBRA IMPLEMENTATIONS IN MAXIMA

DIMITER PRODANOV

Communicated by Ivaïlo M. Mladenov

Abstract. This tutorial focuses on the packages clifford and cliffordan
for the computer algebra system Maxima. Maxima is the open source descendant of
the first computer algebra system and features a rich functionality from a large num-
ber of shared packages. The Maxima language is based on the ideas of functional
programming, which is particularly well suited for transformations of formal math-
ematical expressions. While clifford implements Clifford algebras C`p,q,r of
arbitrary signatures and order based on the elementary construction of Macdonald,
cliffordan features geometric calculus functionality. Using clifford ex-
pressions containing geometric, outer and inner products can be simplified. Appli-
cations of clifford and cliffordan in linear algebra and calculus are demon-
strated.

MSC : 08A70, 11E88, 15A69, 15A75, 94B27
Keywords: Clifford product, computer algebra, Dirac operator, electromagnetism,
geometric product, multilinear algebra, outer product, vector derivative

Contents

1 Introduction 74
1.1 Expression Representation and Transformation in Maxima 75

2 Construction of the Algebra C`n 77

3 Consistency of the Extension 80
3.1 Indicial Representation . 83

4 Simplification of Products in Monomials 84

5 Properties of Clifford Algebras in View of Maxima Implementation 86
5.1 Main Involutions . 87
5.2 Scalar, Inner and Outer Products . 87

6 Features of the Clifford Package 89
6.1 Visualization of Blades . 93

doi: 10.7546/jgsp-43-2017-73-105 73

74 Dimiter Prodanov

7 Generalized Derivatives in Clifford Algebras 93
7.1 Multi-Vector Derivatives . 93

8 Geometric Calculus Functionality in Maxima 95
8.1 Potential Problems in C`3,0 . 96
8.2 Coordinate Transformations . 98
8.3 Homogeneous d’Alembert Equation in Clifford 99

9 Outlook 101

References 104

1. Introduction

Proponents of Geometric Algebra and Geometric Calculus promote the view that
these approaches unify, simplify, and generalize vast areas of mathematics that
involve geometric ideas. Clifford algebras provide natural generalizations of com-
plex, dual and double numbers into the concept of Clifford numbers. It is then
natural to use existing Computer Algebra Systems (CAS) to implement various
geometric algebra instances and provide them as tools for science and engineer-
ing. Several Clifford and Geometric algebra packages have been developed for
different types of CAS and engineering numerical suites. For Maple since the late
1990’s, Ablamowicz and Fauser develop the package CLIFFORD [1]. Computa-
tions in CLIFFORD are based on Chevalley’s definition of Clifford algebra as a
sub-algebra of the algebra of endomorphisms of the Grassmann algebra. Another
package, BIGEBRA [2], builds on Maple’s CLIFFORD, with the aim to explore
Hopf algebras and provide a useful tool for experimental mathematics. Finally, the
package called eCLIFFORD computes the Clifford product in C`p,q,r using Walsh
functions. For Mathematica, the clifford.m package [4] introduces Clifford
and Grassmann algebras, multivectors, and the geometric product. Although not
in symbolic computer algebra, the recent work of Sangwine and Hitzer [16] is also
noteworthy. The package is the first comprehensive work for Matlab. It features
operations with matrices of Clifford multivectors, including LU decomposition.

For the Python programming language there is an implementation of Clifford al-
gebra developed by Alan Bromborsky1. The Python module galgebra supports
coordinate free calculations using the basic products operation: geometric, outer,

1The package is available from GitHub repository https://github.com/brombo/
galgebra

Clifford Algebra Implementations in Maxima 75

and inner. The operations can be defined using a completely arbitrary metric de-
fined by the inner products of a set of arbitrary vectors or the metric can be re-
stricted to enforce orthogonality and signature constraints on the set of vectors.
In addition the module includes the geometric, outer and inner derivatives and the
ability to define a curvilinear coordinate system. The module requires the numPy
and the symPy modules.

For Maxima, atensor, since 2004, and the clifford-based packages, since
2015, are designed to be a symbolic computational tools for applied mathemati-
cians and physicists. The package atensor partially implements generalized
(tensor) algebras. The packages clifford and cliffordan authored by the
presenter, implement Clifford algebras C`p,q,r of arbitrary signatures and orders.
clifford emphasizes simplification, including the ability to treat multivectors
as “sparse” purely symbolical objects [15].

There is an elementary construction of Clifford algebras given by Macdonald [9].
This construction of Gn is suitable for direct implementation in a computer algebra
system supporting symbolical transformations of expressions. From design per-
spective it was the preferred choice in clifford, while atensor implements
the inner-product quadratic form- based approach. Before proceeding further with
the construction, we give some remarks for computer algebra systems, which are
given little attention by pure mathematicians but are rather important in computer
science.

1.1. Expression Representation and Transformation in Maxima

Maxima is the open source descendant of the first ever computer algebra system
and features a rich functionality from a large number of shared packages. While
written in Lisp, Maxima has its own programming language. The system also of-
fers the possibility of running batch unit tests. Maxima supports several primitive
data types [10]: numbers (rational, float and arbitrary precision); strings and sym-
bols. In addition there are compound data types, such as lists, arrays, matrices and
structs. There are also special symbolic constants, such as the Boolean constants
true and false or the complex imaginary unit %i.

Several types of operators can be defined in Maxima CAS. An operator is a de-
fined symbol that may be unary prefix, unary postfix, binary infix, n-ary
matchfix, or nofix types. For example, the inner and outer products defined
in clifford are of the binary infix type. The scripting language allows
for defining new operators with specified precedence or redefining the precedence
of existing operators.

76 Dimiter Prodanov

The relation “=” is considered a symmetric equivalence relation, while the syntac-
tic equality “∼=” pertains only to the symbolical structure of the expression. In the
computer algebra systems, there is a clear distinction between these two relations
with the symbol “=” corresponding only to syntactic equality. However, here I will
comply to usual mathematical notational convention and use “=” in both ways. In
such way, expressions (or their parts) can be compared syntactically and matched
against existing transformation rules, without the need of evaluating them first. In
addition, there is an another important concept. Maxima distinguishes between
two forms of applications of operators – forms which are nouns and forms which
are verbs. The difference is that the verb form of an operator evaluates its ar-
guments and produces an output result, while the noun form appears as an inert
composite symbol in an expression, without being executed. A verb form can
be mutated into a noun form and vice-versa. This allows for context-dependent
evaluation, which is especially suited for symbolic processing.

(op a b)

op (a b)

a (b)

b nil

car cdr

car cdr

car cdr

Figure 1. Expression representation in Lisp. A general expression can be
represented as a list with the first element being the operator op and the rest
of the elements representing operator arguments. For instance, the expression
op(a,b) will be represented by the list (op a b), which is the ordered
pair of the atom op, and another list, (a b), which, in turn, is represented
by another ordered pair.

The Maxima language is based on the ideas of functional programming, which is
particularly well suited for transformations of formal mathematical expressions.
Maxima programs can be automatically translated and compiled to Lisp within the
program environment itself. Third-party Lisp programs can be also loaded and
accessed from within the system. The manner in which Maxima represents ex-
pressions, function calls and index expressions using the Lisp language is particu-
larly relevant for the design of the clifford-based packages. In the underlying
Lisp representation a Maxima expression is a tree containing sequences of oper-
ators, numbers and symbols. Every Maxima expression is simultaneously also a

Clifford Algebra Implementations in Maxima 77

λ -construct and its value is the value of the last assigned member. This is a design
feature inherited from Lisp. Maxima expressions are represented by underlying
Lisp constructs. The core concept of the Lisp language is the idea of a list rep-
resentation of the language constructs. The list is represented recursively by an
ordered pair, the first element of which is the head (or car), the second element
the tail (or cdr) of the list, which is also a list (see Fig. 1). List elements are
themselves either lists or atoms: e.g., a number, a symbol, or the empty list (nil).
This representation enables the possibility to define transformation rules. In such
way a part of an expression can be matched against a pattern and rewritten (see
Listing 1).

A very powerful feature of the system is the ability to define custom transformation
rules. Various transformation rules can be associated with any given operator in
Maxima. Maxima has an advanced pattern matching mechanism, which supports
nesting of operators and simplification. User-defined rules can be added to the
built-in simplifier using one of two commands: tellsimp or tellsimpafter.
Rules in both sets are identified by the main operator of the expression. Rules
specified using tellsimp are applied before the built-in simplification, while
tellsimpafter rules are applied after the built-in simplification. The aug-
mented simplification is then treated as built-in, so subsequent tellsimp rules are
applied before those defined previously. An example is given in Listing 1 used in
the implementation of clifford.

2. Construction of the Algebra C`n

Let us give a brief exposition on the properties of Clifford algebras over the reals
following [9]. Any Clifford algebra Gn is an associative unitary algebra, which
is generated by a vector space V spanned by the orthonormal basis {e1 . . .en},
over the field K of characteristic different from two. The unit is usually skipped
in notation (assuming implicit conversion between the scalar unit of K and the
vector unit of V wherever necessary) and the square of the vector v is denoted
conveniently by v2.

Definition 1 (Indicial map). Define the indicial map ι acting on symbols by con-
catenation

ιe : g 7→ eg

Assert the convention ιe : /0 7→ 1.

Definition 2 (Clifford algebra).
The construction of the algebra goes in the following steps:

78 Dimiter Prodanov

1. Fix a generator symbol e and adjoin an index k ≤ n ∈ N to the generator
symbol as the action of the indicial map ιe : i 7→ ek producing a set of n
generators (i.e., orths) of the algebra E := {e1 . . .en}.

2. Fix an order ≺ over E.

3. Define a vector space V (E,K) over the set of generators serving as basis
with axioms

• Commutativity of vector addition: a+b = b+a.

• Associativity of vector addition: (a+b)+ c = a+(b+ c).

• Existence of additive unity 0: 0+a = a+0 = a.

• For every vector, there exists an additive inverse: a+(−a) = 0.

• Associativity of scalar multiplication: λ (µa) = (λ µ)a.

• Compatibility with scalar multiplication: aλ = λa.

• Distributivity of scalar addition: (λ +µ)a = λa+µa.

• Distributivity of vector addition: λ (a+b) = λa+λa.

• Scalar multiplication identity: 1K a = a.

for vectors a,b,c and scalars λ ,µ .

4. Adjoin an associative algebra G(E,K) over V (E,K) using the Clifford prod-
uct or geometric multiplication operation with axioms

• Existence of an algebra unity: 1C`a = a1C` = a for a non-scalar a.

• Left distributivity: a(b+ c) = ab+ac for arbitrary elements a,b,c.

• Right distributivity: (a+b)c = ab+ac for arbitrary elements a,b,c.

• Associativity: a(bc) = (ab)c for arbitrary elements a,b,c.

• Compatibility with scalars: (λa)(µb) = (λ µ)(ab) for scalars λ ,µ and
non-scalar elements a,b.

5. Finally, assert

Closure Axiom For k orths e1, . . . ,ek ∈C`n and scalars λ , µ the multivec-
tor belongs to the algebra

λ +µe1 . . .ek ∈Gn. (C)

Clifford Algebra Implementations in Maxima 79

Reduction Axiom For all orths

ekek = σk1C` , σk ∈ {1,−1,0} (R)

where σk are scalars of the field K.

Anti-Commutativity Axiom For every two basis vectors, such that ei ≺ e j

eie j =−e jei. (A-C)

The notation C`p,q,r(K) (p+ q+ r = n) is interpreted as the convention that p
elements of the orthonormal basis square to 1, q elements square to −1 and r
(degenerate) elements square to 0. The structure C`p,q,r = {E,≺,K} is called
Geometric algebra over K with operations addition and geometric multiplication.

Further-on generators will be indexed by Latin letters. It should be remarked that
the closure and compatibility Axioms are not included in the former construction.
This construction can be carried out without modifications in Computer Algebra
systems like Maxima by defining proper simplification rules for the geometric
product operation [13, 15]. The rules defining the construction are presented in
Listing 1.

Clifford Algebra Implementations in Maxima 7

Closure Axiom For k orths e1, . . . ,ek ∈C`n and scalars λ , µ the multivec-
tor belongs to the algebra

λ +µe1 . . .ek ∈Gn. (C)

Reduction Axiom For all orths

ekek = σk1C` , σk ∈ {1,−1,0} (R)

where σk are scalars of the field K.

Anti-Commutativity Axiom For every two basis vectors, such that ei ≺ e j

eie j =−e jei. (A-C)

The notation C`p,q,r(K) (p+ q+ r = n) is interpreted as the convention that p
elements of the orthonormal basis square to 1, q elements square to −1 and r
(degenerate) elements square to 0. The structure C`p,q,r = {E,≺,K} is called
Geometric algebra over K with operations addition and geometric multiplication.

Further-on generators will be indexed by Latin letters. It should be remarked that
the closure and compatibility Axioms are not included in the former construction.
This construction can be carried out without modifications in Computer Algebra
systems like Maxima by defining proper simplification rules for the geometric
product operation [13, 15]. The rules defining the construction are presented in
Listing 1.

Listing 1. Clifford algebra construction in clifford.

1 /∗
A b s t r a c t C l i f o r d a l g e b r a c o n s t r u c t i o n
∗ /
m a t c h d e c l a r e ([aa , ee] , lambda ([u] , n o t f r e e o f (asymbol , u) and

f r e e o f (‘ ‘ + ’ ’ , u) and n o t s c a l a r p (u)) , [bb , cc] , t r u e ,
[kk , mm, nn] , lambda ([z] , i n t e g e r p (z) and z >0)) ;

6
i f g e t (’ c l i f f o r d , ’ v e r s i o n) = f a l s e t h e n (

t e l l s i m p (aa [kk] . aa [kk] , s i g n a t u r e [kk]) ,
t e l l s i m p a f t e r (aa [kk] . aa [mm] , do t s imp2 (aa [kk] . aa [mm])) ,
t e l l s i m p a f t e r (bb . ee . cc , d o t s im p c (bb . ee . cc)) ,

11 t e l l s i m p (bb ^nn , bb ^^ nn)
) ;

Here the list signature corresponds to the set {σ}. While the reordering of
products is executed by the function dotsimp2.

Here the list signature corresponds to the set {σ}. While the reordering of
products is executed by the function dotsimp2.

80 Dimiter Prodanov

3. Consistency of the Extension

Here we present results demonstrating the consistency of the Clifford algebra def-
inition.

Proposition 3. The scalar and algebra units coincide

1K = 1C` ≡ 1.

Proof: Suppose that e0 ∈ V (E) is the unit of the algebra. Then by the anti-
commutativity: e0ek +eke0 = 0↔ ek +ek = 0 which is a contradiction. Therefore,
e0 ∈K⇒ e0 = 1 by the uniqueness property. �

Theorem 4. V (E) extends over the power set of E

P(E) := {1,e1, . . . ,en,e1e2,e1e3, . . . ,e1e2...en}.

That is V (P(E)) is a vector space and we have the inclusion

V (E)⊂V (P(E)) .

Proof: The proof follows from the Closure Axiom.

Multiplicative properties:

1. Scalar commutativity µe1 . . .ek = e1µ . . .ek = . . .= e1 . . .ekµ.

2. In particular 1e1 . . .ek = e1 . . .ek1 = e1 . . .ek.

3. 0e1 . . .ek = 0e2 . . .ek = . . .= 0ek = 0.

4. Scalar compatibility: λ (µe1 . . .ek) = λ (µe1)(e2 . . .ek) = (λ µ)e1 . . .ek.

And we extend by linearity and the closure over the whole algebra.

Additive properties:

1. Universality of zero: Let L = 0+ e1 . . .ek. Right-multiply by ek. If σk = 0
then the results follows trivially.

So let σk 6= 0. Then Lek = 0ek +e1 . . .ek−1σk = σke1 . . .ek−1. Right-multiply
by ek. Then σkL = σke1 . . .ek⇔ L = e1 . . .ek.

2. Scalar distributivity: (c+d)e1 . . .ek =((c+d)e1)e2 . . .ek =(ce1+de1)e2 . . .ek
= ce1 . . .ek +de1 . . .ek.

Clifford Algebra Implementations in Maxima 81

3. In particular, there is an additive inverse element e1 . . .ek− e1 . . .ek = 0.

4. Commutativity of addition: Let M = ea + eb− eb− ea. Then for all possible
orders of evaluation M = 0. Therefore, by linearity a+b = b+a.

5. Associativity of addition: Let M = (ea + eb)+ ec− ea− (eb + ec). By com-
mutativity of addition and closure M = (ea + eb)1− (eb + ec)1− ec − ea.
Then for all possible orders of evaluation of the first two summands M =
ea− ec + ec− ea = 0. Therefore, by linearity (a+b)+ c = a+(b+ c).

6. Distributivity of addition follows directly from the distributivity axioms and
the closure axioms

λ (ea + eb) = λea +λeb.

And we extend by linearity and the closure over the entire algebra. �

Based on this extension principle we can identify the index set isomorphism

j : eaeb . . .em 7→ eJ, J = {a,b, . . . ,m} (1)

and use multi-index notation implicitly wherever appropriate. For consistency we
also extend the ordering to the power set ≺P(E) . However we will not use distinct
symbol for this. Multi-indices will be denoted with capital letters.

Definition 5. The extended basis set of the algebra will be defined as the sorted
power set

E := {P(E),≺} .

Therefore, we can afford the following multivector definition.

Definition 6. A multivector of the Clifford algebra is a linear combination of ele-
ments over the 2n-dimensional vector space spanned by E.

Lemma 7 (Well posedness). The Clifford algebra construction is well defined.

Proof: V (E) is well defined. Moreover, the vector space extension is also well
defined. The compatibility Axioms imply the inclusion V (E,K)⊂G(E,K).

Therefore, we only need to check the additional Algebra axioms. The Reduc-
tion Axiom implies the Closure Axiom trivially. The Anti-commutativity Axiom
implies the Closure Axiom trivially. Further, by restriction to ordered pairs the
Anti-commutativity Axiom does not apply when the Reduction Axiom applies.
Therefore, these two axioms are logically independent. Therefore, restricted alge-
bra construction over V (E) is well defined.

82 Dimiter Prodanov

The algebra extension is well-defined since the existence of C`n implies the exis-
tence of C`n−1 by the Closure Axiom. By reduction, for n = 1 the three possible
cases for the sign of the element represent the double, complex or dual numbers
respectively. Therefore, by induction C`n exists. �

Definition 8 (Canonical algebra). Define the canonical ordering as the nested
lexicographical order ρ , such that i < j =⇒ ei ≺ e j and extend it over P(E) as

e1 ≺ e2 ≺ e1e2︸︷︷︸
e12

≺ . . .≺ e1 . . .en︸ ︷︷ ︸
eN

.

In addition assume that the first p elements square to 1, then next q elements square
to -1 and the last r elements square to 0. Then the algebra C`p,q,r ≡ {E,ρ,K} is
the canonical Clifford algebra.

Using this definition it is very easy to demonstrate the equivalence between differ-
ent algebras.

Theorem 9 (Algebra equivalence). Two algebras with the same numbers of p, q
and r orths are order-isomorphic.

Proof: If the elements are ordered identically then the statement is trivial. Let’s
assume that the elements are ordered differently. But then there is a permutation
putting them into canonical order. Therefore, the algebras are isomorphic. There-
fore, we can identify an order ≺′ with the second permutation. �

Corollary 10 (S-Law of inertia). For two isomorphic algebras C`1 and C`2 (C`1
∼=

C`2) there is an invertible map

ι : S1 7→ S2.

Conversely, if there is an invertible map, such that

ι : S1 7→ S2

then C`1
∼=C`2.

Proof: The forward statement follows from Theorem 9. Converse case: If the
dimensions of S1 and S2 are equal and the numbers of p, q and r orths are equal
then there is a permutation

ι : S1 7→ S2.

Clifford Algebra Implementations in Maxima 83

However we note that this is the same permutation which maps

ι : E1 7→ E2

and hence by Theorem 9 C`1
∼=C`2. �

Corollary 11. The canonical algebra C`p,q,r defines an equivalence class.

Definition 12 (Quadratic form of the algebra). We can define the quadratic form
of the algebra as the scalar part of the square of an element v ∈C`n

Q(v) := 〈vv〉0 : C`n 7→K.

In such way we can benefit from the statement of the universal property of the
Clifford algebra [11].

3.1. Indicial Representation

Definition 13. For the sets A and B we define the symmetric difference as the op-
eration

A\B := {x ; x /∈ A∩B} .

Definition 14. Define the argument map arg acting on symbol compositions as

arg : f (g)≡ f ◦g 7→ g.

Assert arg f = /0.

Theorem 15 (Inidical representation). For generators es,et ∈C`p,q,r the follow-
ing diagram commutes

es {s}

eset ≡ est {s, t}

arg

ιe

et \{t}

arg

ιe

Proof: The right-left ι action follows from the construction of C`p,q,r . The left-
right argument action is trivial. We observe that arg f = /0. Trivially, {s} \ /0 =
/0 \ {s} = {s}. Let’s suppose that s = t. We notice that {s} \ {t} = {t} \ {s} = /0.
Let us suppose that s 6= t. We notice that {s} \ {t} = {s, t} and {t} \ {s} = {t,s}.

�

84 Dimiter Prodanov

4. Simplification of Products in Monomials

The axioms define a canonical simplified representation of a multivector. The main
lemma is demonstrated in [9] and is repeated here for convenience

Lemma 16 (Permutation equivalence). Let B= ek1 . . .eki be an arbitrary Clifford
multinomial, where the i generators are not necessarily different. Then

B = sPρ {ek1 . . .eki}

where s =±1 is the sign of permutation of B and Pρ {ek1 . . .eki} 7→ ekα . . .ekω is the
product permutation according to the canonical ordering.

Proof: The proof follows directly from the anti-commutativity of Clifford multi-
plication for any two generator elements A-C, observing that the sign of a permu-
tation of S can be defined from its decomposition into the product of transpositions
as sgn(B) = (−1)m, where m is the number of transpositions in the decomposition.

�

The corresponding Maxima implementation is given in Listing 2.

Further we can define a simplified form or blade form according to the action of
the Reduction Axiom.

Theorem 17 (Simplified monomial form). Let ek1 . . .eki be an arbitrary Clifford
multinomial, where the i generators in C`p,q,r are not necessarily different. Let \
denote the symmetric set difference operation and sP is the sign of the permutation
Pρ {ek1 . . .eki}. We say that simplification induces an equivalence relation

Ξ : E× . . .×E 7→C`p,q

such that

ek1 . . .eki =sP Ξ(ekα . . .ekω) = sP ekα Ξ
(

ekβ . . .ekω

)
=sP Ξ

(
ekα ekβ

)
Ξ
(
ekγ . . .ekω

)
.

Let 2p≤ i generators square as e2
j = 1. Then its simplified form is

ek1 . . .eki = sP eM, M = {k1 \ k2 \ . . .ki−2p}

with all k-indices different. Let 2q ≤ i generators square as e2
j = −1. Then its

simplified form is

ek1 . . .eki = (−1)qsP eM, M =
{

k1 \ k2 \ . . .ki−2q
}

Clifford Algebra Implementations in Maxima 85

with all k-indices different. Let at lest 2 generators square as e2
j = 0. Then its

simplified form is

ek1 . . .eki = 0.

Proof: The product is transformed according to Lemma 16. Then we use The-
orem 15 to compute the indices. By equation (R) the elements of equal indices
are removed from the final list. This induces a factor of (−1)q in the final result.
Hence, for 2q elements of index a {ka} \ {ka} = /0. Further /0 \ {ki} = {ki} \ /0 =
{ki}. The parentheses can be skipped from the final notation to improve readability
and the result follows. The associativity of Ξ follows from the associativity of the
Clifford product. �

Clifford Algebra Implementations in Maxima 13

with all k-indices different. Let at lest 2 generators square as e2
j = 0. Then its

simplified form is
ek1 . . .eki = 0.

Proof: The product is transformed according to Lemma 16. Then we use Th 15 to
compute the indices. By eq. R the elements of equal indices are removed from the
final list. This induces a factor of (−1)q in the final result. Hence, for 2q elements
of index a {ka}\{ka}= /0. Further /0\{ki}= {ki}\ /0 = {ki}. The parentheses can
be skipped from the final notation to improve readability and the result follows.
The associativity of Ξ follows from the associativity of the Clifford product. �

Listing 2. Clifford product simplification in clifford.

d o t s im p c (ab) := b l o c k ([ba , c : 1 , v , w: 1 , q , r , l , sop] ,
. . . .

3 sop : i nop (ab) ,
i f mapatom (ab) o r f r e e o f (‘ ‘ . ’ ’ , ab) o r

sop = ’ n i l o r sop = ‘ ‘^ ’ ’ o r
sop = ‘ ‘^^ ’ ’ t h e n r e t u r n (ab) ,

i f sop = ‘ ‘+ ’ ’ t h e n
8 map (dots impc , ab)

e l s e i f sop = ‘ ‘∗ ’ ’ t h e n (
[r , l] : o p p a r t (ab , lambda ([u] , f r e e o f (‘ ‘ . ’ ’ , u))) ,
i f _debug= t r u e t h e n d i s p l a y (sop , r , l) ,
r : s u b s t (n i l =1 , r) ,

13 l : s u b s t (‘ ‘ . ’ ’ , ‘ ‘∗ ’ ’ , l) ,
r ∗ d o t s i m p c (l)

) e l s e (
ba : copy (ab) ,
v : i n a r g s (ba) ,

18 i f _debug= t r u e t h e n d i s p l a y (sop , v) ,
w: s u b l i s t (v , lambda ([z] , n o t f r e e o f (asymbol , z) and

mapatom (z))) ,
w: pe rms ign (w) ,
i f w#0 t h e n (

v : s o r t (v) ,
23 f o r q i n v do c : c . q ,

i f _debug= t r u e t h e n d i s p l a y (w, v) ,
w∗c

) e l s e ab
)

28) ;

From this discussion it is evident that in principle the Clifford product simplifica-
tion can be executed in O(N log(N)) time since the parity of permutation can be

86 Dimiter Prodanov

The constitutive equations define a canonical representation of a multivector ex-
pression, which allows for automatic simplification.

Defining simplified forms allows for an implementation of an efficient Clifford
product simplification algorithm given in Listing 2.

From this discussion it is evident that in principle the Clifford product simplifica-
tion can be executed in O(N log(N)) time since the parity of permutation can be
computed along with the sorting step, for example using the merge-sort algorithm.
This is a substantial speed-up compared to calculations using matrix representa-
tions, which run in exponential time as O(4dim).

5. Properties of Clifford Algebras in View of Maxima Implementation

Further we can define a simplified form according to the action of equation (R). By
means of this distinction it is convenient to define blade objects.

Definition 18. A blade of grade k is a product of k basis elements in simplified
form.

Conventionally, 0-blades are scalars, 1-blades are vectors etc. A general multivec-
tor M can be decomposed by the grade projection operators 〈 〉k into a direct sum
of different sub-spaces

M =
n

∑
k=0
〈M〉k . (2)

Proposition 19 (Maximal element). The algebra C`p,q,r has a maximal element
I = e1 . . .en called pseudoscalar.

Proof: Suppose that r > 0. Then if a product contains more than one nilpotent
generators of the same index the simplified form is 0 by Lemma 16. If a prod-
uct contains exactly one nilpotent generator per index the maximal element is the
product of all generators by Theorem 17

I = e1 . . .en, n = p+q+ r.

Suppose that r = 0. Then by Theorem 17 the maximal element is the product of all
generators

I = e1 . . .en, n = p+q.

This element is referred to as the pseudoscalar of the algebra. �

Clifford Algebra Implementations in Maxima 87

5.1. Main Involutions

There are three important involutions which change signs of blades – the reflection
Â, the order reversion A∼ and the Clifford conjugation A†. The Clifford conjugation
is the composition of reversion and reflection. The sign mutations for the different
involutions are shown in Table 1.

Table 1. Sign mutation table for Clifford algebras C`p,q,r.

k mod 4
0 1 2 3

Â + − + −
A∼ + + − −

A† = Â∼ + − − +

Definition 20. Define the blade index map for ea,eb ∈C`p,q,r with action

j : λeaeb 7→ {a,b} .

Definition 21. Define the algebraical dual element of es as the result of the duality
operation

?es := es\I.

Using this definition we have trivially that the duality transformation is an auto-
morphsim

?(?es) = es.

Therefore, this operation can identified with the orthogonal complement. The Clif-
ford algebra dual is related to the so-defined algebraic dual by the formula

e∗s = es I−1 = σI sP(U) ? es, U = j(es)∪ j(I). (3)

5.2. Scalar, Inner and Outer Products

The Clifford product of vectors decomposes into a sum of inner and outer products
according to

ab = a ·b+a∧b = 〈ab〉0 + 〈ab〉2 . (4)

88 Dimiter Prodanov

Hestenes further identifies the outer product of vectors with the Grassmann’s outer
product [7, Ch. 1] and defines the outer product by extension for blades (not for
scalars!) as

a∧B :=
1
2
(aB+(−1)rBa) =

1
2
(
aB+ B̂a

)
(5)

a ·B :=
1
2
(aB− (−1)rBa) =

1
2
(
aB− B̂a

)
(6)

where r is the grade of B and a is a vector. In the general case for a grade k blade
Ak and grade l blade Al

Ak∧Bl =

{
〈Ak Bl〉k+l , k+ l ≤ n
0, k+ l > n.

The outer product can be defined also in a different way without demanding grade
decomposition. Tn this definition the type of the arguments is important.

Definition 22. For a scalar α and a blade or scalar B

α ∧B 7→ αB.

For blades A,B

A∧B :=

{
AB−〈AB〉0 , j(A)∩ j(B) = /0
0 , j(A)∩ j(B) 6= /0.

Then the product is extended to the entire algebra by linearity of its arguments.

The inner product, on the other hand, can be extended to blades in several different
ways depending on the sign of k− l resulting in left, right or symmetric contrac-
tions. For the latter we have

AkcBl :=

{
〈Ak Bl〉k−l , k ≤ l
0, k > l

(7)

AkbBl :=

{
〈Ak Bl〉k−l , k ≥ l
0, k < l

(8)

Ak ·Bl := 〈Ak Bl〉|k−l| . (9)

In addition, the scalar product is defined as

Ak ∗Bl := 〈Ak Bl〉0

Clifford Algebra Implementations in Maxima 89

giving rise to the symmetric contraction decomposition [6]

Ak ·Bl = AkcBl +AkbBl−Ak ∗Bl.

Using these definitions it can be verified that for a scalar α and a vector v the
decomposition does not hold

α · v+α ∧ v = 2αv.

Since such a decomposition for low-grade objects is useful in applications Hestenes
demands for example that

α · v = 0, α ·α = 0.

Another choice is to abandon the complete identification of the wedge product with
the Grassmann’s outer product and assign

α ∧ v = 0, α ∧α = 0.

All of these choices can be easily implemented in clifford using global variable
switches.

Contractions can be defined as well by duality without resorting to grade decom-
position. For example in C`p,0,0

AcB = (A∧B∗)∗, AbB = (A∗∧B)∗, A ·B = (A∧B∗+A∗∧B)∗−A∗B. (10)

For different signatures these relationships are valid up to sign. However, in prin-
ciple these correspondences can be made exact.

6. Features of the Clifford Package

At present the clifford package implements more extensive functionality re-
lated to Clifford algebras [15]. The code is distributed under GNU Lesser General
Public License. A permanent repository of the presented version of the package
is available through the Zenodo repository [14]. A development version is hosted
at GitHub (http://dprodanov.github.io/clifford/). The package
includes also a large number of unit tests for the core functionality and offers
several interactive demonstrations. The intention is to have clifford serving
as core engine of any type of Clifford algebra computations possible in Maxima.
Since there are multiple possible directions of development every new function-
ality set (for example geometric calculus or visualizations) is spun off from the
core clifford engine in a specialized package. To fully support this strategy, it

90 Dimiter Prodanov

is endorsed with minimalistic design approach, which surprisingly coincides with
the Clifford algebra construction offered by [9], about which the author was not
aware until recently. The package relies extensively on the Maxima simplifica-
tion functionality, and its features are fully integrated into the Maxima simplifier.
The clifford package defines multiple rules for pre- and post-simplification of
Clifford products, outer products, scalar products, inverses and powers of Clifford
vectors. Using this functionality, any combination of products can be simplified
into the canonical representation. The main features of the package are summa-
rized in Table 2.

Table 2. Main functions in the clifford package.

function name functionality
simplification

cliffsimpall (expr) full simplification of expressions
dotsimp1 (ab) canonic reordering of dot products
dotsimpc (ab) simplification of dot products
dotinvsimp (ab) simplification of inverses
powsimp (ab) simplification of exponents

involutions
dotreverse (ab) Clifford reverse of product
cinvolve (expr) Clifford involution of expression
dotconjugate (expr) Clifford conjugate of expression

grade functions
grade (expr) grade decomposition of expression
scalarpart (expr) < expr >0
vectorpart (expr) < expr >1
grpart (expr,k) < expr >k
mvectorpart (expr) < expr >2+
bdecompose (expr) blade decomposition of expression

Example 23 (Quaternions). The quaternion algebra C`0,2 can be initialized by
issuing the command

clifford(e,0,2);

The function mtable1 computes and simplifies the geometric products of a list of
elements and returns the multiplication matrix.

Clifford Algebra Implementations in Maxima 91

mtable1([1, e[1],e[2], e[1] . e[2]]);


1 e1 e2 e1.e2
e1 −1 e1.e2 −e2
e2 −e1.e2 −1 e1

e1.e2 e2 −e1 −1


Here we give some examples in G3

Example 24 (Outer product). Outer product evaluation

e[1]&e[2] & e[3];

e1e2e3

(1+e[1])&(1+e[1]);

1+2e1

(1+e[1])&(1-e[1]);

1.

In a similar way the outer product table can be computed

mtable2o();

1 e1 e2 e3 e1· e2 e1· e3 e2· e3 e1· e2· e3
e1 0 e1· e2 e1· e3 0 0 e1· e2· e3 0
e2 −e1· e2 0 e2· e3 0 −e1· e2· e3 0 0
e3 −e1· e3 −e2· e3 0 e1· e2· e3 0 0 0

e1· e2 0 0 e1· e2· e3 0 0 0 0
e1· e3 0 −e1· e2· e3 0 0 0 0 0
e2· e3 e1· e2· e3 0 0 0 0 0 0

e1· e2· e3 0 0 0 0 0 0 0



Example 25 (Associativity of outer product). We create three vectors with scalar
components

a1:cvect(a),b1:cvect(b), c1:cvect(c);

92 Dimiter Prodanov

a1e1 +a2e2 +a3e3

And then test for the associativity of the vector product

(a1 & b1)& c1,factor;

(−c1b2a3 +b1c2a3 + c1a2b3−a1c2b3−b1a2c3 +a1b2c3)(e1· e2· e3)

a1 & (b1 & c1),factor

(−c1b2a3 +b1c2a3 + c1a2b3−a1c2b3−b1a2c3 +a1b2c3)(e1· e2· e3) .

The modulus of the triple product can be identified as the determinant of the co-
ordinate matrix as will be shown further. Moreover, we can verify an the mixed
product identity from vector algebra

c · (a×b) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3


c1| (-%iv. (a1 & b1)), dotsimpc;

−c1b2a3 +b1c2a3 + c1a2b3−a1c2b3−b1a2c3 +a1b2c3

M1: matrix(
[a[1],a[2],a[3]],
[b[1],b[2],b[3]],
[c[1],c[2],c[3]]
)$
D2:determinant(M1);

(−c1b2 +b1c2)a3−a2 (−c1b3 +b1c3)+a1 (−c2b3 +b2c3) .

Example 26 (Inner products). Inner product evaluation

((1+e[1])/2)|((1+e[1])/2),factor;

1+ e1

2
·

In clifford the left and right contractions and the symmetrical product are
supported by the command line switches lc for left contraction, rc for right con-
traction and sym for the symmetric product. The example below calculates left
contraction in G3

Clifford Algebra Implementations in Maxima 93

inprotype:lc;
mtable2i();



1 e1 e2 e3 e1.e2 e1.e3 e2.e3 e1.e2.e3
0 1 0 0 e2 e3 0 e2.e3
0 0 1 0 −e1 0 e3 −e1.e3
0 0 0 1 0 −e1 −e2 e1.e2
0 0 0 0 −1 0 0 −e3
0 0 0 0 0 −1 0 e2
0 0 0 0 0 0 −1 −e1
0 0 0 0 0 0 0 −1


.

6.1. Visualization of Blades

The clidraw package offers elementary functionality for visualization of multi-
vector operations. Projections of multivectors on two and three dimensional sub-
spaces can be drawn using the underlying Maxima graphical functionality. Reflec-
tion of the vector a = 3e1 +4e2− e3 by b = 3e1−2e2− e3 is plotted in Fig. 2A.
Bi-vectors spanned by the vectors {e1,e2} and {3e1 + 4e2,2e1− 3e3} are plotted
in Fig. 2B.

A B

A – plotting of vector operations; B – plotting of bi-vectors.

Figure 2. Vector and bi-vector display in the clidraw package.

7. Generalized Derivatives in Clifford Algebras

7.1. Multi-Vector Derivatives

Vector derivative of a function is well-defined in the case a Clifford algebra is non-
degenerate (r = 0), which will be assumed further on.

94 Dimiter Prodanov

Definition 27 (Reciprocal frames). Consider the multivector r = xkek, in the sub-
space spanned by ei1 ∧ . . .eim . The frame ek can be extracted by partial differentia-
tion with respect to coordinates

ek =
∂ r
∂xk
·

Then for every fame we define the reciprocal frame as ek = e−1
k so that

ek ∗ e j = δ j
k .

Consider the m-vector v spanned by the subspace v∧ e1∧ . . .em = 0. Then we can
compute the projections using the reciprocal frames

v j = eJ ∗ v, eJ ∧ e1∧ . . .em = 0.

Definition 28 (Directional derivative). Define the directional derivative as the
projection along the unit norm (multi)vector v

(v∗∇) f (x)≡ v∇ f (x) := ∑
j

v j
∂ f
∂x j
· (11)

Moreover, it is clear that

v∇ f (x) = ∑
J

v∗ ∂x j

∂ r︸︷︷︸
eJ

∂ f
∂x j︸︷︷︸

∂J f (x)

= ∑
J

(
eJ ∗ v

)
∂J f (x).

Definition 29 (Geometric derivative). The vector derivative ∇r of the multi-vector
valued function f (x) is defined as

∇r f (x) :=
d f
dr

= ∑
J

∂x j

∂ r︸︷︷︸
eJ

∂ f
∂x j

= eJ∂J f (x) (12)

so that
∂J f (x) = (eJ ∗∇r) f (x) = ∇r∗eJ f (x).

The definition can be readily extended to multi-vectors. The vector (but not in gen-
eral the multivector) derivative can be decomposed into inner and exterior compo-
nents

∇rF = ∇r ·F +∇r ∧F

in a way similar to the decomposition of the geometric product.

Clifford Algebra Implementations in Maxima 95

Another useful decomposition can be based on the projection against a blade

∇rF = v∇F +⊥v∇F

so that the expressions

v(v∇)F = v ·∇rF, v(⊥v∇)F = v∧∇rF

give components along the directions of a vector v.

A local fractional variant of the derivative called fractional velocity [5,12] can also
be constructed. We define directional limits

∂ β
±J f (x) =± lim

ε→0

f (xJ± ε)− f (x)
εβ

for the exponent 0 < β ≤ 1 . Then for functions of bounded variation [12]

∂ β
±k f (x) = lim

ε→0

1
β

ε1−β ∂k f (xk± ε).

We start from a projection definition [17]

Definition 30. For a unit vector v

v∗∇β
± f (x) := ∑

J

(
v∗ eJ)∂ β

±J f (x) (13)

for the exponent 0 < β ≤ 1.

Definition 31. Then we proceed in defining

∇β
± f (x) := ∑

J
eJ∂ β
±J f (x) (14)

so that
∇β
± f (x) =

1
β

lim
ε→0

∑
J

eJε1−β ∂J f (xJ± ε).

8. Geometric Calculus Functionality in Maxima

Maxima supports symbolic differentiation and integration in the real and com-
plex domains. This functionality can be extended also to Clifford numbers. The
cliffordan package, which is based on clifford implements symbolical
differentiation based on the vector derivative. The main building block is the total
derivative function shown in Listing 3.

The main functions of the packages are listed in Table 3.

96 Dimiter Prodanov
24 Dimiter Prodanov

Listing 3. Clifford-valued total differentiation of an expression in
cliffordan.

/∗
2 C l i f f o r d−v a l u e d

t o t a l d i f f e r e n t i a t i o n ; ∗ /

c t o t d i f f (f , x) := b l o c k ([r e t : 0 , l v] ,
i f mapatom (x) t h e n

7 r e t : d i f f (f , x)
e l s e (

l v : s u b l i s t (l i s t o f v a r s (x) , lambda ([z] , f r e e o f (asymbol , z
))) ,

f o r u i n l v do
r e t : r e t + c i n v (d i f f (x , u)) . s u b s t (‘ ‘ . ’ ’ , ‘ ‘∗ ’ ’ , d i f f

(f , u))
12) ,

r e t
) ;

Listing 4. Clifford-valued directional differentiation of an expression in
cliffordan.

1 /∗
C l i f f o r d−v a l u e d
d i r e c t i o n a l d e r i v a t i v e
∗ /

c d i r d i f f (f , v , x) := b l o c k ([r e t : 0 , lv , uu : 0 , qq] ,
6 i f mapatom (x) t h e n

r e t : d i f f (f , x)
e l s e (

l v : s u b l i s t (l i s t o f v a r s (x) , lambda ([z] , f r e e o f (asymbol ,
z))) ,

f o r u i n l v do (
11 qq : c i n v (d i f f (x , u)) ,

uu : s c p r o d (qq , v) ,
r e t : r e t + uu ∗ s u b s t (‘ ‘ . ’ ’ , ‘ ‘∗ ’ ’ , d i f f (f , u))

)
) ,

16 f a c t o r b y (d o t s i m p c (r e t) , %e l e m e n t s)
) ;

The main functions of the packages are listed in Table 3.

24 Dimiter Prodanov

Listing 3. Clifford-valued total differentiation of an expression in
cliffordan.

/∗
2 C l i f f o r d−v a l u e d

t o t a l d i f f e r e n t i a t i o n ; ∗ /

c t o t d i f f (f , x) := b l o c k ([r e t : 0 , l v] ,
i f mapatom (x) t h e n

7 r e t : d i f f (f , x)
e l s e (

l v : s u b l i s t (l i s t o f v a r s (x) , lambda ([z] , f r e e o f (asymbol , z
))) ,

f o r u i n l v do
r e t : r e t + c i n v (d i f f (x , u)) . s u b s t (‘ ‘ . ’ ’ , ‘ ‘∗ ’ ’ , d i f f

(f , u))
12) ,

r e t
) ;

Listing 4. Clifford-valued directional differentiation of an expression in
cliffordan.

1 /∗
C l i f f o r d−v a l u e d
d i r e c t i o n a l d e r i v a t i v e
∗ /

c d i r d i f f (f , v , x) := b l o c k ([r e t : 0 , lv , uu : 0 , qq] ,
6 i f mapatom (x) t h e n

r e t : d i f f (f , x)
e l s e (

l v : s u b l i s t (l i s t o f v a r s (x) , lambda ([z] , f r e e o f (asymbol ,
z))) ,

f o r u i n l v do (
11 qq : c i n v (d i f f (x , u)) ,

uu : s c p r o d (qq , v) ,
r e t : r e t + uu ∗ s u b s t (‘ ‘ . ’ ’ , ‘ ‘∗ ’ ’ , d i f f (f , u))

)
) ,

16 f a c t o r b y (d o t s i m p c (r e t) , %e l e m e n t s)
) ;

The main functions of the packages are listed in Table 3.8.1. Potential Problems in C`3,0

We shall give a presentation of the potential problem in the geometric algebra
G3 = C`3,0. In electrostatic or magnetostatic setting the Green’s function of the
system

∇rG = δ (r)

Clifford Algebra Implementations in Maxima 97

Table 3. Main functions in cliffordan.

name functionality

ctotdiff(f, x) total derivative w.r.t. multivector x
ctotintdiff(f, x) inner total derivative w.r.t. x
ctotextdiff(f, x) outer total derivative w.r.t. x
vectdiff(f, ee, k) vector derivative of order k w.r.t. basis

vector list ee
mvectdiff(f, x, k) multivector derivative of order k w.r.t.

multivector x
parmvectdiff(f, x, k) partial multivector derivative of order k

w.r.t. multivector x
convderiv(f, t, xx, [vs]) convective derivative w.r.t. multivector x
coordsubst(x, eqs) substitutes coordinates in multivector x

w.r.t. new variables in the list eqs
clivolel(x, eqs) computes volume element of Span{x}

w.r.t. new variables in the list eqs

where δ (x) is the Dirac’s delta function is

G(x,y,z) =
e1 x+ e2 y+ e3 z

4π
√
(x2 + y2 + z2)3

· (15)

Direct calculation issuing the commands

xx:e[1]*x+e[2]*y+e[3]*z$
G:xx/sqrt(-cnorm(xx))^3$
mvectdiff(GG,xx)

evaluates to 0 for x 6= 0,y 6= 0,z 6= 0. In the last calculation the factor is skipped
for simplicity. G(x,y,z) can be derived from the following scalar potential

V (x,u,z) =− C√
x2 + y2 + z2

(16)

where C is an arbitrary constant matching the initial or boundary conditions

mvectdiff(-1/sqrt(x^2+y^2+z^2),xx);

yielding
e1 x+ e2 y+ e3 z

(x2 + y2 + z2)
3
2
·

98 Dimiter Prodanov

8.2. Coordinate Transformations

Geometric algebra implementation in clifford allows for transparent coordi-
nate substitutions.

Example 32. In the following example we verify the properties of the Green’s
function in cylindrical coordinates

GG_c:coordsubst(G, cyl_eq),factor;

e1ρ cosφ + e2ρ sinφ + e3z

(ρ2 + z2)
3
2

rc:coordsubst(r, cyl_eq);

(e1 cosφ + e2 sinφ)ρ + e3z

V:coordsubst(-1/sqrt(-cnorm(r)),cyl_eq);

− 1√
ρ2 + z2

rc:coordsubst(r, cyl_eq);

(e1 cosφ + e2 sinφ)ρ + e3z

mvectdiff(V,rc);

yielding
e1ρ cosφ + e2ρ sinφ + e3z

(ρ2 + z2)
3
2

as expected.

mvectdiff(GG_c,rc);

which yields 0 as expected.

Clifford Algebra Implementations in Maxima 99

8.3. Homogeneous d’Alembert Equation in Clifford

Clifford algebras offer a convenient way of combining objects of different grades
in the form of inhomogeneous sums. For example, the sum of a scalar and a 3-
vector in G3 (called a paravector) is a well-defined inhomogeneous object that
can be used in calculations. The Euler-Lagrange field equations corresponding to
the scalar Lagrangian density L (q,∂xq) involving a field u and its derivatives ∂xu
with respect to the coordinates x are derived in [8] using the fundamental theorem
of Geometric Calculus. Here we give another derivation based on the usual tensor
notation. We start from the system of n Euler-Lagrange equations in fields ua and
their partial derivatives ua;ν (using Einstein’s summation convention)

∂L

∂ua
− ∂

∂xν
∂L

∂ua;ν
= 0.

We introduce auxiliary notation u = eaua and

p = ∇xu, pν = (eν ∗∇x)u

so that pν = eaua;ν in the (extended) basis. Then the following identity (no sum-
mation by ν) holds

∂
∂ pν L =

(
d pν

dua;ν

)−1 ∂L

∂ua;ν
= ea ∂L

∂ua;ν
= ∇pν L .

We proceed by multiplying the input equations by ea basis vectors and add them
up to obtain

∂L

∂ua
ea− eν ∂

∂xν eν ea ∂L

∂ua;ν
= 0

where we recognize further

∂L

∂ua
ea− eν ∂

∂xν eν∇pν L = ∇uL − (∇x ∗∇p)L .

So that finally
∇uL − (∇x ∗∇p)L = 0.

Example 33. The wave equation was derived in 1747 by Jean-Baptiste le Rond
d’Alembert in the analysis of the problem of vibrating strings. The following ap-
plication derives this equation using the Euler-Lagrange framework. Here the
derivation procedure is replicated using the clifford package. Let A be the
paravector potential given by

A = At + e1 Ax + e2 Ay + e3 Az (17)

which can be constructed by the command

100 Dimiter Prodanov

AA: celem(A,[t,x,y,z])$

Then the geometric derivative object is given by applying geometric derivative
using a paravector x = t− r

F = ∇t−rA (18)

given by the command

F:mvectdiff(AA,t-r)$

resulting in a mixture of scalar, vector and bi-vector components

F = 〈F〉0 + 〈F〉1 + 〈F〉2 . (19)

The wave equation for the paravector potential can be derived from a purely
quadratic Lagrangian composed from the components of the geometric derivative
of F

La =
1
2
〈
F2〉

0 (20)

L:lambda([x],1/2*scalarpart(cliffsimpall(x.x)))(F);

(At t
2+At x

2+At y
2+At z

2−2At xAxt +Axt
2−2At tAxx+Axx

2−Axy
2−Axz

2−2At yAyt

+Ayt
2+2AxyAyx−Ayx

2−2At tAyy+2AxxAyy+Ayy
2−Ayz

2−2At zAzt +Azt
2+2AxzAzx

−Azx
2 +2AyzAzy−Azy

2−2At tAzz +2AxxAzz +2AyyAzz +Azz
2)/2

where we can recognize the identity

La =
1
2

(
〈F〉20 + 〈F〉21 + 〈F〉22

)
(21)

S:scalarpart(F)$
V:vectorpart(F)$
Q:grpart(F,2)$
L-1/2*(S.S+V.V+Q.Q),cliffsimpall;

yielding 0.

Finally, applying the functional derivative, that is the Euler-Lagrange functional
yields

Clifford Algebra Implementations in Maxima 101

dA:mvectdiff(AA,r);
EuLagEq2(L, t+r,[AA,dA]);

(
−At tt +At xx +At yy +At zz

)
+ e1

(
−Axtt +Axxx +Axyy +Axzz

)
+ e2

(
−Aytt +Ayxx +Ayyy +Ayzz

)
+ e3

(
−Aztt +Azxx +Azyy +Azzz

)
which can be recognized as the D’Alembertian for the components of the paravec-
tor potential

∇t+r∇t−rA = 0. (22)

In the last derivation based on paravectors we used implicitly the space-time split
used by Hestenes. The Maxima expression can be decomposed in a matrix form
as

(%i51) bdecompose(%);

[[[1],
(
−At tt +At xx +At yy +At zz

)
],

[[e1,e2,e3],

−Axtt +Axxx +Axyy +Axzz
−Aytt +Ayxx +Ayyy +Ayzz
−Aztt +Azxx +Azyy +Azzz

],

[[0],
(
0
)
], [[0],

(
0
)
]]

if one wishes to solve for individual components.

9. Outlook

This paper demonstrates applications of Clifford algebra in several areas of applied
sciences, notably: visualizations of geometric objects, coordinate transformations,
derivation of the Green function of the Poisson’s equation and variational prob-
lems. In summary, Clifford algebra packages of Maxima can be considered as
sufficiently mature for use as research tools. Further development of the Clifford
algebra tools will be directed towards more extensive linear algebra functionality
and fractional calculus.

102 Dimiter Prodanov

Appendix: Example Code listings

Clifford Algebra Implementations in Maxima 31

Appendix: Example Code listings

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;

3 c l i f f o r d (e , 0 , 2) ;
mtab le1 ([1 , e [1] , e [2] , e [1] . e [2]]) ;
c l i f f o r d (e , 3) ;
e [1] &e [2] &e [3] ;
(1+ e [1]) &(1+e [1]) ;

8 (1+ e [1]) &(1−e [1]) ;
mtab le2o () ;
i n p r o t y p e : l c ;
((1 + e [1]) / 2) | ((1+ e [1]) / 2) , f a c t o r ;
m t a b l e 2 i () ;

Listing 6. Associatvity of outer products example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;

3 c l i f f o r d (e , 3) ;
a1 : c v e c t (a) , b1 : c v e c t (b) , c1 : c v e c t (c) ;
b1 : c v e c t (b) ;
c1 : c v e c t (c) ;
(a1 & b1)& c1 , f a c t o r ;

8 a1 & (b1 & c1) , f a c t o r ;
L1 : a1 | (b1 & c1) ;
L2 : (a1 | b1) . c1 − (a1 | c1) . b1 , expand ;
L1−L2 ;
D1 : c1 | (−%i v . (a1 & b1)) , d o t s i m p c ;

13
M1: m a t r i x (
[a [1] , a [2] , a [3]] ,
[b [1] , b [2] , b [3]] ,
[c [1] , c [2] , c [3]]

18) ;
D2 : d e t e r m i n a n t (M1) ;

e q u a l (D1 , D2) , p r ed ;

Listing 7. Potential theory example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;

Listing 5. Inner and outer products example.

Clifford Algebra Implementations in Maxima 31

Appendix: Example Code listings

Listing 5. Inner and outer products example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;

3 c l i f f o r d (e , 0 , 2) ;
mtab le1 ([1 , e [1] , e [2] , e [1] . e [2]]) ;
c l i f f o r d (e , 3) ;
e [1] &e [2] &e [3] ;
(1+ e [1]) &(1+e [1]) ;

8 (1+ e [1]) &(1−e [1]) ;
mtab le2o () ;
i n p r o t y p e : l c ;
((1 + e [1]) / 2) | ((1+ e [1]) / 2) , f a c t o r ;
m t a b l e 2 i () ;

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;

3 c l i f f o r d (e , 3) ;
a1 : c v e c t (a) , b1 : c v e c t (b) , c1 : c v e c t (c) ;
b1 : c v e c t (b) ;
c1 : c v e c t (c) ;
(a1 & b1)& c1 , f a c t o r ;

8 a1 & (b1 & c1) , f a c t o r ;
L1 : a1 | (b1 & c1) ;
L2 : (a1 | b1) . c1 − (a1 | c1) . b1 , expand ;
L1−L2 ;
D1 : c1 | (−%i v . (a1 & b1)) , d o t s i m p c ;

13
M1: m a t r i x (
[a [1] , a [2] , a [3]] ,
[b [1] , b [2] , b [3]] ,
[c [1] , c [2] , c [3]]

18) ;
D2 : d e t e r m i n a n t (M1) ;

e q u a l (D1 , D2) , p r ed ;

Listing 7. Potential theory example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;

Listing 6. Associatvity of outer products example.

Clifford Algebra Implementations in Maxima 103

Clifford Algebra Implementations in Maxima 31

e q u a l (D1 , D2) , p r ed ;

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;

4 c l i f f o r d (e , 3) ;

r : c v e c t ([x , y , z]) ;
G: r / s q r t (−cnorm (r)) ^ 3 ;
m v e c t d i f f (G, r) ;

9 m v e c t d i f f (−1/ s q r t (−cnorm (r)) , r) ;
m v e c t d i f f (−1/ s q r t (−cnorm (r)) , r , 2) ;

c y l _ e q : [x= rho ∗ cos (p h i) , y= rho ∗ s i n (p h i)] ;
14 d e c l a r e ([rho , p h i] , s c a l a r) ;

GG_c : c o o r d s u b s t (G, c y l _ e q) , f a c t o r ;
r c : c o o r d s u b s t (r , c y l _ e q) ;
m v e c t d i f f (GG_c , r c) ;
V: c o o r d s u b s t (−1/ s q r t (−cnorm (r)) , c y l _ e q) ;

19 m v e c t d i f f (V, r c) ;

Listing 8. Lagrangian example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;
c l i f f o r d (e , 3) ;

5
d e r i v a b b r e v : t r u e ;
AA: celem (A, [t , x , y , z]) ;
dependsv (A , [t , x , y , z]) ;
r : c v e c t ([x , y , z]) ;

10 F : m v e c t d i f f (AA, t−r) ;
L : lambda ([x] , 1 / 2∗ s c a l a r p a r t (c l i f f s i m p a l l (x . x))) (F) ;
S : s c a l a r p a r t (F) ;
V: v e c t o r p a r t (F) ;
Q: g r p a r t (F , 2) ;

15 L−1/2∗(S . S+V.V+Q.Q) , c l i f f s i m p a l l ;
dA : m v e c t d i f f (AA, r) ;
EuLagEq2 (L , t +r , [AA, dA]) ;
bdecompose (%) ;

Listing 7. Potential theory example.

Clifford Algebra Implementations in Maxima 31

e q u a l (D1 , D2) , p r ed ;

Listing 7. Potential theory example

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;

4 c l i f f o r d (e , 3) ;

r : c v e c t ([x , y , z]) ;
G: r / s q r t (−cnorm (r)) ^ 3 ;
m v e c t d i f f (G, r) ;

9 m v e c t d i f f (−1/ s q r t (−cnorm (r)) , r) ;
m v e c t d i f f (−1/ s q r t (−cnorm (r)) , r , 2) ;

c y l _ e q : [x= rho ∗ cos (p h i) , y= rho ∗ s i n (p h i)] ;
14 d e c l a r e ([rho , p h i] , s c a l a r) ;

GG_c : c o o r d s u b s t (G, c y l _ e q) , f a c t o r ;
r c : c o o r d s u b s t (r , c y l _ e q) ;
m v e c t d i f f (GG_c , r c) ;
V: c o o r d s u b s t (−1/ s q r t (−cnorm (r)) , c y l _ e q) ;

19 m v e c t d i f f (V, r c) ;

/∗ I n i t i a l i z a t i o n ∗ /
l o a d (’ c l i f f o r d) ;
l o a d (’ c l i f f o r d a n) ;
c l i f f o r d (e , 3) ;

5
d e r i v a b b r e v : t r u e ;
AA: celem (A, [t , x , y , z]) ;
dependsv (A , [t , x , y , z]) ;
r : c v e c t ([x , y , z]) ;

10 F : m v e c t d i f f (AA, t−r) ;
L : lambda ([x] , 1 / 2∗ s c a l a r p a r t (c l i f f s i m p a l l (x . x))) (F) ;
S : s c a l a r p a r t (F) ;
V: v e c t o r p a r t (F) ;
Q: g r p a r t (F , 2) ;

15 L−1/2∗(S . S+V.V+Q.Q) , c l i f f s i m p a l l ;
dA : m v e c t d i f f (AA, r) ;
EuLagEq2 (L , t +r , [AA, dA]) ;
bdecompose (%) ;

Listing 8. Lagrangian example.

Acknowledgments

The work is partially supported by a grant from Research Fund – Flanders (FWO),
contract numbers G.0C75.13N, VS.097.16N.

104 Dimiter Prodanov

References

[1] Abłamowicz R. and Fauser B., Mathematics of CLIFFORD - A Maple Pack-
age for Clifford and Graßmann Algebras, Advances in Applied Clifford Al-
gebras 15 (2002) 157–181.

[2] Abłamowicz R. and Fauser B., Clifford and Graßmann Hopf Algebras via
the BIGEBRA Package for Maple, Computer Physics Communications 170
(2005) 115–130.

[3] Abłamowicz R. and Fauser B., Using Periodicity Theorems for Computations
in Higher Dimensional Clifford Algebras, Advances in Applied Clifford Al-
gebras 24 (2014) 569–587.

[4] Aragon-Camarasa G., Aragon-Gonzalez G., Aragon J. and Rodriguez-
Andrade M., Clifford Algebra with Mathematica, In: Recent Advances in
Applied Mathematics, I. Rudas (Ed), Proceedings of AMATH ’15 WSEAS
Press, Budapest 2015, pp. 64–73.

[5] Cherbit G., Local Dimension, Momentum and Trajectories, In: Fractals, Non-
integral Dimensions and Applications. G. Cherbit (Ed), John Wiley & Sons,
Paris 1991, pp. 231– 238.

[6] Dorst L., The Inner Products of Geometric Algebra, In: Applications of Ge-
ometric Algebra in Computer Science and Engineering, Birkhäuser, Boston
2002, pp. 35–46.

[7] Hestenes D., Space-Time Algebra, 2nd Edn, Birkhäuser, Basel 2015.

[8] Lasenby A., Doran C. and Gull S., A Multivector Derivative Approach to
Lagrangian Field Theory, Foundations of Physics 23 (1993) 1295–1327.

[9] Macdonald A., An Elementary Construction of the Geometric Algebra, Ad-
vances in Applied Clifford Algebras 12 (2002) 1 – 6.

[10] Maxima Project, http://maxima.sourceforge.net/docs/manual/maxima.html
Maxima 5.35.1 Manual (2014).

[11] Porteus I., Clifford Algebras and the Classical Groups, 2nd Edn, Cambridge
University Press, Cambridge 2000.

[12] Prodanov D., Fractional Variation of Hölderian Functions, Fract. Calc. Appl.
Anal. 18 (2015) 580 – 602.

[13] Prodanov D., Clifford: A Light-Weight Package for Performing Geometric
and Clifford Algebra Calculations, http://dx.doi.org/10.5281/zenodo.61261
(2016).

[14] Prodanov D., Some Applications of Fractional Velocities, Fract. Calc. Appl.
Anal. 19 (2016) 173 – 187.

Clifford Algebra Implementations in Maxima 105

[15] Prodanov D. and Toth V., Sparse Representations of Clifford and Tensor Al-
gebras in Maxima, Advances in Applied Clifford Algebras (2016) 1–23.

[16] Sangwine S. and Hitzer E., Clifford Multivector Toolbox (for MATLAB), Ad-
vances in Applied Clifford Algebras (2016) 1–20.

[17] Wang X., Fractional Geometric Calculus: Toward a Unified Mathematical
Language for Physics and Engineering, In: Proceedings of The Fifth Sym-
posium on Fractional Differentiation and its Applications (FDA12), Hohai
University, Nanjing 14–17 May 2012.

Dimiter Prodanov
Department of Environment, Health and Safety
Neuroscience Research Flanders
IMEC, Leuven, BELGIUM
E-mail address: dimiter.prodanov@imec.be

