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Abstract. Guided by the Jacobi’s work published one year before his death about

the rotation of a rigid body, the behavior of the rotation matrix describing the dy-

namics of the free rigid body is studied. To illustrate this dynamics one draws on a

unit sphere the trace of the three unit vectors, in the body system along the principal

directions of inertia. A minimal set of properties of Jacobi’s elliptic functions are

used, those which allow to compute with the necessary precision the dynamics of

the rigid body without torques, the so called Euler’s top. Emphasis is on the pa-

per published by Jacobi in 1850 on the explicit expression for the components of

the rotation matrix. The tool used to compute the trajectories to be drawn are the

Jacobi’s Fourier series for theta and eta functions with extremely fast convergence.

The Jacobi’s sn, cn and dn functions, which are better known, are used also as ratios

of theta functions which permit quick and accurate computation. Finally the main

periodic part of the herpolhode curve was computed and graphically represented.
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1. Introduction
The history of the dynamics of the free asymmetric rigid body started with Euler.

In the Whittaker’s book on mechanics one finds several references to the original

papers [14].

At present time, the dominant source for a detailed and profound treatment of the

dynamics of the rigid body is the Klein and Sommerfeld treatise, recently translated

into English [8].

The purpose to contributing to this venerable subject is the drawing of the predicted

motion of the body represented by the traces of the three unit vectors, forming

the rows of the rotation matrix, portraying on the unit sphere close trajectories

representing the main periodic behavior of the rigid body. Actually, the third row

coincides with the representation of the angular momentum vector as is seen from

the body system in the intersection of the sphere of angular momentum, and the

ellipsoid of constant energy. This trajectory of the angular momentum vector has

been graphically represented in different publications, see for example the Bender

and Orzag book [4, p 203].

On the contrary, to our knowledge, the other two rows of the rotation matrix, have

not received the pictorial representation of its motion, notwithstanding this motion

for the second row has similar properties of symmetry as that of the angular mo-

mentum, whereas the first row has different symmetries from the other rows. In

any case each of the three trajectories are periodic of the same period. The sec-

ond and third rows are symmetric with respect to the same coordinate planes in

the body system of principal moments of inertia. The first row, on the contrary, is

skew symmetric with respect to the same planes. In my opinion this behavior is

an essential knowledge of the physics of the free rotation in space far from acting

torques, which deserves to be known and taken in account.

In order to present those facts and draw accurately as needed those curves, one

uses a minimum of properties of elliptic functions, just those which are efficient

and precise. Everything supported the magistral Jacobi’s work.

Our purpose is to dilute the embarrassment expressed by the historian of mathe-

matics Bell [2, p 399] who writes:

“The rotation of the rigid body, for example, yields numerous elegant exercises

in the elliptic theta functions; but few engineers who must busy themselves with

rotation have time for elegant analysis.”

After Jacobi, Weierstrass contributed in extraordinary form to the theory of the

elliptic functions. In both cited treatises both of Whittaker and Klein and Som-

merfeld, the properties of the new functions introduced by Weierstrass are used.

However in this paper almost nothing of the Weierstrass functions is included.
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The basis to ignore the Weierstrass’ work, here is justified by the following text

extracted from the Whittaker and Watson treatise on analysis [15, p 523] which

refers to the mathematics of the rigid body dynamics as:

“This result determines the mean precession about the invariable line in the motion

of the rigid body relative to its center of gravity under forces whose resultant passes

through its center of gravity. It is evident that, for purposes of computation, a

result of this nature is preferable to the corresponding result in terms of sigma-

functions and Weierstrassian zeta-functions, for the reason that the theta-functions

have a specially simple behavior with respect to the real period–the period which

is of importance in Applied Mathematics–and that the q-series are much better

adapted for computation than the product by which the sigma-function is most

simply defined.”

The previous text from two recognized experts in elliptic functions supports the

fact that for computing and also for drawing accurately our tools are the best. One

can be more explicit: the theta functions used here are written in terms of Fourier

series with n-coefficients which are proportional to a number q, smaller than one,

with an exponent n2. In such computations less than ten terms are necessary to

obtain a precision of 15 places, for numbers q different from one in one over a

million, one exceptional case, without general interest. One should use the theta
functions because of their extremely fast convergence.

Richard Bellman confirms this point without any doubt in his brief book on theta
functions [3, p 12].

The main objective of present paper is to represent by drawings the motion of

a rigid body formed by particles which relative mutual distances do not change in

time. The center of mass is assumed fixed at the origin of coordinates in the inertial

system. The position of particle i of the body in the inertial system ri is known

in terms of the entries of the rotation matrix, because the existence of a coordinate

system fixed to the body which will be named the body system, with the same

origin of coordinates as the inertial system, at the rest center of mass, where all the

coordinates of the rigid body ai are constants of motion. The rotation matrix R

transforms the coordinates of the i-th particle from the body system to the inertial

system

ri = Rai. (1)

In what follows we will be concentrated in the drawing of the components of the

rotation matrix, which preserves the constant distance between particles, requires

its rows to be formed by the components of three mutually orthogonal, unit vectors,

that form a right tern, namely, the × product of the two first vectors of R is equal

to the third row of the same. The ortho-normality of the rows of the rotation matrix
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is represented in matrix notation as

R
t
R = RR

t = E (2)

where E is the unit matrix. The super-index t to the right of a vector or matrix

denotes the transposed vector or matrix. Therefore one has the inverse matrix of

the rotation matrix is equal to its transposed matrix.

The derivative with respect to time is denoted with a point on the function to be

derived. The derivative with respect to time of the equations in (2), uncovers the

existence of the antisymmetric matrices defining the angular velocity

ω
× =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ ≡ R

t
Ṙ

(3)

Ω
× =

⎛
⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠ ≡ ṘR

t.

The first definition corresponds to the angular velocity in the body system

ω =

⎛
⎝ω1

ω2

ω3

⎞
⎠ (4)

which gives the derivative with respect to time of the rotation matrix in the useful

form

Ṙ = Rω
×. (5)

The notation with the × product is used because the product by the right of the

antisymmetric matrix with any vector is equal to the × product of the vector of the

matrix with the same vector

ω
×

⎛
⎝ a1

a2
a3

⎞
⎠ =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠
⎛
⎝ a1

a2
a3

⎞
⎠ . (6)

The angular velocity in the inertial system Ω will be important in the last part of

this work because one pretends to draw the curve, called herpolhode, portrayed by

this vector when one projects it on the orthogonal plane to the angular momentum

vector.

From their definitions (3) the angular velocities vectors are related by the equation

Ω
× = Rω

×
R

t = (Rω)×, Ω = Rω (7)
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where we have used the geometric theorem: the × product of rotated vectors is

equal to the rotation of the × product of the vectors.

To know the rotation matrix one starts using the conservation of the angular mo-

mentum vector. The angular momentum vector (with respect to the center of mass)

is defined by the sum vector of the mass by the × product of the position and the

velocity

J =
∑
i

miri × ṙi =
∑
i

mi(Rai)× (Ṙai)

(8)
=
∑
i

mi(Rai)× (Rω × ai) = R

∑
i

miai × (ω × ai)

where the positions were used in terms of the rotation matrix. The time derivative

of the rotation matrix as a function of the angular velocity, and the geometric the-

orem: the × product of the rotated vectors is the rotation of the × product of the

vectors. Next the double × product is used to obtain

J = R

∑
i

mi

(
a
t
iaiω − aia

t
iω
)
= R

∑
i

mi

(
a
t
iaiE− aia

t
i

)
ω (9)

where one has introduced the unit matrix E to take out as a common factor the

angular velocity vector. In this way one finds the angular momentum vector of the

inertial system as the product of the rotation matrix, the inertia matrix of inertia in

the body system, and the angular velocity of the same system

J = RIω. (10)

The inertia matrix I is the following constant symmetric matrix, which is assumed

diagonal since the body system could be selected in such a way. i.e.,

I =
∑
i

mi

(
a
t
iaiE− aia

t
i

)
=

⎛
⎝ I1 0 0

0 I2 0
0 0 I3

⎞
⎠ . (11)

Quantities Ij are positive and are called principal moments of inertia. The body

system where the inertia matrix is diagonal is called the system of the principal

moments of inertia. In what follows all the vectors of the body system have com-

ponents in this system of coordinates.

2. Computing the Angular Momentum in the Body System

The angular momentum vector is conserved. This is a general theorem of mechan-

ics: if no external torques are present, the angular momentum vector is conserved.
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The inertial system of coordinates is selected so that the angular momentum vector

is directed along the third coordinate axis. The constant magnitude of this vector

is J

J
t = J(0, 0, 1). (12)

According to equation (10) the components of the angular momentum in the body

system are L =Iω. The magnitude of this vector is the constant J as it does not

change with the rotation, but its direction changes with time. One denotes by u the

unit vector in the body system in the direction of this vector

L = Iω = Ju. (13)

Hence the vector L is rotated into the vector J and the vector u is rotated into the

vector k

J = RL, Ru = k =

⎛
⎝ 0

0
1

⎞
⎠ . (14)

As the rows of the rotation matrix are mutually orthogonal the second equation in

(14) implies that ut is the vector forming the third row of the rotation matrix. One

proceeds to compute this vector.

The equation of motion for L is obtained from the derivative with respect to time

of the previous equation

0 = R(L̇+ ω × L), u̇ = u× ω (15)

where it has been written the time derivative of the matrix R in terms of the angular

velocity. This is the Euler equation for the free rigid body.

In other hand, according to (13), the angular velocity is written in terms of the

vector L as

ω = I
−1

L. (16)

We find the equation of motion for the components of the angular momentum

vector in the body system

L̇ = L× I
−1

L. (17)

Which has as constants of integration the energy E and the magnitude of the an-

gular momentum vector

L
t
I
−1

L = 2E, L
t
L = J2. (18)

We turn our attention to the unit vector u in the direction of the angular momentum,

dividing the angular momentum vector by its magnitude.
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One writes the inverses of the principal moments of inertia and the constant 2E/J 2

in the form
1

Ij
= H + Pej ,

2E

J2
= H + Pe0 (19)

where H and P are defined in order to diminish the number of independent param-

eters

H =
1

3

(
1

I1
+

1

I2
+

1

I3

)
, e1 + e2 + e3 = 0

(20)

P 2 =
4

9

(
1

I21
+

1

I22
+

1

I23
−

1

I1I2
−

1

I2I3
−

1

I3I1

)
, e21 + e22 + e23 = 3/2

which implies that the parameters ej can be expressed in terms of just one angle γ

e1 = cos γ, e2 = cos(γ − 2π/3), e3 = cos(γ + 2π/3). (21)

While the constants of motion of the angular momentum vector are functions of

the five parameters E, J , I1, I2, I3, the components uj of the unit vector u in

the direction of the angular momentum can be written just in terms of the two

parameters γ and e0

u21 + u22 + u23 = 1, e1u
2
1 + e2u

2
2 + e3u

2
3 = e0. (22)

These equations suggest to utilize the spheroconical coordinates α1 and α2 for the

components of this vector

u1 = cn(α2, k2)cn(α1, k1)

u2 = dn(α2, k2)sn(α1, k1) (23)

u3 = sn(α2, k2)dn(α1, k1).

According to the NIST Handbook of Mathematical Functions [13, p 693], the pa-

rameter β in 29.18.2 corresponds in our notation to K(k1) + iK(k2) − iα2, the

function K and its arguments will be defined in this section. One prefers the form

(23) since it is not necessary to use complex variables. In the quantum case of the

same Euler free rigid body motion the Schrödinger equation is separated in sphero-

conical coordinates [12]. (See for example the Méndez-Fragoso and Ley-Koo [10]

review paper on quantum rotations.) The spheroconical coordinates in the form

(23) are also found in the Morse and Feshbach book [11, p 659], as conical coordi-

nates. The stereoscopic view in three dimensions of some of the conical coordinate

curves have been drawn in this reference. In our forward Fig. 1 some coordinate

curves (α2 = constant) are drawn on the sphere as the trajectories followed by the

angular momentum vector in the system of the principal moments of inertia.
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The first equation of (22) is satisfied identically if we use the properties of the

Jacobi elliptic functions

sn2(β, k) + cn2(β, k) = 1, k2sn2(β, k) + dn2(β, k) = 1 (24)

and the relation for the constants ki

k21 + k22 = 1. (25)

The second equation in (22) is satisfied identically if α2, k1, k2 are constants cho-

sen with the restrictions

sn(α2, k2) =

√
e1 − e0
e1 − e3

, cn(α2, k2) =

√
e0 − e3
e1 − e3

, dn(α2, k2) =

√
e0 − e3
e2 − e3

(26)

k1 =

√
(e1 − e2)(e0 − e3)

(e2 − e3)(e1 − e0)
, k2 =

√
(e1 − e3)(e2 − e0)

(e2 − e3)(e1 − e0)

which are redundant because the equations (24) and (25) are identically satisfied.

Note that these constants are functions only of the parameters γ of asymmetry and

e0 of energy. For the components u1, u2 and u3 of the vector u, and for the third

row of the rotation matrix R, it is preferable to use instead of (23) the coordinates

u1 =

√
e0 − e3
e1 − e3

cn(α1, k1)

u2 =

√
e0 − e3
e2 − e3

sn(α1, k1) (27)

u3 =

√
e1 − e0
e1 − e3

dn(α1, k1).

The argument α1 is a function of time. To know its behavior we must know the

derivatives of the Jacobi functions. Owed to the quadratic relations (24), it is suf-

ficient to know one of them, but one includes the three to stress on their simplicity

and similarity

d sn(β, k)

dβ
= cn(β, k)dn(β, k)

d cn(β, k)

dβ
= −sn(β, k)dn(β, k) (28)

d dn(β, k)

dβ
= −k2sn(β, k)cn(β, k).



Drawing the Free Rigid Body Dynamics According to Jacobi 63

We need to know also the equation of the motion for the coordinate α1. Substi-

tuting equation (13) in the Euler equation of motion, with the explicit form (27)

for the components of u and the principal moments of inertia in the form (19) one

finds the constant derivative

α̇1 = PJ
√
(e1 − e0)(e2 − e3). (29)

Note that besides the used parameters γ and e0, the time appears without dimen-

sions in the combination JPt.

To draw the curve u, going over the unit sphere, we should know how to compute

the Jacobi elliptic functions. As functions of the real variable α1 they are periodic.

The period of the vector u is four times the function K(k1). The function K(k) is

the complete elliptic integral of the first kind. To compute it we have the algorithm

of the arithmetic-geometric mean [1] allowing to calculate it with rapidity which

can be described as follows: Take the initial values x0 = 1+k, y0 = 1−k. Iterate

xn, yn → xn+1 = (xn + yn)/2, yn+1 =
√
xnyn, up to the desired precision when

the two averages are equal to a certain value x. Then K(k) = π/(2x). To draw

the vector u one divides the period in equal parts and one draws the components

of u calculated in all the points corresponding to the increments of the division of

the period.

Z

Y

X

Figure 1. The sphere of angular momentum intersected by ellipsoids of con-

stant energy. The curves follow the motion of the angular momentum vector

on the sphere of angular momentum for different values of the energy. These

curves are symmetric with respect to two of the coordinate planes.

We have several efficient algorithms to compute numerically the value of the Ja-

cobian functions [1]. Here we make use of the Jacobi formula [7] as the ratio of



64 Eduardo Piña

Θ(β, k) and H(β, k) functions, which has the advantage of a very fast conver-

gence, comparable in precision and fastness with other methods, and the bonus of

being one of them is indispensable to the calculus of the other six entries of the

rotation matrix R.

The theta Jacobi functions require other function of the parameter k defined in

terms of K(k) by

q(k) = exp(−πK(
√

1− k2)/K(k) (30)

which is a positive number lower than one, which is shortened as q. The theta
functions Θ and H are computed then as Fourier [7] series with real period 2K(k)

Θ(β, k) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos
πnβ

K(k)
(31)

and respectively 4K(k)

H(β, k) = 2

∞∑
n=0

(−1)nq(n+1/2)2 sin
π(2n+ 1)β

2K(k)
· (32)

These series should be computed up to the necessary precision when the next term

is negligible, because of the fast convergency to zero of the factor qn
2

. These theta
functions are the algorithms to compute other elliptic Jacobi functions by means of

the equations [7]

sn(β, k) =
H(β, k)

√
k Θ(β, k)

, cn(β, k) =
4
√
1− k2
√
k

H(β +K(k), k)

Θ(β, k)

(33)

dn(β, k) =
4
√
1− k2

Θ(β +K(k), k)

Θ(β, k)
·

Jacobi [7] provides the entries of the rotation matrix as ratios of these theta func-

tions. He understood the computational advantage of their use. In this work we

give a priority to the Jacobi’s elliptic functions sn, cn, dn whenever it is possible

because their properties are better known. But the Jacobi’s theta functions are actu-

ally used as algorithms for their evaluation. Comparing the Jacobi’s expressions [7]

for the third row of the rotation matrix we can observe the same components with

the same functions. We are following Jacobi very closely.

As an example of the use of this algorithm we draw on the angular momentum

sphere the intersections with ellipsoids of constant energy one has Fig. 1, in which

the asymmetry parameter was selected as γ = π/5 and several parameters of en-

ergy e0. This is the trajectory followed by the vector along the third row of the

rotation matrix on the sphere of unit radius. The observer of the picture has the

spherical coordinates 2π/7, 2π/7 with respect to the principal inertia directions.



Drawing the Free Rigid Body Dynamics According to Jacobi 65

3. The Entries Perpendicular to the Body Angular Momentum in the
Rotation Matrix

In this section one analyses the paleography of the rotation matrix as a function

of time, of the motion without torques of a rigid body, as published by Jacobi [7]

at 1850. Understood paleography as the study of an old text and its traduction or

explanation in modern terms. The nine components of the rotation matrix were

written by Jacobi by means of a set of theta functions, the same functions used

in the previous section. The third row of the rotation matrix, as pointed before,

was written in spheroconical coordinates in terms of the H and Θ theta functions.

Jacobi finds the other six components of the same matrix expressed also by using

ratios of the same functions, although now with complex arguments. The corre-

sponding entries in the two first rows of the rotation matrix involves three theta
functions with different arguments, and multiplied, by the real and the other by the

imaginary part of a theta function with the complex argument α1+iα2. Remember

that α1 is proportional to time, and that α2 is a constant coordinate satisfying the

three equations in (26), but its numerical value should be determined now.

Since α2 is an elliptic integral of the first kind

α2 =

∫ √
e1−e0

e1−e3

0

dx√
(1− x2)(1− k22x

2)
· (34)

To attain a more precise value for α2, one introduces the numerical value of this

integral as approximated root and look for the root α2 of the equation

sn(α2, k2)−

√
e1 − e0
e1 − e3

= 0. (35)

Actually one finds two roots for α2 in the interval [0, 2K(k2)]. The smaller of the

two, which has to be selected, corresponds to the choice of positive values in (26).

The theta functions with complex argument are defined by the same Fourier se-

ries as before in (31) and (32). The modification due to the imaginary argument

changes the coefficient of the Fourier series, however the convergence remains very

fast.

Observing the two first rows of the rotation Jacobi’s matrix one deduces the con-

venience of combining the vector s of the first row as the real part, and vector t

of the second row as minus the imaginary part of a complex vector, function of

a complex variable. The two vectors are orthogonal to the third row, which is a

complex vector too. The scalar product of the complex vector with itself should be

zero as a consequence of the orthogonality of the real and imaginary parts of the

same magnitude.
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Figure 2. The trajectory followed by the vector forming the first row of the

rotation matrix in a period. Perspective view and projection on the coordinate

planes in the system of principal moments of inertia. The curve is antisym-

metric with respect to the two coordinate planes crossing at the OZ axis of

coordinates.

In our notation the complex vector is

s− it =
1

H(iα2 +K(k1))Θ(α1)

⎛
⎝ Θ(K(k1))H(α1 + iα2)

−Θ(0)H(α1 + iα2 +K(k1))
−iH(K(k1))Θ(α1 + iα2)

⎞
⎠ (36)

where one has suppressed the second argument of the theta functions because it is

always the same: k1. We have changed also the sign of the first component because

one assumes the Jacobi’s mistake to be verified in the sequel.

Let us notes that components 1 and 2 divided by the third allows to introduce the

functions sn and cn of complex argument as the ratio of theta functions

Θ(K(k1))H(α1 + iα2)

H(K(k1))Θ(α1 + iα2)
=

sn (α1 + iα2, k1)

sn (K(k1), k1)
= sn (α1 + iα2, k1)

Θ(0)H(α1 + iα2) +K(k1))

H(K(k1))Θ(α1 + iα2)
=

cn (α1 + iα2, k1)

cn (0, k1)
= cn (α1 + iα2, k1)

and therefore the complex vector can be written as

s− it =
H(K(k1))Θ(α1 + iα2)

H(K(k1) + iα2)Θ(α1)

⎛
⎝ sn(α1 + iα2, k1)

−cn(α1 + iα2, k1)
−i

⎞
⎠ . (37)
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Let us notice also that the vector on the right is a null vector as a consequence of the

first quadratic identity in (24), although the magnitudes of the real and imaginary

parts of this vector are not equal to one.

One substitutes the equations in the Abramowitz and Stegun handbook [1, p 575,

equation(16.21)] for functions sn and cn of complex argument, which have been

written in function of the three components of the unit vector along the angular mo-

mentum. These formula were not found in other classical references and therefore

were verified starting from the addition formulae for the Jacobi elliptic functions

and the Jacobi equations for the same functions of imaginary argument which are

reproduced in many references

s− it =
H(K(k1))Θ(α1 + iα2)

H(K(k1) + iα2)Θ(α1)

⎛
⎜⎜⎜⎜⎝

u2 + iu3u1
1− u23

−u1 + iu2u3
1− u23
−i

⎞
⎟⎟⎟⎟⎠ . (38)

We verify in this way the misprint in the first component of the complex vector

which was corrected to be orthogonal to the vector u, as it should be.

To establish clearly these equations one rewrites them in terms of Euler angles as

defined by Goldstein [6, p 147]. Our matrix R corresponds to his Ã. The third

row is the unit vector in the angular momentum direction which components are

written in terms of two Euler angles

u
t = (u1, u2, u3) = (sin θ sinψ, sin θ cosψ, cos θ). (39)

Adding the first row to the second multiplied by the square root of minus one of

the rotation matrix, it is possible to extract a common factor in the three complex

components and to find the null vector

eiφ(cosψ + i sinψ cos θ,− sinψ + i cosψ cos θ,−i sin θ). (40)

It is interesting to observe that if the vector between parentheses is divided by sin θ
it appears another vector which can be found in the Jacobi’s publication

⎛
⎜⎜⎜⎝

cosψ

sin θ
+ i sinψ cot θ

−
sinψ

sin θ
+ i cosψ cot θ

−i

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

u2 + iu3u1
1− u23

−u1 + iu2u3
1− u23
−i

⎞
⎟⎟⎟⎟⎠=
⎛
⎜⎜⎜⎝

sn(α1 + iα2, k1)

−cn(α1 + iα2, k1)

−i

⎞
⎟⎟⎟⎠ .

(41)
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Figure 3. The trajectory followed by the vector forming the second row

of the rotation matrix in a period. The curve is symmetric with respect to

the same two coordinate planes as of the body angular momentum vector.

Perspective view and projection on the coordinate planes in the system of

principal moments of inertia.

For computations we should use the middle form because it has been written in

terms of the components of the unit vector u. And this means an economy in

machine time.

The factor that should multiply this vector to obtain the first two rows of the rota-

tion matrix as its real and imaginary parts of the vector (40) is eiφ1 sin θ, where φ1

is the main periodic part of the third Euler angle φ. According to Jacobi that factor

is

eiφ1

√
1− u23 =

H(K(k1))Θ(α1 + iα̂2)

H(K(k1) + iα̂2)Θ(α1)
= cn(α̂2, k2)

Θ(0)Θ(α1 + iα̂2)

Θ(α1)Θ(iα̂2)
·

Actually plotting the real vs. the imaginary part of the exp(iφ1, the points do

not fall on a unit circle as it should be. The reason seams to be subtle to me.

A graphical solution was to use a the other α2 root in the right hand side of this

equation, which was denoted as α̂2 which is equal to 2K(k2)−α2. Modification of

the right hand side is performed by prescription 16.33.4 in reference [1] who adds a

constant angular velocity along the angular momentum vector with the same period
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that vector u

eiφ1

√
1− u23 =

H(K(k1))Θ(α1 + iα2)

H(K(k1) + iα2)Θ(α1)
exp

(
−iπα1

2K(k1)

)
(42)

= cn(α2, k2)
Θ(0)Θ(α1 + iα2)

Θ(α1)Θ(iα2)
exp

(
−iπα1

2K(k1)

)
.

Jacobi’s equation allows to obtain the main periodic part of the third Euler angle

which remains to complete the three Euler angles as a function of time. In fact

one has the real quantities
√
1− u23, cn(α2, k2), Θ(0), Θ(iα2), Θ(α1), therefore

taking the logarithm of (42) and subtracting its complex conjugated expression

give us

2iφ1 = ln
Θ(α1 + iα2)

Θ(α1 − iα2)
− i

πα1

K(k1)
(43)

as found in the references [14] and [9, p 119], as the periodic part with the same

period of the u vector. But Jacobi’s equation (42) contains more information since

provides economy of computation, the factor that is needed to compute the two

missing rows of the rotation matrix.

The difference of the two angles φ and φ1 is an angle with constant angular veloc-

ity. This was neglected by Jacobi due to its simplicity. One draws the figures of

the unit vectors forming the Jacobi’s rotation matrix neglecting the same constant

angular velocity around the constant angular momentum.

The curves that follow these two rows of the rotation matrix on the unit sphere with

period 4K(k1) of α1 are drawn in Fig. 2 and Fig. 3, for a typical particular case,

computed from equation (42).

4. Recovering the Jacobi’s Expression for the Components of the
Rotation Matrix

In this Section we prove the Jacobi’s equation (42) of the precedent section which

could be used as an efficient algorithm to compute and draw the curves associated

with the other two rows of the rotational matrix. The full rotation matrix including

the missing constant angular velocity rotation around the constant angular momen-

tum vector is fully reincorporated here.

One presents a simplified mathematical proof to verify equation (42). As an al-

ternative one could use equation (43) that seems to be more elegant and simple.

However, as has been pointed out, it hides information, as it implies first to com-

pute the angle, and then to compute the trigonometric functions and replace them
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in the rotation matrix. The Jacobi’s equation (42) give directly the trigonometric

functions and permits “quick and accurate computation” [3, p 12].

The derivative of the angle φ is obtained by Landau and Lifshitz [9, p 119] from

the angular velocity and angular momentum in terms of the Euler angles (the same

convention for the Euler angles used by Goldstein [6, p 147] and is adopted in this

work)

φ̇ =
ω1u1 + ω2u2

1− u23
=

u
t
ω − u3ω3

1− u23
=

2E/J − u23J/I3
1− u23

=
J

I3
+

JP (e0 − e3)

1− u23
(44)

=
J

I3
+ JP

√
(e1 − e0)((e2 − e3)

e0 − e3√
(e1 − e0)((e2 − e3)

1

1− u23
·

The first term in the right hand side of this equation is a constant, with an integral

linear in time. The second summand is a periodic function of the variable α1 with

period 4K(k1), considered by Jacobi. The integral with respect to time of a peri-

odic function of another function which is linear in time plus a periodic function

of the same period. The behavior of φ is then separated in two terms, one periodic

function of the variable α1 of period 4K(k1) (the main periodic term) plus other

function that is linear in time, where the two linear in time contributions are added.

The last is a motion with constant angular velocity, with other period generally

incommensurable to the previous one. This last with a constant angular velocity

is separated and neglected by Jacobi due to its relative simplicity. In what follows

these terms are not longer ignored.

From the two terms in the right hand side of (44), the second which will be denoted

dφ0/dt, is convenient to express in terms of the coordinate α1

dφ0

dα1
=

e0 − e3√
(e1 − e0)((e2 − e3)

1

1− sn2(α2, k2)dn
2(α1, k1)

· (45)

The same derivative is now transformed replacing the constants in terms of ellip-

tic functions of the imaginary value iα2, which is accomplished by means of our

equations (26), and Jacobi’s formulas for imaginary argument [13, p 693], [1]

dφ0

dα1
= i

cn(iα2, k1)dn(iα2, k1)

sn(iα2, k1)

1

1− k21sn
2(iα2, k1)sn2(α1, k1)

· (46)

In what follows the argument k1 is suppressed since it is the same for all functions.

It is customary to present the elliptic integral of the third kind in the standard

form [15, p 523]

Π(α1, iα2) =

∫ α1

0
dα1

k21sn(iα2)cn(iα2)dn(iα2)sn
2(α1)

1− k21sn
2(iα2)sn2(α1)

(47)
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which is related to the angle φ0(α1) because

Π(α1, iα2) =
cn(iα2)dn(iα2)

sn(iα2)

[∫ α1

0
dα1

1

1− k21sn
2(iα2)sn2(α1)

− α1

]
. (48)

One finds in this way the formula

φ0(α1) = iΠ(α1, iα2) + i
cn(iα2)dn(iα2)

sn(iα2)
α1 (49)

where the constant of integration is assumed to be φ0(0) = 0. However instead

of using the elliptic integral of the third kind only the Jacobi’s theta functions are

used here.

To obtain the expression for the factor used by Jacobi in his rotational matrix one

can use a relation borrowed from the Whittaker and Watson book on analysis [15, p

518]

Θ′(α1 + iα2)

Θ(α1 + iα2)
−

Θ′(α1)

Θ(α1)
−

Θ′(iα2)

Θ(iα2)
= −k21sn(α1)sn(iα2)sn(α1 + iα2). (50)

The right hand side can be written with the addition formula of Jacobi’s function

sn(α1 + iα2) used in (41) as

Θ′(α1 + iα2)

Θ(α1 + iα2)
−

Θ′(α1)

Θ(α1)
−

Θ′(iα2)

Θ(iα2)
= −

k21sn(iα2)cn(iα2)dn(iα2)sn
2(α1)

1− k21sn
2(α1)sn2(iα2)

+
k21sn

2(α2, k2)sn(α1, k1)cn(α1, k1)dn(α1, k1)

1− sn2(α2, k2)dn
2(α1, k1)

· (51)

Integrating both sides of this equation from 0 to α1 one finds

ln
Θ(0)Θ(α1 + iα2)

Θ(α1)Θ(iα2)
−α1

Θ′(iα2)

Θ(iα2)
=

∫ α1

0

−k21sn(iα2)cn(iα2)dn(iα2)sn
2(α1)

1− k21sn
2(α1)sn2(iα2)

dα1

+ ln

√
1− sn2(α2, k2)dn

2(α1, k1)

cn(α2, k2)
(52)

where one replaces the angle φ0 to find a version of the Jacobi equation (42) if one

suppresses the two terms linear in the time that are neglected by Jacobi

ln
Θ(0)Θ(α1 + iα2)

Θ(α1)Θ(iα2)
= i

[
φ1(α1) +

πα1

2K(k1)

]
+ln

√
1− sn2(α2, k2)dn

2(α1, k1)

cn(α2, k2)
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and where the linear terms in time are no longer present as

φ0(α1)− φ1(α1) =
πα1

2K(k1)
iα1

[
Θ′(iα2)

Θ(iα2)
+

cn(iα2)dn(iα2)

sn(iα2)

]
. (53)

This constant angular has been ignored in the present work, as in Jacobi’s, taking in

account only the main period of the rotation matrix, in which we have suppressed

such constant angular velocity. One regards preferable this choice as discussed at

once.

The angular velocity constant has two terms, one of them depends on the param-

eter H appearing in (20) and disappearing from discussion until it reappears as a

summand in the velocity of the angle of Euler φ̇ in (44)

J

I3
= JH + JPe3. (54)

One adds all the linear terms in time to have the complete angle φ minus its periodic

φ1, considered by Jacobi

φ− φ1 = JHt+ α1

[
e0√

(e1 − e0)(e2 − e3)
+

Θ′(α2, k2)

Θ(α2, k2)
+

π(α2 +K(k2))

2K(k1)K(k2)

]
.

The term proportional to H could have any value and give an undetermined char-

acter to any draw of the rotation matrix, as a consequence it is a vagary to pretend

to draw it. Nevertheless it deserves some extra consideration. The first term and

the first inside the parentheses should be reassembled as

JHt+ α1
e0√

(e1 − e0)(e2 − e3)
=

E

J
t. (55)

In the remaining terms in that Euler angle we see the logarithmic derivative of

Θ(α2) which is known in analysis as the Z(α2)

φ− φ1 =
E

J
t+ α1

[
Θ′(α2, k2)

Θ(α2, k2)
+

π(α2 +K(k2))

2K(k1)K(k2)

]
. (56)

The logarithmic derivative Z(α2, k2) = Θ′(α2, k2)/Θ(α2, k2) is computed as the

ratio of Fourier series or by using the algorithm of the arithmetic-geometric mean

as can be found in the literature [1].

As one has computed the nine entries of the main period of the rotation matrix, it is

possible to draw on the unit sphere three curves corresponding to the three columns

of it. They give the main periodic motion in the inertial system of coordinates of the

rotating rigid body with the constant angular velocity around the constant angular

momentum. The resulting curves are different from the previous result: one finds

one curve, almost plane, symmetric with respect to two coordinate planes. The

two other curves are both symmetric with respect to one of those two coordinate

planes. They transform one into the other by reflection in the other two planes.
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5. Drawing the Herpolhode

The equation of energy conservation when the components of the angular momen-

tum and angular velocity vectors are given in the inertial system, imply that the

component of the angular velocity along the angular momentum is constant

2E/J = k
t
Ω. (57)

The components of Ω perpendicular to k move on the plane perpendicular to k,

called the invariable plane. Its trajectory on the invariable plane follow the curve

called herpolhode. The vector Ω minus the component of Ω along the angular

momentum k is written with the double × product as

(k×Ω)× k. (58)

This vector in the body system is

(u× ω)× u = u̇× u (59)

where equation (15) was utilized.

As a consequence the vector describing the herpolhode is

R(u̇× u). (60)

When studying the spheroconical coordinates (23) one finds the tangent vectors to

the coordinate lines

e1 =
∂u

∂α1
=

⎛
⎝ −cn(α2, k2)sn(α1, k1)dn(α1, k1)

dn(α2, k2)cn(α1, k1)dn(α1, k1)
−sn(α2, k2)k

2
1sn(α1, k1)cn(α1, k1)

⎞
⎠ (61)

and

e2 =
∂u

∂α2
=

⎛
⎝ −sn(α2, k2)dn(α2, k2)cn(α1, k1)

−k22sn(α2, k2)cn(α2, k2)sn(α1, k1)
cn(α2, k2)dn(α2, k2)dn(α1, k1)

⎞
⎠ . (62)

These vectors are perpendicular to vector u, and mutually perpendicular. The two

vectors are of the same magnitude. Hence one has

e1 × u = −e2. (63)

Note vectors u̇ and e1 differ by the constant factor α̇1, therefore vectors u̇×u and

−e2 are different by the same constant factor. Besides, because α2 is a constant



74 Eduardo Piña

Figure 4. The herpolhode without the term of constant angular velocity of

the rotation matrix.

coordinate, one makes the substitution of the constants (26) in the vector e2. One

deduces that the entries of the herpolhode Ω1 and Ω2 are

⎛
⎝Ω1

Ω2

0

⎞
⎠ = −α̇1Re2. (64)

Eliminating the common constant factor from the components of this vector one

ends with

R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(e1 − e0)(e2 − e3)

e2 − e0
cn(α1, k1)√

(e1 − e3)(e2 − e0)

e1 − e0
sn(α1, k1)

−

√
(e0 − e3)(e2 − e3)

e2 − e0
dn(α1, k1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (65)

We can trust to the computer about the drawing and computation of the herpolhode

until the rotation is with a constant angular velocity around the angular momen-

tum vector. In Fig. 4 one finds this curve and notes the few known properties of

the herpolhode. It is symmetric with respect to one of the coordinate axis. We

find the curve between two concentric circles. It is tangent to them at points on

the coordinate axis of symmetry. As time increases, the tangent vector to the her-

polhode rotates always in the same direction, until the value 2π is reached in a

complete period. Some discrepancy is apparent when comparing with pictures of

the herpolhode in the literature [5, p 119], but the explanation for to this discrep-

ancy lays in the fact that other authors do not suppress the action of the constant

angular velocity that we ignore. This is an useful addition to the existing work in

the literature.
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