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BRANES ON G-MANIFOLDS

ANDRÉS VIÑA

Communicated by Vasil V. Tsanov

Abstract. LetX be Calabi-Yau manifold acted by a groupG. We give a definition
of G-equivariance for branes onX , and assign to each equivariant brane an element
of the equivariant cohomology ofX that can be considered as a charge of the brane.
We prove that the spaces of strings stretching between equivariant branes support
representations ofG. This fact allows us to give formulas for the dimension of some
of such spaces, when X is a flag manifold of G.
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1. Introduction

Let X be a compact Kähler n-manifold analytically acted by a Lie group G. Some
objects related with X admit an “equivariant" version, when they are equipped
with a G-action compatible with its structure, for example, the equivariant vector
bundles on X .
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In the same way, it seems natural to consider “equivariant" B-branes on X , i.e.,
B-branes endowed with a G-action which lifts the G-action on X . In this article
we will concern with such branes. We will associate them “equivariant charges",
consider its equivariant cohomology, study the spaces of strings stretching between
“equivariant" branes and the correlation functions for vertex operators for these
strings, etc.

Besides the Introduction, the article consists of three sections: Equivariant branes,
Cohomology of equivariant branes and an Appendix. In the Appendix, we present
detailed proofs of two propositions which are stated in Section 2. The following is
a brief explanation of the key points considered in the first two sections.

Equivariant branes. A D-brane of type B on X can be considered as an ob-
ject of the derived category of coherent sheaves on X (see monograph [2], which
includes a large list of specific references). Particular B-branes are the coherent
sheaves. There exists a definition ofG-equivariance for sheaves, which generalizes
the one for equivariant vector bundles and, obviously, applicable to branes which
are coherent sheaves. (In Subsection 2.1, we recall this concept).

To explain the extension of that definition to a general brane, we introduce some
notations. In the definition of B-branes is involved the category Coh of coher-
ent sheaves on X , which is a subcategory of Mod, the category of OX -modules
[21]. We put ModG for the subcategory of Mod whose objects are G-equivariant
sheaves and we denote by CohG the full subcategory of ModG whose objects be-
long to Coh. Hence, we have the following subcategories of Mod

CohG⊂ ModG

∩ ∩
Coh ⊂ Mod

As we said, a brane is an object of D(Coh), the bounded derived category of Coh.
One possible translation of the concept of equivariance to more general branes, is
to define theG-equivariant branes as the objects of D(CohG), the bounded derived
category of the abelian category CohG. In this article we will adopt this point of
view.

In the definition of the spaces of strings between branes are involved the Ext
groups. More precisely, let F and G be two general B-branes, then an open
string between F and G with ghost number k is an element of the Ext group
Extk(F , G) [1, Section 5.2]. On the other hand, the space of local operators for
strings with ghost number k stretching from F to G is (see [29])⊕

q

Hq
(
X, Extk(F , G)

)
. (1)
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Although CohG has not enough injectives, the category ModG is abelian and it
has sufficient injectives [16]. The existence of “sufficient injectives" allows us to
construct in ModG the Ext groups, and the Ext functors. That is, the space of
strings between two objects of D(CohG) can be defined by considering them as
objects of D(ModG), the derived category of ModG. In this way, the equivariance
of branes gives rise to representations of G on the corresponding spaces of strings
and on the vertex operators. These results are stated in Propositions 5 and 6.

WhenF and G are locally free sheaves, we will prove that the correlation functions
of vertex operators for strings between these branes are G-invariant (Proposition
10).

The Borel-Weil-Bott theorem permits to determine the dimension of the space of
strings between branes which areG-equivariant locally free sheaves on a flag man-
ifold of G and the result is stated in Proposition 8. When the branes are rank one
locally free sheaves, we determine the highest weight of the representation of G
supported by the corresponding spaces of vertex operators (Proposition 9). In this
way, the computation of the dimension of these spaces reduces to the application
of the Weyl’s dimension formula.

Cohomology of equivariant branes. By X̄ we denote the homotopy quotient
X̄ := EG ×G X , where EG is the universal bundle of the group G. Given an
equivariant brane F on X , it admits a lift to an object F̄ of the derived category
of sheaves on X̄ . In fact, the pair (F̄ , F) determines an object in the equivariant
derived category DG(X), introduced by Bernstein and Lunts in [4]. Thus, one can
define the equivariant cohomology of the brane F , as the cohomology H(X̄, F̄).

In the case that the group G is a compact torus T , the localization theorems for the
equivariant cohomology are applicable to the groups Hp(X̄, F̄). In this way we
give, in Corollary 15, a necessary condition for two T -equivariant branes of CohT

be equivalent.

When X is an algebraic variety and under certains hypotheses on the G-action,
each object of CohG admits a resolution consisting of G-equivariant locally free
sheaves [28]. Thus, it is possible to define G-equivariant charges for the branes of
D(CohG), i.e., elements of the equivariant cohomology HG(X), which coincide
with the usual charges when G = {1}. For a brane F ∈ D(CohG), we define the
equivariant charge QG(F) as the product of the equivariant Chern character of F
and the equivariant Todd class of X .

Some equivariant charges admit interpretations in terms of the index of elliptic
operators. For example, when the equivariant brane is the sheaf O(V ), of sec-
tions of the holomorphic vector bundle V , and G acts on X as a group of isome-
tries, then the Dirac operator D defined on (

∧
T ∗X) ⊗ V is G-equivariant, and
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ker(D) − coker(D) supports a virtual representation of G. The character of this
representation is equal to the evaluation of QG(V ) on X (see Proposition 17).

Let X be a toric manifold and T be the torus whose action on X defines the toric
structure. Given a T -equivariant brane on X which is a locally free sheaf O(V ),
applying the localization formulas of equivariant cohomology, we will evaluate the
equivariant charge QT (O(V )) in terms of data associated to the fixed points of the
T -action on X . The result is stated in Proposition 18.

2. Equivariant Branes

In this section, we introduce the category ModG of G-equivariant O-modules, de-
fine a representation on the cohomology groups of the branes which are objects of
D(CohG), and characterize the space of strings stretching between some equivari-
ant branes on a flag manifold of G.

2.1. Equivariant sheaves

By OX , or simply by O, we denote the sheaf of regular functions on X . Let
µ : G × X → X be an analytic action of a reductive Lie group G on X . Essen-
tially, a G-equivariant structure on the O-moduleH is given by a family {λg,x} of
isomorphisms between the stalks

λg,x : Hx → Hµ(g,x), for all g ∈ G, x ∈ X (2)

compatible with the multiplication in G (i.e., satisfying the cocycle condition).

To formulate the cocycle condition, we introduce the following notations

m : G×G→ G, m(g1, g2) = g1g2, b : G×X 7→ x ∈ X, b(g, x) = x

p : G×G×X → G×X, p(g1, g2 , x) = (g2 , x).

Thus, together with the maps b and µ one has the maps p,, 1G × µ and m × 1X
from G×G×X to G×X and the corresponding functors

b∗, µ∗ : Mod(OX)→Mod(OG×X) (3)

and
p∗, (1G × µ)∗, (m× 1X)∗ : Mod(OG×X)→Mod(OG×G×X) (4)

where an asterisk as superscript is used for denoting the inverse image functor
between the corresponding categories, and Mod(OZ) stands for the category of
OZ-modules. The equalities

b ◦ (m× 1X) = b ◦ p, b ◦ (1G × µ) = µ ◦ p, µ ◦ (1G × µ) = µ ◦ (m× 1X)
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give rise to equalities between the respective compositions of the functors of (3)
with the functors of (4).

LetH be anO-module and λ an isomorphism λ : b∗H → µ∗H, which satisfies the
cocycle condition

(m× 1X)∗(λ) = (1G × µ)∗(λ) ◦ p∗(λ). (5)

We say that the pair (H, λ) is a G-equivariant sheaf of O-modules, or simply a
G-equivariant O-module.

One defines the category ModG, whose objects are the G-equivariant O-modules.
If (H′, λ′) and (H, λ) are objects in this category, a morphism in ModG from
(H′, λ′) to (H, λ) is a morphism of O-modules f : H′ → H, such that λb∗(f) =
µ∗(f)λ′.

Given g ∈ G, we put Lg for the map defined by x ∈ X 7→ µ(g, x) = gx ∈ X .
Since the G-action on X is analytic, the composition with µ defines a morphism
of sheaves of rings OX → OG×X . In particular, given an open subset U ⊂ X and
g ∈ G, the map

h ∈ O(U) 7→ h ◦ Lg−1 ∈ O(gU)

determines a ring isomorphism O(U)→ O(gU).

In other terms, we have an isomorphism of sheaves of rings

O → (Lg−1)∗O. (6)

We have the following proposition.

Proposition 1. Let (H, λ) be a G-equivariant O-module and g an element of G,
then λ determines an isomorphism of O-modules

λg : H → (Lg−1)∗H

where the O-structure of (Lg−1)∗H is defined through the isomorphism (6).

The image of σU ∈ H(U) by the isomorphismH(U)
∼−→ H(gU) will be denoted

g · σU .

A consequence of the cocycle condition is the following proposition.

Proposition 2. For each g ∈ G

1. λh ◦ λg = λhg.

2. The map g 7→ λ̂g := λg(X) is a group homomorphism from G to the group
of automorphisms of the complex vector spaceH(X).
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Although the results stated in Proposition 1 and Proposition 2 are easy to under-
stand, we give detailed proofs of these propositions in Appendix.

In summary, the cocycle condition for (H, λ) gives rise to a representation of G in
the space H0(X, H).

The following step will be to define a representation in the cohomologiesH i(X, G),
when G is an object of D(CohG).

Proposition 3. If G is a brane of the category D(CohG), then for each i the coho-
mology groupH i(X, G) supports a representation ofG induced by theG-structure
of G. When G is an object of CohG the representation on H0(X, G) is the one de-
scribed in the second item of the Proposition 2 .

Proof: As the category ModG has enough injectives [16], following the well-
known procedure, it is possible to construct an equivariant Cartan-Eilenberg reso-
lution J •• of G• in ModG [25, Thm. 10.45]. Then G• is quasi-isomorphic to the
total complex I• = (Tot(J •), ∂•), a complex of in ModG consisting of injective
objects.

By the second item in Proposition 2, the space the Ii(X) carries the representation
ρi of G. Since the diagrams

Ii(X)
∂i(X)−→ Ii+1(X)yρig yρi+1

g

Ii(X)
∂i(X)−→ Ii+1(X)

are commutative, one has a representation of G on each cohomology group of the
complex I•(X). That is, a representation on the cohomology H i(X, G). Thus,
we have the proposition. �

If in the statement of Proposition 3 G is a locally freeO-module, the representation
on H i(X, G) can be constructed by means of the Dolbeault resolution. Let G =
O(V ) be the sheaf of germs of sections of the holomorphic vector bundle V . We
put A0,q for the sheaf of germs of holomorphic differential forms on X of type
(0, q). Since O(V ) is a flat O-module, the tensor product of this module by the
Dolbeault resolution of O gives rise to the following fine resolution of O(V )

0→ O(V )−→A0,0(V )
1⊗∂̄−→ A0,1(V )

1⊗∂̄−→ A0,2(V )−→ . . . (7)

where A0,q(V ) := O(V )⊗O A0,q. Thus

Hq(X, O(V )) = hq(A0,•(V )) (8)
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where A0,q = Γ(X, A0,q(V )).

Now, we use the fact that V is a G-equivariant vector bundle. If σ a holomorphic
section of V and ω a (0, q)-form on X , we put

g · (σ ⊗ ω) := (g · σ)⊗ L∗g−1ω (9)

L∗g−1ω being the pullback of ω by the diffeomorphism Lg−1 and g · σ the section
defined as just after Proposition 1.

If f is a holomorphic function on X , then

g · (fσ ⊗ ω) = g · (σ ⊗ fω).

On the other hand, since the G acts analytically on X , 1 ⊗ ∂̄ commutes with
the G-action (9). So, we have a representation of G on Hq(X, O(V )), which
is equivalent to the one of Proposition 3.

2.2. Vertex Operators

In this subsection, we consider the spaces of vertex operators for strings stretching
between equivariant branes.

We putHom( . , . ) for the sheaf functorHom of the category Mod (see [21, page
87])

Hom( . , . ) : Modop ×Mod→ Sh

where Sh is the category of sheaves of abelian groups over X .

Let (F , γ), (G, β) beG-equivariantO-modules. We setK := Hom(F , G) for the
sheaf of homomorphisms from F to G. Given an open subset U ⊂ X , a section
Φ ∈ K(U) = HomO(U)(F(U), G(U)) and g ∈ G, we define g · Φ ∈ K(gU) as
follows

Let τ ∈ F(gU) be a section of F on gU , then g−1 · τ ∈ F(U), with the notation
introduced below Proposition 1. Thus, Φ(g−1 · τ) ∈ G(U) and g · Φ(g−1 · τ) ∈
G(gU). We put

(g · Φ)(τ) := g · (Φ(g−1 · τ)). (10)

So, we have constructed an isomorphism

ηg(U) : K(U) −→ K(gU), Φ 7→ g · Φ. (11)

Moreover
ηh(gU) ◦ ηg(U) = ηhg(U). (12)

Hence, the isomorphisms {ηg(X)}g define a representation of G on the space
K(X). Thus, one has the following proposition.
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Proposition 4. Let (F , γ), (G, β) be G-equivariant O-modules, then

1. The isomorphisms (11) convert the O-module

K = Hom(F , G)

in a G-equivariant O-module.

2. For g ∈ G and Ψ ∈ K(X) = HomMod(F , G), we put g ·Ψ for the element
of K(X) defined by

(g ·Ψ)U (σ) := g · (Ψg−1U (g−1 · σ))

where U is an open subset of X and σ ∈ F(U). The correspondence Ψ →
g ·Ψ defines a representation of G in vector space K(X).

Given G• a complex in the category CohG, we consider I• the complex consisting
of injective objects in ModG described in the proof of Proposition 3. If F• is
another complex in ModG, we put

Cn :=
∏
a

Hom(Fa, Ia+n).

By Proposition 4, eachHom(Fa, Ia+n) is an object of ModG.

On the other hand, the coboundary operator δn : Cn → Cn+1 is defined by ([20,
page 17])

δn(Ψa) =
(
∂a+n ◦Ψa + (−1)n+1Ψn+1 ◦ ∂a

)
where

Ψa ∈ Hom(Fa, Ia+n).

Since the ∂’s are G-operators, so is δn. Thus, (C•, δ•) is a complex in the category
ModG. The complex C• is usually denoted by Hom•

(
F•, I•

)
. By definition,

Extp(F•, G•) is the cohomology object hp(Hom•
(
F•, I•)).

As Hom•
(
F•, I•

)
is a complex in the abelian category ModG, its cohomologies

are also in ModG, i.e., they are G-equivariant sheaves. Hence, from Proposition 3,
it follows the following proposition.

Proposition 5. Let F and G be branes in the derived categoryD(CohG). Then the
G-structures of F and G induce on the space of vertex operators

Hq(X, Extp(F , G))

a representation of G.
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The spectral sequence of the double complex

Ep,q = Hp(X, Extq(F , G))

converges to the space of strings Extp+q(F , G). Then from Proposition 5, we
conclude

Proposition 6. If F and G are branes of the derived category D(CohG), then the
space Extk(F , G) of strings between F and G with ghost number k supports a
representation of G induced by the G-structures of F and G.

When F and G are locally freeO-modules the representation stated in the previous
proposition can be formulated in terms of differential forms.

First of all, one has the following resolution for F consisting of locally free O-
modules

· · · → 0→ 0→ 0→ F 1→ F → 0.

By [18, Proposition 6.5, page 234], Extk(F , G) = 0, for k 6= 0. Hence, when
F is a locally free module we will consider only the spaces of vertex operators
Hq(X, Hom(F , G)). Furthermore, in this case

Extk(F , G) = Hk(X, Hom(F , G)). (13)

Let V1 and V2 be two holomorphic G-equivariant vector bundles on X . We denote
by V the holomorphic vector bundle Hom(V1, V2). Given ψ is an element of
Γ(X, O(V )), putting

(g · ψ)(−) = g · (ψ(g−1 · (−))) (14)

we define a representation of G on Γ(X, O(V )); it is the one stated in item 2 of
Proposition 4. More explicit, given x ∈ X , the homomorphism (g · ψ)x : V1x →
V2x is the composition

λ2
g,g−1x ◦ ψg−1x ◦ λ1

g−1,x (15)

where the λ’s are the isomorphisms (2); that is, λig,y : (Vi)y → (Vi)gy.

As Hom(O(V1), O(V2)) = O(Hom(V1, V2)), then the equality (8) applied to
V = Hom(V1, V2) gives

Hq(X, Hom(O(V1), O(V2))) = hq(A0,•(Hom(V1, V2))). (16)

As in (9), from the G-action (14), we can construct the corresponding representa-
tion on the space (16). Thus, given

ψ ∈ Γ(X, Hom(O(V1), O(V2)))
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and the differential form ω of type (0, q), we have

g · (ψ ⊗ ω) = g · ψ ⊗ L∗g−1ω. (17)

Thus, Proposition 5 adopts the following form when the branes are locally free
sheaves.

Proposition 7. Let V1, V2 be G-equivariant holomorphic vector bundles on X .
Then the G-action (17) induces a representation of G on the space of vertex oper-
ators

Hq(X, Hom(O(V1), O(V2))).

Vertex operators on flag varieties. When X is a flag manifold, the dimension
of the spaces of vertex operators mentioned in Proposition 7 can be determined,
in some particular cases, by means of the Borel-Weil-Bott theorem and the Weyl’s
dimension formula.

Let GC be a connected complex semi-simple Lie group and Q ⊂ GC a parabolic
subgroup of GC. Then the flag manifold X = GC/Q is a compact homogeneous
simply connected Kähler algebraic variety (see for example [5, 30]). Moreover,
every compact homogeneous simply connected Kähler manifold is isomorphic to
such a quotient. In [12], Grantcharov showed several examples of flag manifolds
which are also Calabi-Yau.

The holomorphic equivariant vector bundles over X are related with the holomor-
phic representations of GC. Let V → X be a holomorphic vector bundle endowed
with a holomorphic GC-action by bundle maps, that lies over the action on X . De-
noting with x0 ∈ X the class eQ, then stabilizer of x0 acts on the fibre Vx0 . Hence,
there is a holomorphic representation ξ of Q on V, the standard fibre of V . More-
over, one has an isomorphism of holomorphic bundles V ' GC×ξ V. Conversely,
equivariant holomorphic bundles on X can be constructed from representations.

We denote by G a compact real form of GC. As it is known, the finite dimen-
sional representations of G are in bijective correspondence with the holomorphic
representations of finite dimension of GC. We put L := G∩Q, then one can iden-
tify G/L with X . Moreover, each irreducible representation of L on a complex
space induces a unique extension to one holomorphic representation of Q. So, an
irreducible representation α of L on the complex vector space V gives rise to one
homogeneous holomorphic vector bundle

V (α) := GC ×Q V

on X . It is very easy to check that V (α ⊕ β) = V (α) ⊕ V (β), and V (α∗) =
(V (α))∗.
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Given α, β irreducible representations ofL the representation tensor product α∗⊗β
can be written as direct sum of irreducible representations

α⊗ β =
⊕
ν

mνν (18)

where ν is an irreducible representation of L and the mν ∈ Z≥0 are the corre-
sponding Littlewood-Richardson coefficients.

Hence, the bundle of homomorphisms (over the identity) from V (α) to V (β) can
be written as

Hom(V (α), V (β)) = V (α)∗ ⊗ V (β) = V (α∗ ⊗ β) = ⊕νmνV (ν). (19)

Since O(V (α)) is a locally free O-module, it follows from (19) together with (13)
that the space of string with ghost number k stretching between O(V (α)) and
O(V (β))

Extk
(
O(V (α)), O(V (β))

)
=
⊕
ν

mνHk(X, O(V (ν))).

Notation. We put gC := Lie(GC) and g for Lie(G) for the Lie algebras of the
corresponding groups. Let c be the complex conjugation in gC with respect to g.
We fix a maximal abelian subalgebra h of g and denote by hC its complexification
with respect to c. Let ∆ be the set of roots of the Cartan subalgebra hC in gC.

The system of positive roots ∆+ for the pair (gC, hC) is chosen so that

Lie(Q) = q = hC ⊕
⊕
γ∈Φ

g−γ

where Φ is a subset of ∆ containing ∆+ and g−γ being the root space associated
to γ. We denote by ρ the half sum of positive roots, write Λ for the weight lattice
and put Λ+ for the set of dominant weights.

ζ(α) denotes the highest weight of the irreducible representation α of L. By the
Borel-Weil-Bott theorem [15],Hk(X, O(V (ν)) = 0, if ζ(ν)+ρ is singular. When
ζ(ν)+ρ is regular, letwν the unique element of the Weyl group such thatwν(ζ(ν)+
ρ) is dominant and define

l(ν) := #{α ∈ ∆+; (ζ(ν) + ρ, α) < 0}

where the bilinear product ( . , . ) is defined by the Killing form. The following
proposition is consequence of Borel-Weil-Bott theorem.
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Proposition 8. If α and β are irreducible representations of L, then the dimension
of the space of strings Extk

(
O(V (α)), O(V (β))

)
is∑

τ

mτδk,l(τ) dim ξτ

where τ runs over the irreducible representations of L, such that ζ(τ) + ρ is a
regular weight, ξτ being the irreducible representation of L with highest weight
wτ (ζ(τ) + ρ) − ρ and the mτ ’s the Littlewood-Richardson coefficients defined in
(18).

When the representations α and β are unidimensional the statement of Proposition
8 admits a simpler formulation.

Given υ ∈ Λ, it determines a holomorphic character eυ : Q → C×. So, one can
construct the fiber product Lυ = GC×QC, which is a holomorphicGC-equivariant
line bundle over X . If λ, µ ∈ Λ, then

L−µ+λ = L∗µ ⊗ Lλ = Hom(Lµ, Lλ).

Hence, we have isomorphisms among the following sheaves of holomorphic sec-
tions

Hom(O(Lµ), O(Lλ)) = O
(
Hom(Lµ, Lλ)

)
= O(L−µ+λ).

We put ξ := −µ+ λ for the weight that determines the line bundle L∗µ ⊗ Lλ, and

p(ξ) := #{α ∈ ∆+; (ξ + ρ, α) < 0}.

A direct application of the Borel-Weil-Bott theorem to the weight ξ proves the
following proposition, which characterizes some spaces of vertex operators relative
to the flag manifold X = GC/Q.

Proposition 9. If ξ + ρ is either singular or p 6= p(ξ), then the space of vertex
operatorsHp(X, Hom(O(Lµ), O(Lλ))) is zero. Otherwise, the representation of
G in that space is the irreducible representation with highest weight isw(ξ+ρ)−ρ,
where w is the element of the Weyl group such that w(ξ + ρ) is dominant.

As O(Lµ) is a locally free O-module, the space of strings from the brane O(Lµ)
to O(Lλ) with ghost number k is

Extk(O(Lµ), O(Lλ)) = Hk(X, Hom(O(Lµ), O(Lλ))).

Thus, taking into account the proposition, the Weyl dimension formula permits us
to determine the dimension of these spaces.
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2.3. Correlation Functions

Let us assume that X is a projective Calabi-Yau variety of dimension n. For j =
0, . . . , k, let Fj be a general brane. Given aj ∈ Hqj (X, Extpj (Fj−1, Fj)), when
Fk = F0 and

∑
(qj + pj) = n, one can define the correlation function 〈a1 . . . ak〉

of the vertex operators aj’s (see [29]).

If the Fj are locally free sheaves, i.e. Fj = O(Vj), with Vj holomorphic vector
bundle, the correlation function can be calculated as follows. Given

aj ∈ Hqj (X, Hom(O(Vj−1), O(Vj))) = H
0.qj
∂̄

(X,Hom(Vj−1, Vj))

aj will be the class of a form ψj ⊗ ωj , with ψj a holomorphic section of the space
Hom(Vj−1, Vj) and ωj a differential form on X of type (0, qj). Then [1, 29]

〈a1 . . . ak〉 =

∫
X

tr(ψk ◦ · · · ◦ ψ1)ωk ∧ · · · ∧ ω1 ∧ Ω (20)

where Ω is an fixed n-holomorphic form on X which vanishes nowhere.

Next, let us assume that the O-modules Fj are G-equivariant, and we denote by
λj the isomorphism that defines the G-structure on Fj . Given g ∈ G, by (17)

〈g · a1 . . . g · ak〉 =

∫
X

tr(g ·ψk ◦ · · · ◦ g ·ψ1)L∗g−1ω
k ∧ · · · ∧L∗g−1ω

1 ∧Ω. (21)

From (15) together with the cocycle condition, it follows

(g · ψj)x ◦ (g · ψj−1)x = λj
g,g−1x

◦ ψj
g−1x

◦ ψj−1
g−1x

◦ λj−2
g−1,x

.

As λ0 = λk

tr(g · ψk ◦ · · · ◦ g · ψ1)(x) = tr(λ0
g,g−1x ◦ ψ

k
g−1x ◦ · · · ◦ ψ

1
g−1x ◦ λ

0
g−1,x)

= tr(ψk ◦ · · · ◦ ψ1)(g−1 · x).

Since the G action on X is analytic, L∗g−1Ω = Ω; so, the integrals (20) and (21)
are equal, that is

〈g · a1 . . . g · ak〉 = 〈a1 . . . ak〉. (22)

Thus, we have the following proposition.

Proposition 10. Let F and G be G-equivariant locally free O-modules, then the
correlation functions associated to vertex operators for strings between F to G are
G-invariant.
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3. Cohomology of Equivariant Branes

Because of the equivariance, the branes in D(CohG) admit a lift to branes on the
homotopy quotient of X , and so one can define the corresponding equivariant co-
homology for these objects. In this section, we will consider that equivariant co-
homology.

Let G be a compact Lie group. By the Peter-Weyl theorem G is a closed subgroup
of GL(N, R) for some N . The limit as n → ∞ of Stiefel manifold of N -frames
in RN+n is a smooth model for the universal G-bundle. We will adopt this model
and denote by EG

q→ BG := EG/G the corresponding G-fibration.

We put X̄ := (EG×X)/G the homotopy quotient of X by G and set τ and π for
the projections X τ←− EG×X π−→ X̄. Let X → X̄ = EG×GX

ν→ BG be the
fibration constructed from the action of G on X , and let p denote the composition

EG×X proj.−→ EG
q→ BG. One has the following commutative diagram

X̄
π←− EG×X τ−→ X

ν ↘
yp
BG

Let H be a G-equivariant coherent sheaf on X , then the inverse image H̃ := τ∗H
isG-equivariant coherent sheaf on EG×X . Denoting by L̃g the obvious multipli-
cation by g ∈ G in EG×X , we put λ̃g by the isomorphism λ̃g : H̃ → (L̃g−1)∗H̃
determined by the equivariance of H̃ (see Proposition 1).

On the other hand, if V is an open set of X̄ , π∗H̃(V ) = H̃(W ), where W is the
G-invariant subset π−1(V ). Thus, there is a G-action on the sheaf π∗H̃ defined
on π∗H̃(V ) by the isomorphism λ̃g,W . We put H̄ for denoting the subsheaf of
π∗H̃ defined by G-invariant sections of π∗H̃. Then the sheaves τ∗H and π∗H̄ are
isomorphic (see [4, page 3]) and denote by h the isomorphism h : τ∗H → π∗H̄.

For any open not empty subset U ⊂ BG, one has τp−1(U) = X and ν−1(U) =
πp−1(U), and therefore

Γ(ν−1(U), H̄) = H̄(πp−1(U)) = π∗H̄(p−1(U))

' τ∗H(p−1(U)) = Γ(X, H)
(23)

where the isomorphism is determined by h. We have proved the following propo-
sition.
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Proposition 11. Given H a G-equivariant coherent sheaf on X , it determines a
sheaf H̄ on X̄ and an isomorphism τ∗H ' π∗H̄. Furthermore, ν∗H̄ is the constant
sheaf Γ(X, H).

Given F an object of D(CohG), i.e., a G-equivariant brane, according to the pre-
ceding remarks, it defines a object F̄ of the derived categoryD(Sh(X̄)), of abelian
sheaves on X̄ , and an isomorphism f of the category of D(Sh(EG×X)) from
τ∗(F) to π∗(F̄). Then the triple F = (F , F̄ , f) is an object of the equivariant
derived category DG(X), defined in [4].

If F is an object as above, let Ī• and I• be complexes of injectives on X̄ and on
X that represent F̄ and F , respectively. By Proposition 11

Rqν∗F̄ = Hq(ν∗(Ī•)) = Hq(Γ(X, I•)) = Hq(X, F).

Hence, Rqν∗F̄ is the constant sheaf on BG defined by Hq(X, F).

The equivariant cohomology HG(X, F) of F ∈ DG(X), is by definition the co-
homology H(X̄, F̄); that is, the cohomology H(BG, Rν∗F̄).

Proposition 12. The spectral sequence Epq2 = Hp(BG) ⊗ Hq(X, F) abuts to
Hp+q
G (X, F).

Proof: Since Rqν∗F̄ is the constant sheaf Hq(X, F), the E2 term of the Leray-
Serre spectral sequence associated to the fibration X → X̄ → BG is

Epq2 = Hp(BG, Rqν∗(F̄)) = Hp(BG)⊗Hq(X, F)

and the sequence abuts to Hp+q(X̄, F̄) = Hp+q
G (X, F). �

Corollary 13. If Hq(X, F) = 0 for q odd, then

Hp+q
G (X, F) ' Hp(BG)⊗Hq(X, F).

Proof: As the cohomology Hp(BG) vanishes when p is odd, then the differential
operators of spectral sequence Epq2 = Hp(BG) ⊗Hq(X, F) vanish and spectral
sequence collapses. �

We assume that G is the torus T = (U(1))k. The T -equivariant cohomology with
complex coefficients of a point HT (pt; C) = H(BT ; C) can be identified to the
algebra C[t∗C], of polynomials on the complexification tC of the Lie algebra of T .

We denote by Ξ the multiplicative subset of C[t∗C] consisting of the non-zero poly-
nomials, and let S denote the fixed point set of the T -action. From the localization
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theorem [13, Section 6] one deduces that the restriction map defines an isomor-
phism

HT (X; F)Ξ → HT (S; F)Ξ

between the corresponding localization modules.

As the action of T on S is trivial, ET ×T S = BT × S. Thus, for the particular
case of complex coefficients

HT (S; F) ' H(BT )⊗C H(S; F). (24)

Hence
HT (X; F)Ξ ' C(t∗C)⊗C H(S; F) (25)

in which C(t∗C) is the field of rational functions on tC. In other words,HT (X; F)Ξ

is the result of the extension of scalars in H(S; F) from C to C(t∗C).

Proposition 14. Given F a brane which belongs to CohT , if the fixed point set for
the T action is {x1, . . . , xr}, then

HT (X, F) '
r⊕
i=1

(
C(t∗C)⊗Fxi

)
.

Corollary 15. Under the hypotheses of Proposition 14, if G is other object of CohT

such that
⊕r

i=1

(
C(t∗C) ⊗ Fxi

)
and

⊕r
i=1

(
C(t∗C) ⊗ Gxi

)
are not isomorphic as

C(t∗C)-vector spaces, then F and G are inequivalent T -equivariant branes.

3.1. Equivariant Charges

The charge of a brane F which is a locally free O-module is an element of the
cohomology ofX defined from certain characteristic clases ofX and F [1,19,23].
When F is a coherent sheaf, to define the charge it is necessary to pass to a locally
free resolution of F . The existence of such resolutions is a well-known fact if X
is a smooth variety [10]. This property permits to extent the definition to objects
of the Grothendieck group of X , when X is a variety. In this section, we study the
equivariant versions of that process.

The triangulated category D(CohG), of G-equivariant branes on X , has associated
the corresponding Grothendieck group K(D(CohG)). By KG(X) we denote the
Grothendieck group of the abelian category CohG. The map

[F ] ∈ K(D(CohG)) 7→
∑
i

(−1)i[H i(F)] ∈ KG(X) (26)
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where [Z] the equivalence class of the object Z, is an isomorphism of abelian
groups.

Let K ′G(X) be the Grothendieck group of G-equivariant locally free O-modules
on X [26,27]. In particular, K ′G(pt) is the ring R(G) of virtual representations of
G. The tensor product defines a ring structure on K ′G(X), and the tensor product
of locally free sheaves by coherent sheaves gives toKG(X) the structure of module
on the ring K ′G(X).

Given a G-equivariant brane, it seems natural to assign it a G-equivariant charge.
When the brane is a locally free sheaf, that assignation can be carried out by means
of the respective G-equivariant characteristic classes. The resulting charge will be
an element of the equivariant cohomology HG(X).

As in the non equivariant setting, an appropriate choice of the characteristic classes
will permit to extent the definition to the objects of K ′G(X). To define an equiv-
ariant charge for branes in CohG, it is necessary to consider the cases for which
the Grothendieck groups K ′G(X) and KG(X) are isomorphic. In this situation,
the equivariant charges are defined for arbitrary G-equivariant branes through the
isomorphism (26).

One says that X has the G-equivariant resolution property if any G-equivariant
coherent O-module is the quotient of a locally free G-module. In this case, the
natural homomorphism K ′G(X) → KG(X) between the Grothendieck groups is
an isomorphism.

Thomason [28] proved the G-equivariant resolution property for actions of linear
algebraic groups which act on smooth varieties. According with this result, from
now on in this subsection, we assume that:

• The Kähler manifoldX is an algebraic manifold, that is,X admits a complex
analytic embedding as a closed submanifold of CPN , for some N .

• G is a linear algebraic group.

• The action of G on X is algebraic.

Under these assumptions the smooth algebraic variety X has the G-resolution
property and, hence, the homomorphism K ′G(X) → KG(X) between the al-
gebraic Grothendieck groups is an isomorphism.

By the GAGA principle, given a G-equivariant coherent O-module F , it is alge-
braic and coherent with respect the algebraic structure. So, F is the quotient of an
algebraic locally free G-equivariant sheaf E0 on X . Consequently, it is possible to
construct a resolution

0→ Em → Em−1 → · · · → E0 → F → 0 (27)
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consisting of G-equivariant locally free sheaves and m ≤ dimX [28].

Given an algebraic G-equivariant vector bundle V on X of rank r, by the equiv-
ariant splitting principle [11, page 315], V has r Chern roots: x1 . . . , xr, such that
the equivariant Chern class cGj (V ) = σj(x1, . . . , xr), with σj the jth elementary
symmetric function.

One defines the equivariant Chern character of V by the following element of the
equivariant cohomology of X

chG(V ) =

r∑
1

exi ∈ HG(X, Q).

The equivariant Chern character is “additive” with respect the exact sequences of
equivariant vector bundles, that is, if 0 → V ′ → V → V ′′ → 0 is an exact
sequence, then chG(V ) = chG(V ′) + chG(V ′′). Hence, it admits an extension to
the algebraic Grothendieck group K ′G(X) ' KG(X) of G equivariant coherent
sheaves.

In particular, given a G-equivariant brane F ∈ CohG, the complex F is quasi-
isomorphic to a complex E•, where Ei is the sheaf of sections of a G-equivariant
holomorphic vector bundle Vi. Then we define

chG(F) :=
∑
i

(−1)ichG(Vi).

The constant map p : X → pt gives rise to a pushforward homomorphism
p∗ : K(D(CohG))→ R(G) which maps the class [F ] to the virtual representation∑

i

(−1)iRip∗F =
∑
i

(−1)iH i(X, F)

where the representations on the cohomologies are the ones of Proposition 3.

The Chern character does not commutes with the pushforward by proper maps [10,
page 280], [6] and the equivariant one neither [8]. If V → X is an equivari-
ant vector bundle on X , then the non commutativity of the Chern character with
the pushforward p∗ is expressed by the statement of the equivariant Hirzebruch-
Riemann-Roch theorem

ch(p∗(V)) = p∗
(
chG(V ) tdG(X)

)
where tdG(X) is the G-equivariant Todd of the bundle TX , that can be defined
by means of the equivariant splitting principle [11, page 317]. The equivariant
Hirzebruch-Riemann-Roch allows us to express the pushforward ch(p∗(V)) in
terms of equivariant characteristic classes.
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Let F be a general brane of D(CohG). The previous remarks lead us to associate
with F the following equivariant cohomology class

QG(F) := chG(F) tdG(X) (28)

that can be considered as an equivariant charge of the brane F .

Different equivariant charges can be defined by means of otherG-equivariant forms

on X , for example
√

tdG(X), etc.

Brane on an equivariant subvariety. We will consider the natural brane defined
by a subvariety of the algebraic variety X . Let I be an ideal sheaf of O. We put

Z = supp(O/I).

Here Z is an analytic subvariety of X and F := O/I is a coherent sheaf on X ,
that can be considered as the structure sheaf of Z.

Locally, on an open U , the sheaf I will be generated by the holomorphic functions
f1, . . . , fr. We will assume that each function is G-invariant. Hence, Z is a G-
invariant subvariety of X and O/I is an equivariant coherent sheaf.

Let us assume that f1, . . . , fr is a regular sequence of functions and let e1, . . . , er
be the canonical basis of Cr. We put

Ek := O ⊗C
(
∧k Cr

)
.

Then Ek ' O⊕k̃, where k̃ :=
(
r
k

)
. The known Koszul complex [14, page 687] is

the following G-equivariant locally free resolution of O/I

0→ Er
∂→ Er−1 → · · · → E1

∂→ E0 = O proj→ F → 0 (29)

where

∂(h⊗ ej1 ∧ · · · ∧ ejk) =
∑
i

(−1)ihfiej1 ∧ . . . êji · · · ∧ ejk .

Since the fi are G-invariant, the operator ∂ is equivariant.

We can use the equivariant locally free resolution (29) to define chG(O/I)

chG(O/I) =

r∑
k=0

(−1)kchG(Ek) =
( r∑
k=0

(−1)kk̃
)

chG(O).

Since
∑r

k=0(−1)kk̃ = (−1 + 1)r = 0, we have the following proposition

Proposition 16. The G-equivariant charge of the brane O/I is zero.
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Index of the Dirac operator. In some particular cases, the charge has a natural
interpretation in terms of the index of an elliptic operator. The exterior bundle
Λ∗T ∗X of X with the connection induced by the Levi-Civita connection and the
standard Clifford multiplication is a Dirac bundle (see [22, page 114]). This bun-
dle has associated the corresponding Dirac operator D. If G acts as a group of
isometries of X , then D is a G-operator [22, page 211], i.e., D is G-equivariant.

Let us assume that G is compact and that V is a G-brane consisting of a locally
free sheaf. The compactness ofG allows us to average over the group for obtaining
G-invariant metrics on X and G-invariant connections on V . On the other hand,
the tensor product of (Λ∗T ∗X)⊗ V is a Dirac bundle (see [22, page 122]) and the
corresponding Dirac operator D is also G-equivariant, by the G-invariance of the
metric and the connection. As D is elliptic, kerD and cokerD are representations
of G of finite dimension, since X is compact. For g ∈ G the virtual character
χ(D)(g) of D at g is defined by

χ(D)(g) = trace(g|kerD)− trace(g|cokerD).

By the equivariant index theorem [3, Chapter 8], we have the proposition.

Proposition 17. In a neighborhood of 0 ∈ g := Lie(G)

χ(D) ◦ exp =

∫
X
QG(V ). (30)

The value of χ(D)(exp(ξ)), for ξ ∈ g, can be calculated by the localization for-
mula in equivariant cohomology. The result is the Atiyah-Segal-Singer fixed point
formula [3, 22]. Next, we will evaluate the integral (30) when X is a toric variety.

Toric varieties. Let Σ be a fan in N = Zr, such that each cone in Σ is generated
by a subset of a basis of Zr. We will denote by X the smooth toric variety defined
by Σ [7, 9, 24]. We put M := HomZ(N, Z) and T for the torus

T = N ⊗ C× = HomZ(M, C×).

We denote by XT fixed point set for the T -action. For x ∈ XT , let νi,x ∈
2π(Z)n, i = 1, . . . , n, be the weights of the isotropy representation of T on the
tangent space TxX . The fixed points of the T -action are in bijective correspon-
dence with the n-dimensional cones in Σ [7, §3.2]. If the point x is associated with
the cone σ, then the

ωi,x =
νi,x
2π

(31)

are the generators of σ∨ ∩M , where σ∨ is the dual cone of σ.
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Let V be a T -equivariant holomorphic vector bundle on X of range m. The equiv-
ariant splitting principle together with the fact that T acts trivially onXT , permit us
to express the restriction of V to XT as a direct sum of T -equivariant line bundles

V |XT =
m⊕
j=1

Lj

where action of T on V |XT will be defined by m weights ϕj . Thus, the T -
equivariant Chern class of Lj is given by (see [11])

cT1 (Lj) = c1(Lj) +
1

2π
ϕj . (32)

The T -equivariant Chern character of V |XT is

chT (V |XT ) =
m∑
j=1

exp(cT1 (Lj)). (33)

Proposition 18. LetX be a toric manifold and V be a holomorphic T -equivariant
vector bundle on X . Denoting by {ϕj,x}j=1,...,m the weights of the representation
of T on the fibre of V at a fixed point x, then (30) is equal to

∑
x∈XT

( m∑
j=1

e
1
2π
ϕj,x
) n∏
i=1

(
1− e−ωi,x

)−1
(34)

where XT is the set of fixed points of X for the T -action and the ωi,x are defined
in (31).

Proof: The localization theorem in equivariant cohomology [17, §10.9] allows us
to calculate the value (30) as a sum of contributions of the connected components
of XT . As XT is discrete, the localization formula adopts the following form

χ(D) ◦ exp = (2π)n
∑
x∈XT

QG(V )(x)∏
i νi,x

(35)

where the νi,x are the weights of the isotropy representation of T at the fixed point x.

From (32) and (33), it follows

chT (V )
∣∣
x

=
m∑
j=1

e
1
2π
ϕj,x .
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Similarly (see [22, page 230])

tdT (TX)
∣∣
x

=
n∏
i=1

ωi,x

(
1− e−ωi,x

)−1
.

The proposition follows from (28) together with (31). �

Note that the contribution of the manifoldX to (34) is encoded in the n-dimensional
cones of the fan Σ.

4. Appendix

In this section, we will prove Proposition 1 and Proposition 2. Let (H, λ) be an
object of ModG and g ∈ G. With the notations introduced in Subsection 2.1, b∗H
is the sheaf associated with the presheaf

W 7→ P(W ) := OG×X(W )⊗b−1O(W ) b
−1H(W ).

With W being an open set of G × X . Given an open subset U ⊂ X and g ∈ G,
we put Ug := {g} × U ⊂ G×X. Identifying OG×X(Ug) with O(U), one has the
following isomorphism of O(U)-modules

P(Ug) = OG×X(Ug)⊗O(U) H(U)→ H(U), f̃ ⊗ τ 7→ fτ (36)

with f(x) = f̃(g, x).

Similarly, the sheaf µ∗H is associated to the presheafM, with

W 7→ M(W ) := OG×X(W )⊗µ−1O(W ) bµ
−1H(W ).

One has the isomorphism of O(gU)-modules

M(Ug) = OG×X(Ug)⊗O(gU) H(gU)→ H(gU), ĥ⊗ τ 7→ hτ (37)

with h(gx) = ĥ(g, x).

The restriction to Ug of the morphism of sheaves λ is denoted λ|Ug

λ|Ug : b∗H(Ug) −→ µ∗H(Ug). (38)

By the above identifications (36) and (37), λ|Ug determines an isomorphism of
O(U)-modules

λ|Ug : H(U)
∼−→ H(gU) (39)

where the O(U)-module structure of H(gU) is defined through the isomorphism
(6). Thus, we have proved Proposition 1.
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As a consequence of Proposition 1, there is an isomorphism of Ox-modules

λg,x : Hx → Hgx (40)

where the Ox-structure ofHgx is induced by the isomorphism (6). In this way, the
isomorphisms (2) are recovered.

Until now,in this appendix, we have only used the existence of the isomorphism
λ. Next, we will exploit the cocycle condition. Both sides of equation (5) are
isomorphisms between two objects on the category of OG×G×X -modules. The
cocycle condition means the commutativity of the following square

Z1
(m×1X)∗(λ)−→ Z3

p∗(λ)
y y1

Z2
(1G×µ)∗(λ)−→ Z3

(41)

where
Z1 := p∗b∗(H) = (m× 1X)∗b∗(H), Z2 := p∗µ∗(H) = (1G × µ)∗b∗(H)

Z3 := (m× 1X)∗µ∗(H) = (1G × µ)∗µ∗(H).

As a consequence of the cocycle condition, we have the following lemma.

Lemma 19. Let g, h be elements of G and U an open set of X , then

λ|(gU)h ◦ λ|Ug = λ|Uhg .

In particular, λ|Xh ◦ λ|Xg = λ|Xhg .

Proof: We consider the commutative square (41) and restrict this diagram to {h}×
Ug ⊂ G×G×X . The restriction of (m× 1X)∗(λ) is the morphism

Z1({h} × Ug) = H(U) −→ Z3({h} × Ug) = H((hg)U)

induced by λ. Thus, by (39), the mentioned restriction is λ|Uhg .

The restriction of p∗(λ) to {h} × Ug
Z1({h} × Ug) = H(U) −→ Z2({h} × Ug) = H(gU)

is (39).

Finally, we consider the restriction of (1G × µ)∗(λ). It is the morphism

Z2({h} × Ug) = H(gU) −→ Z3({h} × Ug) = H(h(gU))

induced by λ, and according to (39) it is λ|(gU)h . Then the lemma follows from the
commutativity of (41). �

Proposition 2 is a direct consequence the Lemma 19.
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