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INVOLUTIONS IN SEMI-QUATERNIONS
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Abstract. Involutions are self-inverse and homomorphic linear mappings. Ro-
tations, reflections and rigid-body (screw) motions in three-dimensional Euclidean
space R3 can be represented by involution mappings obtained by quaternions. For
example, a reflection of a vector in a plane can be represented by an involution map-
ping obtained by real-quaternions, while a reflection of a line about a line can be
represented by an involution mapping obtained by dual-quaternions. In this paper,
we will consider two involution mappings obtained by semi-quternions, and a geo-
metric interpretation of each as a planar-motion in R3.
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1. Introduction

The adventure of quaternions started in the mid-19th century as a geometric and
algebraic interest. Soon after they were found to have applications in mechan-
ics, physics, computer graphic technology, mixed and augmented systems, etc.
The main difficulty in the development of quaternions occured while defining the
multiplication rule. Rumor says that the Irish mathematician Sir William Rowan
Hamilton was looking for a way to formalize points in three-space in the same way
that points in the plane can be defined in the complex field. For many years, he
knew how to add and subtract points in three-space. However, he had failed by
the problem of multiplication for over ten years. Finally, on 16 October 1843 in
Dublin, Hamilton solved the multiplication problem and his intuition was that the
algebra of quaternions would require three imaginary parts satisfying

i2 = j2 = k2 = ijk = −1.

Quaternions are useful tools for representing rotations, reflections and rigid-body
(screw) motions in three-dimensional spaces. Ell and Sangwine [5] represented an
involution and an anti-involution mapping of real-quaternions with their geometri-
cal meanings as reflections or rotations in three-dimensional Euclidean space R3.
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Also, Bekar and Yayli [2–4] studied (anti)-involution mappings of complexified-
and dual split-quaternions with their geometrical meanings. In this paper, we will
represent two mappings (one corresponding to a semi-quaternion involution and
one to an anti-involution) and a geometric interpretation of each as a planar-motion
in R3.

2. Preliminaries

Let R be a commutative ring and f be a homomorphism (respectively anti-homo-
morphism) of an arbitrary R−algebra A. Thus, f : A→ A is R−linear and

f(1) = 1 and f(ab) = f(a)f(b) (respectively f(ab) = f(b)f(a)) for all a, b ∈ A.

If f is a homomorphism or anti-homomorphism of R-algebra such that f2 = idA,
then f is injective and surjective, and thus is an involution on A. An involution is
called anti-involution if it is an anti-homomorphism. Assume throughout that A
is faithful that is if ra = 0 for all a ∈ A and some r ∈ R, then r = 0. Since
the assignment r 7→ r1A injects R ↪→ A, we consider R ⊆ A. Let g be an anti-
involution on A and define the norm and trace of A by, respectively

N(a) = a(g(a)) and Tr(a) = a+ g(a) for all a ∈ A

then g is called standart-involution if N(a) ∈ R, see [7].

The set of real-quaternions can be given as

H = {q = q0 + q1i + q2j + q3k ; q0, q1, q2, q3 ∈ R}

where the basis elements i, j, k satisfy the non-commutative multiplication rules

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (1)

It is convenient to introduce Sq = q0 and Vq = q1i + q2j + q3k which are called,
respectively, the scalar and vector parts of q = q0 + q1i + q2j + q3k. If Sq = 0,
then q = Vq is said to be a pure and will be denoted by the boldface letter q.

The multiplication of real-quaternions q = Sq + Vq and p = Sp + Vp is

qp = SqSp − 〈Vq,Vp〉+ SqVp + SpVq + Vq × Vp (2)

where Sq = q0, Sp = p0, Vq = q1i + q2j + q3k , Vp = p1i + p2j + p3k. Also,
〈Vq,Vp〉 = q1p1 + q2p2 + q3p3 and Vq ×Vp = (q2p3− q3p2)i + (q3p1− q1p3)j +
(q1p2−q2p1)k denotes, respectively, the usual inner and vector products of Vq and
Vp in R3.
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Let Rp,q,r be the real vector space Rp+q+r with an orthogonal basis {e1, e2, ..., en}
equipped with a quadratic form Q as Q(ei) = 1 for 1 ≤ i ≤ p, Q(ei) = −1 for
p + 1 ≤ i ≤ p + q and Q(ei) = 0 for p + q + 1 ≤ i ≤ p + q + r. Clp,q,r is the
Clifford algebra generated by these basis vectors. Also, the space Rp,q,0 is denoted
by Rp,q while the associated Clifford algebra being denoted by Clp,q, see [12]. The
algebra H is isomorphic to the Clifford algebra Cl0,2 (i.e., H ∼= Cl0,2) in dimension
two where the standard anti-commuting generators e1, e2 satisfy

e21 = e22 = (e1e2)
2 = −1 and e1e2 = −e2e1

when the quaternionic units i, j, k are defined with, respectively, e1, e2, e12(= e1e2)
in Cl0,2. Thus, multiplication in H is associative.

The quaternionic-conjugation of a real-quaternion q = q0 + q1i + q2j + q3k is
the standard involution q = q0 − q1i− q2j− q3k, which amounts to the canonical
involution of H as the Clifford algebra Cl0,2, and the norm of q is

N(q) = qq = qq = q20 + q21 + q22 + q23 ∈ R. (3)

If N(q) = 1, then q is said to be a unit quaternion.

It should be noted that the concept norm of a quaternion does not match the concept
Euclidean norm in linear algebra. For instance, the norm N(q) of a real-quaternion
q does not satisfy always the triangle inequality axiom of the Euclidean norm.
Also, the norm of a dual-quaternion given by the Equation (5), does not always
satisfy the positivity and triangle inequality axioms and it does not need to be real
valued.

The multiplicative-inverse of a real-quaternion q is

q−1 =
q

N(q)
, N(q) 6= 0.

Thus every non-zero real-quaternion has an inverse and q−1 = q for N(q) = 1.
Further information about real-quaternions can be found in [8, 10, 12].

Dual-numbers are an extension of real-numbers and are defined by introducing a
new element ε 6= 0 (known as a dual unit) satisfying

ε 6= 0, 0ε = ε0 = 0, rε = εr, ε2 = 0

for all r ∈ R. Thus, unlike real-quaternions, multiplication of dual-numbers is
commutative. The set of dual-numbers is

D = {A = a+ εa∗ ; a, a∗ ∈ R}
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where the real-numbers a and a∗ are called, respectively, the scalar and dual parts
of A. Dual-conjugate of A is defined by A∗ = a − εa∗. The multiplication of
dual-numbers A = a+ εa∗ and B = b+ εb∗ is given by the formula

AB = (ab) + ε(ab∗ + ba∗).

A dual-quaternion is a dual combination of two real-quaternions and thus the set
of dual-quaternions is given as

HD = {Q = q + εq∗ ; q, q∗ ∈ H}.

If q and q∗ are pure, then Q is said to be a pure and will be denoted by boldface
letter Q. A dual-quaternion Q = q + εq∗ can also be written in the form

Q = Q0 +Q1i +Q2j +Q3k

where Qi = qi + εq∗i ∈ D, i = 0, 1, 2, 3; q = q0 + q1i + q2j + q3k ∈ H, q∗ =
q∗0 + q∗1i + q∗2j + q∗3k ∈ H. The basis vectors i, j, k satisfy the same multiplication
rules with the basis vectors of real-quaternions given by Equation (1), and the
product of ε with i, j, k is commutative that is iε = εi, jε = εj, kε = εk.

The multiplication of dual-quaternions Q = q + εq∗ and P = p+ εp∗ is

QP = (qp)+ε(qp∗+pq∗) = SQSP−〈VQ,VP 〉+SQVP+SPVQ+VQ×VP (4)

where SQ = Q0, SP = P0, VQ = Q1i + Q2j + Q3k, VP = P1i + P2j + P3k.
Also, 〈VQ,VP 〉 = Q1P1 + Q2P2 + Q3P3 and VQ × VP = (Q2P3 − Q3P2)i +
(Q3P1 − Q1P3)j + (Q1P2 − Q2P1)k denotes, respectively, the usual inner and
vector products of VQ and VP in D3.

The algebra of dual-quaternions HD is isomorphic to the Clifford algebra Cl0,2,2
(i.e., HD ∼= Cl0,2,2) in dimension four where the generators ei, i = 1, ..., 4, satisfy

e21 = e22 = −1, e23 = e24 = 0 and eiej = −ejei for i 6= j

when the quaternionic units i, j, k are defined as, e1, e2, e12(= e1e2) while the dual
unit ε can be identified with e34(= e3e4), where e34 commutes with a subalgebra
A, which is isomorphic to H, of Cl0,2,2 generated by e1, e2. Thus, multiplication
in HD is associative.

The quaternionic-conjugation of a dual-quaternion Q = q + εq∗ = Q0 + Q1i +
Q2j+Q3k is the standard involution Q̄ = q+εq̄∗ = Q0−Q1i−Q2j−Q3k, which
amounts to the canonical involution of HD as the Clifford algebra Cl0,2,2, and the
norm of Q is
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Fig. 1. Geometry of the Plücker line in   . 

 

Figure 1. Geometry of the Plucker line in R3.

N(Q) = QQ̄ = Q̄Q = qq + ε(qq̄∗ + q∗q) = Q2
0 +Q2

1 +Q2
2 +Q2

3 ∈ D. (5)

If N(Q) = 1, then Q is said to be a unit dual-quaternion.

The multiplicative-inverse of Q is

Q−1 =
Q̄

N(Q)
, N(Q) 6= 0.

That means, a non-zero dual-quaternion with a zero scalar part does not have an
inverse and this differs dual-quaternions from real-quaternions, because every non-
zero real-quaternion has an inverse. Also, Q−1 = Q̄ for N(Q) = 1.

A non-zero dual-quaternion Q = Q0 + Q1i + Q2j + Q3k can be represented in
polar form as

Q =
√

N(Q)(cos
φ

2
+ ~η sin

φ

2
), φ ∈ D

where

cos
φ

2
=

Q0√
N(Q)

, sin
φ

2
=

√
Q2

1 +Q2
2 +Q2

3√
N(Q)

~η =
Q1i +Q2j +Q3k√
Q2

1 +Q2
2 +Q2

3

for Q2
1 +Q2

2 +Q2
3 6= 0.

According to E. Study there is a map, such that each point of the unit dual-sphere
is in one-to-one correspondence with a line (known as the Plucker line) in R3.
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This correspondence can be given as follows. Let Q = q + εq∗ be a unit pure
dual-quaternion. The scalar part q = ~v is the direction vector of the line lQ cor-
responding to Q, and the dual part q∗ = p × ~v is the moment of ~v about a chosen
reference origin O where p is a point anywhere on the line lQ, see Fig. 1.

Example 1. The line lP corresponding to unit pure dual-quaternion P = i + zjε−
ykε has the direction vector ~v = (1, 0, 0) ∈ R3 and passes through the point
P = (1, y, z) ∈ R3, see Fig. 2.
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Fig. 1. The line corresponding to unit pure dual-

qaternion    in   , where   denotes the plane    . 

Also, let           be a unit pure semi-quaternion, then the product       

becomes 

            (              )  (              )   

If we define the unit semi-quaternion                  and unit pure semi-

quaternion          , respectively, with the dual-quaternions     (      )  

 (       ) and              , then the dual-quaternion corresponding to unit 

pure semi-quaternion    can be given by 

        (              )   (              )    

So, the line      corresponding to    has the direction vector  ⃗  (     ) and intersects the 

plane     at the point 

   (                               ) 

in   . It is obvious that the points   and    are planar. Thus the product       yields a 

planar-motion of the point   in   . This motion occurs in the plane     and consists of a 

rotation by an angle     in positive direction about the point   (     ), afterwards a 

translation with magnitude   (       ), see Fig. 2. As a special case, by taking     

Figure 2. lP is the line corresponding to unit pure dual-qaternion P and M
denotes the plane x = 1 of R3.

Unit dual-quaternions are powerful tools of representing rigid-body (screw) mo-
tions in R3. A rotation of a line lP (corresponding to unit pure dual-quaternion P)
about the unit axis vector ~n = (nx, ny, nz) by an angle θ ∈ R can be represented
by the unit dual-quaternion

Qr = cos
(θ

2

)
+ nx sin

(θ
2

)
i + ny sin

(θ
2

)
j + nz sin

(θ
2

)
k + 0ε

as
QrPQ−1r = QrPQ̄r.

A translation of the line lP by a magnitude t = (t1, t2, t3) ∈ R3 along ~n =
(nx, ny, nz) can also be represented by the dual-quaternion

Qt = 1 +
ε

2
(0 + t1i + t2j + t3k)
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as
QtPQ−1t = QtPQ̄t.

Thus, a rotation (by an angle θ ∈ R) followed by a translation (by magnitude
t ∈ R3) can be represented by the dual-quaternion Q = QtQr as

QPQ−1 = QPQ̄

where the axis of this screw-motion is the unit vector ~n = (nx, ny, nz). For further
information about dual-quaternions see [1, 3, 6].

The set of semi-quaternions can be given as

Hs = {q = q0 + q1i + q2j + q3k ; q0, q1, q2, q3 ∈ R}

where the basis elements i, j, k (to distinguish the basis elements of semi - quater-
nions from the basis elements of real- and dual-quaternions, we have used upright
letters for the basis elements of semi-quaternions) satisfy the non-commutative
multiplication rules

i2 = −1, j2 = k2 = 0, ij = −ji = k, jk = −kj = 0, ki = −ik = j. (6)

Here again Sq = q0 and Vq = q1i+q2j+q3k are called, respectively, the scalar and
the vector parts of q = q0 + q1i + q2j + q3k. If Sq = 0, then q = Vq is said to be a
pure and will be denoted by boldface letter q. The set of all pure semi-quaternions
will be denoted by Ĥs.

The multiplication of two semi-quaternions q = Sq + Vq and p = Sp + Vp is

qp = SqSp − 〈Vq,Vp〉s + SqVp + SpVq + Vq ×s Vp
= (q0p0 − q1p1) + (q1p0 + q0p1)i + (q2p0 + q3p1 + q0p2 − q1p3)j (7)

+(q3p0 − q2p1 + q1p2 − q0p3)k

where Sq = q0, Sp = p0, Vq = q1i+q2j+q3k, Vp = p1i+p2j+p3k and 〈Vq,Vp〉s
= q1p1, Vq ×s Vp = 0i + (q3p1 − q1p3)j + (q1p2 − q2p1)k.

The algebra of semi-quaternions Hs is isomorphic to the Clifford algebra Cl0,1,1
(i.e., Hs ∼= Cl0,1,1) in dimension two where the standard anti-commuting genera-
tors e1, e2 satisfy

e21 = −1, e22 = (e1e2)
2 = 0 and e1e2 = −e2e1

when the semi-quaternionic units i, j, k are defined with e1, e2, e12(= e1e2) ∈
Cl0,1,1 respectively. Hence the multiplication in Hs is associative.



8 Murat Bekar and Yusuf Yayli

The quaternionic-conjugation of the semi-quaternion q = q0 + q1i + q2j + q3k is
the standard involution q = q0 − q1i− q2j− q3k, which amounts to the canonical
involution of Hs as the Clifford algebra Cl0,1,1, and the norm of q = q0 + q1i +
q2j + q3k is

N(q) = qq = qq = q20 + q21 ∈ R.

If N(q) = 1, then q is said to be a unit semi-quaternion. The set of all unit semi-
quaternions will be denoted by Hs1 while the set of all unit pure semi-quaternions
will be denoted by Ĥs1.

For arbitrary semi-quaternions q, p, r the following properties are valid

q = q, q + p = q + p = p+ q, qpr = rpq.

The multiplicative-inverse of q is

q−1 =
q

N(q)

for q0 6= 0 6= q1. That means a non-zero semi-quaternion q = q0 + q1i + q2j + q3k
with q0 = 0 = q1 does not have an inverse. This case differs semi-quaternions
from real-quaternions, because a non-zero real-quaternion has an inverse.

A semi-quaternion q = q0 + q1i + q2j + q3k can be expressed in complex form as

q = a+ b~µ

where

a = q0, b =
√
q21, ~µ =

q1i + q2j + q3k
b

for b 6= 0.

Also, a non-zero semi-quaternion q = q0 + q1i + q2j + q3k can be represented in
polar form as

q =
√

N(q)(cos
θ

2
+ ~w sin

θ

2
), θ ∈ R

where

cos
θ

2
=
|q0|√
N(q)

, sin
θ

2
=
|q1|√
N(q)

~w =
1

|q1|
(q1i + q2j + q3k) for q1 6= 0.

For further information about semi-quaternions see [9, 11].
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3. Semi-Quaternion Involutions and Anti-Involutions

In this section, we will represent an involution and an anti-involution mapping
obtained by semi-quaternions, and a geometric interpretation of each as planar-
motions in R3.

Theorem 2. Let q be an arbitrary semi-quaternion. Then the mapping

fv(q) = −vqv

is an anti-involution for a chosen unit pure semi-quaternion v.

Proof: Self-inverse axiom can be shown to be satisfied by the mapping fv as

fv(fv(q)) = fv(−vqv) = −v(−vqv)v = −v
(
− v q v

)
v = −v((−v)qv)v = v2qv2

and since v is unit pure semi-quaternion, it is v2 = −1, thus

fv(fv(q)) = q.

The linearity axiom can also be shown to be satisfied as

fv(λq) = −v(λq)v = λ(−vqv) = λfv(q)

and
fv(q + p) = −v(q + p)v = fv(q) + fv(p)

where p ∈ Hs and λ ∈ R. Finally, the anti-homomorphism axiom can be shown to
be satisfied as

fv(qp) = −v(qp)v = −v(p q)v

and since v is unit pure, it is −vv = −v2 = 1, thus

fv(qp) = −vp(−vv)qv = (−vpv)(−vqv) = fv(p)fv(q).

�

Theorem 3. Let q be an arbitrary semi-quaternion. Then the mapping

fv(q) = −vqv

is an involution for a chosen unit pure semi-quaternion v.
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Proof: Let q be a semi-quaternion, then

fv(fv(q)) = fv(−vqv) = −v(−vqv)v = v2qv2 = q

thus fv is self-inverse. Furthermore

fv(λq) = −v(λq)v = λ(−vqv) = λfv(q)

and
fv(q + p) = −v(q + p)v = fv(q) + fv(p)

where p ∈ Hs and λ ∈ R that means fv is linear. The homomorphism axiom can
be shown to be satisfied as

fv(qp) = −v(qp)v = −vq(−vv)pv = (−vqv)(−vpv) = fv(q)fv(p).

�

3.1. Geometry of the Semi-Quaternion (Anti)-Involutions

A planar-rotation in three-dimensional Euclidean space R3 can be represented by
a unit semi-quaternion

q =cos
(θ

2

)
+sin

(θ
2

)
i+
( t2

2
cos
(θ

2

)
+
t3
2

sin
(θ

2

))
j+
(
− t2

2
sin
(θ

2

)
+
t3
2

cos
(θ

2

))
k

as follows. Let p = i + zj− yk ∈ Ĥs1, then

p′ = qpq−1 = i + (cos θz + sin θy + t3)j− (cos θy − sin θz + t2)k ∈ Ĥs1. (8)

If we associate with an arbitrary semi-quaternion r = r0 + r1i + r2j + r3k the
dual-quaternion R = (r0 + r1i) + ε(r2j + r3k) that is

r = r0 + r1i + r2j + r3k ∈ Hs , R = (r0 + r1i) + ε(r2j + r3k) ∈ HD (9)

then the unit pure semi-quaternions p, p′ can be given respectively by the dual-
quaternions

P = i + zjε− ykε

P′ = i + (cos θz + sin θy + t3)jε− (cos θy − sin θz + t2)kε.

Thus, P and P′ are planar. The line lP corresponding to the unit pure dual-quaternion
P has the direction vector ~v = (1, 0, 0) ∈ R3 and intersects the plane x = 1 of
R3 at the point P = (1, y, z) ∈ R3, while the line lP′ corresponding to the unit
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pure dual-quaternion P′ has also the same direction vector with lP and intersects
the plane x = 1 of R3 at the point

P ′ = (1, cos θy − sin θz + t2, cos θz + sin θy + t3) ∈ R3

so that P and P′ are also planar. Let M be the plane x = 1 of R3, then the map

fq : M →M

defined by

P = (1, y, z) 7→ P ′ = (1, cos θy − sin θz + t2, cos θz + sin θy + t3) (10)

is linear for a chosen unit semi-quaternion

q = cos
(θ

2

)
+sin

(θ
2

)
i+
( t2

2
cos
(θ

2

)
+
t3
2

sin
(θ

2

))
j+
(
− t2

2
sin
(θ

2

)
+
t3
2

cos
(θ

2

))
k.

(11)
The matrix representation of the map fq can be given by

N =

 1 0 0
t2 cos θ − sin θ
t3 sin θ cos θ


and it can be easily checked that N tεN = ε and detN = 1 for ε = diag(1, 0, 0)

thus N is orthogonal so that the linear map fq(P ) = P
′

represents a rotation.

Proposition 4. A unit semi-quaternion q = q0 + q1i + q2j + q3k defined by

q0 = cos
(θ

2

)
, q1 = sin

(θ
2

)
q2 =

t2
2

cos
(θ

2

)
+
t3
2

sin
(θ

2

)
, q3 =− t2

2
sin
(θ

2

)
+
t3
2

cos
(θ

2

)
represents a positive oriented rotation in two-dimensional Euclidean space R2 by
an angle θ ∈ R and center

m =
(
− q3

sin
(
θ
2

) , q2

sin
(
θ
2

)) ∈ R2.

Proof: A planar-motion in the plane R2 can be given by the map

βq : R2 → R2,

(
x
y

)
7→
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
t2
t3

)
where

cos θ = q20 − q21, sin θ = −2q0q1
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t2 = 2(q1q2 + q0q3), t2 = 2(q0q2 − q1q3).

It is straightforward to see that

βq

(
− q3

sin
(
θ
2

) , q2

sin
(
θ
2

)) =
(
− q3

sin
(
θ
2

) , q2

sin
(
θ
2

))
and thus the linear map βq represents a positive oriented rotation with an angle
θ ∈ R and center

m =
(
− q3

sin
(
θ
2

) , q2

sin
(
θ
2

)) ∈ R2

in two-dimensional Euclidean space R2. �

Corollary 5. Let q = i + q2j + q3k be a unit pure semi-quaternion. Then, the
product qpq−1 = −qpq represents a planar-reflection under the following two
conditions

1. A reflection of the point P1 = (1, y, z) in the plane x = 1 of R3 through the
point P1 = (1,−q3, q2) if p = i + zj− yk ∈ Ĥs1.

2. A reflection of the point P2 = (−1, y, z) in the plane x = −1 of R3 through
the point P2 = (−1, q3,−q2) if p = −i + zj− yk ∈ Ĥs1.

Proof: If we take cos(θ/2) = 0 and sin(θ/2) = 1 in equation (11), we obtain

q = i + (
t3
2

)j− (
t2
2

)k, t3/2 = q2, t2/2 = −q3

Thus

1. If p = i + zj − yk ∈ Ĥs1, then the map fq = qpq−1 = −qpq given by the
Equation 10 becomes

P1 = (1, y, z) ∈M 7→ P ′1 = (1,−y + t2,−z + t3) ∈M

so that the product fq represents a reflection of the point P1 = (1, y, z) in
the plane x = 1 of R3 through the point P1 = (1, t2/2, t3/2).

2. If p = −i + zj− yk ∈ Ĥs1, then the product qpq−1 = −qpq results to

P2 = (−1, y, z) ∈ R3 7→ P ′2 = (−1,−y − t2,−z − t3) ∈ R3
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so that the product qpq−1 = −qpq represents a reflection of the point P2 =
(−1, y, z) in the plane x = −1 of R3 through the pointP2 =−(1, t2/2, t3/2).

�

Corollary 6. Let q = −i + q2j + q3k be a unit pure semi-quaternion. Then, the
product qpq−1 = −qpq represents a planar-reflection under the following two
conditions

1. A reflection of the point P1 = (1, y, z) in the plane x = 1 of R3 through the
point Q1 = (1, q3, q2) if p = i + zj− yk ∈ Ĥs1.

2. A reflection of the point P2 = (−1, y, z) in the plane x = −1 of R3 through
the point Q2 = −(1, q3, q2) if p = −i + zj− yk ∈ Ĥs1.

The proof of Corollary 6 is similar to the proof of Corollary 5.

Proposition 7. For an arbitrary semi-quaternion q = a + b~µ, the involution map
fv(q) = −vqv given by Theorem 3, leaves the scalar part “a” of q invariant and

1. reflects the point K1 = (1,−µ3, µ2)b in the plane x = 1 of R3 through the
pointK1 = (1,−v3, v2) if v = i+v2j+v3k ∈ Ĥs1, ~µ = i+µ2j+µ3k ∈ Ĥs1.

2. reflects the point K2 = (−1,−µ3, µ2)b in the plane x = −1 of R3 through
the point K2 = (−1, v3,−v2) if v = i + v2j + v3k ∈ Ĥs1, ~µ = −i + µ2j +

µ3k ∈ Ĥs1.

3. reflects the point K3 = (1,−µ3, µ2)b in the plane x = 1 of R3 through the
pointK3 = (1, v3, v2) if v = −i+v2j+v3k ∈ Ĥs1, ~µ = i+µ2j+µ3k ∈ Ĥs1.

4. reflects the point K4 = (−1,−µ3, µ2)b in the plane x = −1 of R3 through
the point K4 = −(1, v3, v2) if v = −i + v2j + v3k ∈ Ĥs1, ~µ = −i + µ2j +

µ3k ∈ Ĥs1.

Proof: Let q = a+ b~µ be a semi-quaternion, then

fv(q) = −vqv = −v(a+ b~µ)v = −v2a− v~µvb = a− v~µvb.

Thus, the involution map fv(q) = −vqv leaves the scalar part “a” of q invariant
and

1. since v = i + v2j + v3k ∈ Ĥs1, ~µ = i + µ2j + µ3k ∈ Ĥs1, thus from the
first item in Corollary 5, the product −v~µv reflects the point (1,−µ3, µ2) in
the plane x = 1 of R3 through the point (1,−v3, v2).



14 Murat Bekar and Yusuf Yayli

Also, the proofs of items 2, 3 and 4 in Proposition 7 are obvious from, respectively,
the item 2 in Corollary 5 and items 1 and 2 in Corollary 6. �

Proposition 8. For an arbitrary semi-quaternion q = a + b~µ, the anti-involution
map fv(q) = −vqv given by Theorem 2, leaves the scalar part “a” of q invariant
and

1. reflects the point K1 = (1,−µ3, µ2)b through the point L1 = (0,−µ3 +

v3, µ2 − v2) in R3 if v = i + v2j + v3k ∈ Ĥs1, ~µ = i + µ2j + µ3k ∈ Ĥs1.

2. reflects the point K2 = (−1,−µ3, µ2)b through the point L2 = (0,−µ3 −
v3, µ2 + v2) in R3 if v = i + v2j + v3k ∈ Ĥs1, ~µ = −i + µ2j + µ3k ∈ Ĥs1.

3. reflects the point K3 = (1,−µ3, µ2)b through the point L3 = (0,−µ3 −
v3, µ2 − v2) in R3 if v = −i + v2j + v3k ∈ Ĥs1, ~µ = i + µ2j + µ3k ∈ Ĥs1.

4. reflects the point K4 = (−1,−µ3, µ2)b through the point L4 = (0,−µ3 +

v3, µ2 +v2) in R3 if v = −i +v2j +v3k ∈ Ĥs1, ~µ = −i +µ2j +µ3k ∈ Ĥs1.

Proof: Let q = a+ b~µ be a semi-quaternion, then

fv(q) = −vqv = −v(a+ b~µ)v = −v(a− b~µ)v = a+ v~µvb.

Thus, the anti-involution map fv(q) = −vqv leaves the scalar part “a” of q invariant
and

1. from the proof of item 1 in Corollary 5, the product v~µv results to

K1 = (1,−µ3, µ2) ∈ R3 7→ K1
′ = (−1,−µ3 + 2v3, µ2 − 2v2) ∈ R3

which completes the proof.

The proofs of items 2, 3 and 4 in Proposition 8 can be easily checked by using,
respectively, item 2 in Corollary 5 and items 1 and 2 in Corollary 6. �

Example 9. Let

v = i− 1

2
j− 1

2
k ∈ Ĥs1, q = 1 + i + j− k ∈ Hs1

then the product −vqv(which is an involution) becomes

q′ = −vqv = 1 + i− 2j ∈ Hs1
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so that −vqv leaves the scalar part 1 of q invariant, and converts the vector part
“i+ j−k” of q into “i−2j”. From equation (9), the dual-quaternions correspond-
ing to unit pure semi-quaternions “i + j− k”, “i− 2j” can be given, respectively,
by Q = i + jε − kε and Q′ = i − 2jε. By the Study map, the lines corresponding
to unit pure dual-quaternions Q, Q′ intersects the plane x = 1 of R3 at the points,
respectively, Q = (1, 1, 1), Q′ = (1, 0,−2). It is easily checked that the point
Q′ = (1, 0,−2) ∈ R3 is a reflection of the point Q = (1, 1, 1) ∈ R3 through the
point Q = (1, 1/2,−1/2) ∈ R3. The same result can be given straightforward by
using the item 1 in Proposition 7.
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