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Abstract. In this paper we discuss the local algebras of linear vector fields that can

be used in the mathematical modelling of physical space by building the dynamical

flows of vector fields on eight-dimensional cylindrical or toroidal manifolds. It is

shown that the topological features of the vector fields obey the Dirac equation

when moving freely within the surface of a pseudo-sphere in the eight-dimensional

pseudo-Euclidean space.
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1. Introduction

The paper contains a collection of algebraic, geometric and dynamical facts con-

cerning linear vector fields on simple locally affine manifolds (Rn, cylinders, tori)

where the main ingredient is the algebra defined by these vector fields with the

product X � Y = ∇XY , where ∇ is the flat, torsionless connection of the locally

affine structure of the manifold.
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Definition 1. Let X be a vector field on a smooth manifold M , where (U, u) is a
local chart of M and {ui} are the local coordinates system associated with it. A
vector field X with its local representation

X = X i ∂

∂ui

is called linear relative to {ui} if its local components are of the form

Xi = Ci
ju

j

where Ci
j ∈ R.

Starting with the simplest two-dimensional case, we recall that if smooth vector

fields

A(x, y) = ax(x, y)∂x + ay(x, y)∂y, B(x, y) = bx(x, y)∂x + by(x, y)∂y (1)

together with a function f(x, y) are defined on the Cartesian plane (x, y) then the

gradient of the function f(x, y) is a differential one-form (a covector field)

∇f(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy (2)

a derivative of f(x, y) in the direction of the vector field A(x, y) is a function of

the convolution of the gradient ∇f(x, y) and the vector field A(x, y)

∇Af(x, y) = 〈A(x, y),∇f(x, y)〉 = ax
∂f(x, y)

∂x
+ ay

∂f(x, y)

∂y
· (3)

In turn, a derivative of the vector field B(x, y) along a vector field A(x, y) is a

vector field

∇AB = ∇Abx∂x +∇Aby∂y. (4)

Respectively, a derivative of the field A(x, y) in the direction of B(x, y) is a vector

field

∇BA = ∇Bax∂x +∇Bay∂y. (5)

Finally, the Lie bracket of two vector fields is a vector field

[A,B] = ∇AB −∇BA = (∇Abx −∇Bax)∂x + (∇Aby −∇Bay)∂y. (6)

Let all the vector fields considered hereafter be linear [7], i.e., their coordinate

functions are linear functions of the coordinates of the Cartesian plane. Then the

linear vector fields of the Cartesian plane, with the derivative of a vector field in

the direction of another vector field as product, form the algebra A∇, which is
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isomorphic to the matrix algebra M2(R) and is invariant under non-degenerate

linear transformations of the Cartesian plane coordinates. However, the linear tan-

gent vector fields (i.e., linear vector fields without a radial component, which are

collinear unit vector field x∂x + y∂y) with respect to the Lie bracket form an alge-

bra AT , which is isomorphic to the matrix algebra Lie sl2(R) and is invariant with

respect to arbitrary non-degenerate linear transformations of the coordinates of the

Cartesian plane.

As an illustration of these algebras we construct an algebra of linear vector fields

with the structure of the algebra of complex numbers. Take the vector fields

E = x∂x + y∂y, I = y∂x − x∂y (7)

for which the following relations hold

E2 = E � E = ∇EE = x∂x + y∂y = E (8)

E � I = I � E = ∇EI = ∇IE = y∂x − x∂y = I (9)

I2 = I � I = ∇II = −x∂x − y∂y = −E. (10)

Hence the vector field I is the generator of the algebra of linear vector fields (subal-

gebras A∇), which is isomorphic to the algebra of complex numbers: 〈(I, �)〉
R
∼=

C, and the Lie algebra of linear vector fields (subalgebras AT ), which is isomor-

phic to the corresponding unitary algebra 〈(I, [ , ])〉
R
∼= u(1).

The notion of an algebra A∇ of linear vector fields on the Cartesian plane can be

easily generalized to the case of the Cartesian space R
n. Indeed, if we take an

arbitrary linear vector field

A = a1∂x1 + · · ·+ an∂xn = ai∂xi (11)

where ai = ai1x
1 + · · ·+ ainx

n, and an arbitrary linear vector field

B = b1∂x1 + · · ·+ bn∂xn = bi∂xi (12)



4 Igor V. Bayak

where bi = bi1x
1 + · · · + binx

n, and define the operation of differentiation of a

vector field A in the direction of the vector field B

∇BA =
n∑

i=1

∇Ba
i∂xi =

n∑
i=1

bj
∂ai

∂xj
∂xi

=
n∑

i=1

(b11x
1 + · · ·+ b1nx

n)
∂(ai1x

1 + · · ·+ ainx
n)

∂x1
∂xi

+ · · ·+ (bn1x
1 + · · ·+ bnnx

n)
∂(ai1x

1 + · · ·+ ainx
n)

∂xn
∂xi (13)

=
n∑

i=1

[
(ai1b11 + · · ·+ ainbn1)x

1 + · · ·+ (ai1b1n + · · ·+ ainbnn)x
n
]
∂xi

=
n∑

i=1

cijx
j∂xi = ci∂xi = C

then, since C = (cij)n = (aij)n(bij)n = AB ∼= ∇BA = B � A, we find an

equivalence between the algebra of linear vector fields in Cartesian space R
n and

the matrix algebra Mn(R), which is the algebra of endomorphisms of a linear space

R
n. Note also that we consider below only subalgebras of linear vector fields.

2. Local Algebra of Vector Fields

Let an element of the local algebra of linear vector fields A∇(Tx′Mn) be defined

on the tangent bundle of the manifold Mn through the following formal expression

c(x′) =

n∑
i=1

cij(x
′)Δx′j∂x′i (14)

where (cij)n = C ∈ Mn(R), and Mn(R) — is the matrix algebra of endomor-

phisms of Rn, ∂x′i ∈ Tx′Mn, and Δx′j are the coordinates of an arbitrary point

in the tangent space Tx′Mn. Then, an element of the local algebra of linear vec-

tor fields on the tangent bundle of the space R
n is induced by the non-degenerate

map F : Rn �→ Mn : (x → x′) from A∇(Tx′Mn) to A∇(R
n). Indeed, since

∂xi ∈ TxR
n, Δx′j = Jji(x)Δxi, ∂x′i = J−1

ij (x)∂xj , where Jij(x) is the Jacobian

of the map F , then

c′(x) =
n∑

i=1

(J−1CJ)ij(x)Δxj∂xi (15)
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with c′(x) ∈ A∇(Tx′R
n). Conversely, if we already have a local algebra A∇(R

n)
such that

c′(x) =
n∑

i=1

c′ij(x)Δxj∂xi (16)

then, in virtue of C = JC ′J−1, this algebra is transferred to A∇(Tx′Mn) in the

form of the following expression

c(x′) =
n∑

i=1

(JC ′J−1)ij(x
′)Δx′j∂x′i. (17)

Besides, in the case of the algebra A being a subalgebra of the matrix algebra of

endomorphisms of Rn and for all x′ being fulfilled C(x′) ∈ A, some additional

conditions should be imposed on the elements of the local algebra A∇(Tx′Mn).
Indeed, if C(x′), C ′(x) ∈ A for all x′, x, then J ∈ GA where GA is the group

of invertible elements of the subalgebra A, since only J acts on the algebra A,

according to the formula of inner automorphisms of the group GA: C ′ = J−1CJ .

In this case we deal with a global algebra A∇(M
n) on the locally affine manifold

Mn.

For example, when the condition J ∈ GA is satisfied, and if we take a subalgebra

of linear vector fields A∇(R
2) with the structure of the algebra of complex num-

bers, then we obtain the Cauchy-Riemann conditions. In fact, if C ′(x) ∈ C, then

the following condition

J(x) =

(
∂x′

1

∂x1

∂x′

1

∂x2

∂x′

2

∂x1

∂x′

2

∂x2

)
∈ C\{0} (18)

has to be satisfied, which means that

∂x′1
∂x1

=
∂x′2
∂x2

,
∂x′1
∂x2

= −
∂x′2
∂x1

· (19)

Similarly, if we take a subalgebra of A∇(R
8) with the structure of the matrix alge-

bra M4(C), then by virtue of

J(x) =

⎛
⎝ ∂x′

2i−1

∂x2j−1

∂x′

2i−1

∂x2j

∂x′

2i

∂x2j−1

∂x′

2i

∂x2j

⎞
⎠

8

∈ M4(C)\{0} (20)

where i, j = 1, . . . , 4, we obtain the Cauchy-Riemann conditions

∂x′2i−1

∂x2j−1
=

∂x′2i
∂x2j

,
∂x′2i−1

∂x2j
= −

∂x′2i
∂x2j−1

· (21)
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Suppose now we have

x1 = ez cosϕ, x2 = ez sinϕ (22)

C ′(x) =

(
x1 −x2
x2 x1

)
∈ C. (23)

Then the map F : R2 �→ R× S1 : (x1, x2) → (z, ϕ) has the Jacobian

J(z, ϕ) = e−z

(
cosϕ sinϕ

− sinϕ cosϕ

)
∈ C\{0} (24)

and, therefore

C(z, ϕ) = JC ′(x)J−1 = ez
(

cosϕ sinϕ
− sinϕ cosϕ

)
∈ C. (25)

Thus, a complex plane regarded as a subalgebra of A∇(R
2) with the structure of C

and a complex cylinder regarded as a subalgebra of A∇(R×S1) with the structure

of C are equivalent to each other, with the correspondence between them being

equivalent to a complex-analytical map

z + iϕ → ezeiϕ :

(
z −ϕ

ϕ z

)
→ ez

(
cosϕ sinϕ

− sinϕ cosϕ

)
(26)

where z, ϕ ∈ R, in which the complexification of the covering of the cylinder is

mapped onto the complexification of the cylinder itself.

Now let a subalgebra of linear vector fields A∇(M
′8) be induced by the map F :

M8 �→ M ′8 : (zi, ϕi)4 → (z′i, ϕ
′
i)4) with the Jacobian J(z′, ϕ′). Then the Cauchy-

Riemann equations would be

∂z′i
∂zj

=
∂ϕ′

i

∂ϕj
,

∂z′i
∂ϕj

= −
∂ϕ′

i

∂zj
(27)

where i, j = 1, 2, 3, 4.

We can also note that, if C ′(x) belongs to the algebra of dual numbers

C ′(x) =

(
x1 x2
x2 x1

)
∈ D (28)

then, in order to satisfy the belonging condition C(x′) ∈ D, it is required that the

following hyperbolic Cauchy-Riemann equations hold

∂x′1
∂x1

=
∂x′2
∂x2

,
∂x′1
∂x2

=
∂x′2
∂x1

· (29)



Applications of the Local Algebras of Vector Fields to the Modelling of Physical... 7

Let us now consider an application of the local algebra of linear vector fields to the

case when this algebra is used to represent the Riemann zeta function. First of all,

we should note that the flow of the linear vector field on the Cartesian plane which

is represented by the matrix

C =

(
a −b

b a

)
(30)

has a spiral shape described by the following parametric equation:

x1(t) = eat+z0 cos(bt+ ϕ0), x2(t) = eat+z0 sin(bt+ ϕ0) (31)

with x1(0) = ez0 cosϕ0 and x2(0) = ez0 sinϕ0. On a cylinder, they have a helical

shape described as

z(t) = at+ z0, ϕ(t) = |bt+ ϕ0|2π (32)

with ż(t) = a, ϕ̇(t) = b. However, the mapping of a plane onto a torus F : R2 �→
S1 × S1 induces a complex analytic map

z + iϕ → |ez|2 e
iϕ = |ρ|2 e

iϕ (33)

where z, ϕ ∈ R, ρ ∈ R
+, |ρ|2 ∈ [0, 2[, |ρ|2 : ρ′ ≡ ρ (mod 2), or a complex

analytical map

z + iϕ → |ez|±1 e
iϕ = ρ̃ eiϕ (34)

where

ρ̃ = |ez|±1 =

{
|ez|2 if |ez|2 ∈ [0, 1]

|ez|2 − 2 if |ez|2 ∈]1, 2[.
(35)

The above sawtooth-shaped function can be represented by a Fourier series

|x|±1 =
2

π

∞∑
1

(−1)k+1

k
sin(kx). (36)

In this case, a helical trajectory on the cylinder

z(t) = at, ϕ(t) = |bt|2π (37)

is transformed into a spiral on the torus

ρ̃(t) = |eat|±1, ϕ(t) = |bt|2π (38)

whereas the sum

S(a, b) =
∞∑
1

1

n
|etn−atn |±1 e

ibtn =
∞∑
n=1

2

πn

∞∑
k=1

(−1)k+1

k
sin(kn1−a)nib (39)
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with tn = ln(n) represents the Riemann zeta function ζ(s). Indeed, since

S(s > 1) =
∞∑
1

1

ns
(40)

where s = a−ib, then we only have to prove the convergence of the sum S(s < 1).
This sum is convergent because of the fact that |S(s < 1)| is smaller than the sum

of a harmonic series because ∣∣∣∣ 1n |e(1−s)tn |±1

∣∣∣∣ < 1

n
(41)

is satisfied almost always.

Another example of using the local algebra of linear vector fields is the mathemat-

ical derivation of the equation of the vibrations of a cylindrical string.

Proposition 1. Let curvilinear coordinates on an infinite cylinder satisfy the Cauchy-
Riemann equations

∂z′

∂z
=

∂ϕ′

∂ϕ
,

∂z′

∂ϕ
= −

∂ϕ′

∂z
(42)

and let a function ψ(x, t) = z′(x, t) + ϕ′(x, t) be defined with

x = e−εz − eεϕ, t = e−εz + eεϕ (43)

in such a way that z′(x, t) ∼= 1 and ϕ′(x, t) ∼= i. That is, the function ψ(x, t) and
its partial derivatives are equivalent to an element 1 + i of the algebra of complex
numbers. Then the function ψ(x, t) = z ′(x, t) + ϕ′(x, t) satisfies the equation

eiα
∂2ψ

∂t2
+ ei(α+π)∂

2ψ

∂x2
= 0 (44)

where α = sinh 2ε.

Proof: Indeed, as the following identities hold

∂z′

∂z
= e−ε∂z

′

∂x
+ e−ε∂z

′

∂t
∂z′

∂ϕ
= eε

∂z′

∂t
− eε

∂z′

∂x
(45)

∂ϕ′

∂z
= e−ε∂ϕ

′

∂x
+ e−ε∂ϕ

′

∂t
∂ϕ′

∂ϕ
= eε

∂ϕ′

∂t
− eε

∂ϕ′

∂x
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then the following conditions

eε
∂z′

∂x
− e−ε∂ϕ

′

∂x
= eε

∂z′

∂t
+ e−ε∂ϕ

′

∂t

−e−ε∂z
′

∂t
+ eε

∂ϕ′

∂t
= e−ε∂z

′

∂x
+ eε

∂ϕ′

∂x

(46)

are satisfied. Then, after differentiating the first equation with respect to t, and the

second – with respect to x, we obtain a system of differential equations

eε
∂2z′

∂x∂t
− e−ε ∂

2ϕ′

∂x∂t
= eε

∂2z′

∂t2
+ e−ε∂

2ϕ′

∂t2

−e−ε ∂
2z′

∂t∂x
+ eε

∂2ϕ′

∂t∂x
= e−ε∂

2z′

∂x2
+ eε

∂2ϕ′

∂x2

(47)

which is equivalent to the system

c̄
∂2ψ

∂x∂t
= c

∂2ψ

∂t2
, −b̄

∂2ψ

∂t∂x
= b

∂2ψ

∂x2
(48)

where c = cosh ε+i sinh ε, b = sinh ε+i cosh ε. By multiplying the first equation

of the system (48) by c, the second equation by b, and then by adding the resulting

equations to each other we obtain the equation of oscillations of a cylindrical string

(44) if we take into account the fact that c2 = ei sinh 2ε, b2 = ei(sinh 2ε+π). �

Corollary 1. In the case of sinh 2ε = 2πk, where k ∈ Z, the equation of an
oscillating cylindrical string (44) has the form

∂2ψ

∂t2
−

∂2ψ

∂x2
= 0. (49)

3. The Geometry of the Algebra of Vector Fields

First of all, let us turn to the question of the representation of multidimensional

spaces that preserve quadratic forms. If only one quadratic form is preserved in a

n-dimensional linear space, this form takes the canonical form

x21 + · · ·+ x2k − x2k+1 − · · · − x2m (50)

where n−m = d, m−k = l. Then, following the approach of [6], we can represent

this space as a semi-Euclidean space with defect d and index l, which is denoted as
l+{d}

Rn. In the zero-defect case we are dealing with the Euclidean spaces of index

l. However, if we impose the condition of preserving several quadratic forms in
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the n-dimensional linear space, the representation becomes ambiguous. Firstly, we

have to distinguish the condition of simultaneous preservation of quadratic forms

and the condition of the preservation of these forms separately from each other.

For example, if, in a two-dimensional linear space, either the form x2
1 + x22 or the

form x21−x22 is preserved, then we consider our space as a system of two Euclidean

spaces {1R2,R2}. However, if a system of equations

x21 + x22 = const, x23 + x24 = const (51)

has to be satisfied in the four-dimensional linear space then we consider this space

as a joint system of two semi-Euclidean spaces {{2}R4,
{2}

R4}. Secondly, it should

be realized that a joint system of equations corresponds to the whole class of equiv-

alence. For example, the system (51) is equivalent to the system

x21 + x22 + x23 + x24 = const, x21 + x22 − x23 − x24 = const (52)

which corresponds to the representation of a joint system of Euclidean spaces

{2R4,R4} and, hence, the representations {2{2}R4} ∼= {2R4,R4} are equivalent.

Similarly, due to the equivalence of the system

x21 + x22 = const, x23 + x24 = const

x25 + x26 = const, x27 + x28 = const
(53)

and the system

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 = const

x21 + x22 − x23 − x24 + x25 + x26 − x27 − x28 = const

x21 + x22 + x23 + x24 − x25 − x26 − x27 − x28 = const

x21 + x22 − x23 − x24 − x25 − x26 + x27 + x28 = const

(54)

the representations {4{6}R8} ∼= {R8, 3
4
R8} are equivalent too.

Let us consider an algebra A∇(R2) of linear vector fields with the structure of the

algebra of complex numbers C. The geometric structure of this algebra is defined

by its generating vector fields, namely, by the radial and tangent vector fields

E = x∂x + y∂y, I = y∂x − x∂y. (55)

Since the vector field I is orthogonal to E in the metric of the Euclidean plane

(x, y) and, therefore, it is tangent to the circles x2 + y2 = const, then in this case

A∇(R2) — is the algebra of linear vector fields of the Euclidean plane R2.
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Similarly, the geometric structure of algebra A∇(
1
R2) of the linear vector fields

with the structure of the algebra of dual numbers D is determined by its generating

vector fields, namely, by the radial and tangent vector fields

E = x∂x + y∂y, J = y∂x + x∂y (56)

where the vector field J is orthogonal to E in the metric of the pseudo-Euclidean

plane (x, y), and, hence, it is tangent to an equilateral hyperbola x2− y2 = const.
Thus, in this case A∇(

1
R2) is the algebra of linear vector fields of the pseudo-

Euclidean plane 1
R2.

In turn, the geometric structure of the algebra A∇(R
2) of the linear vector fields

with the structure of the matrix algebra M2(R) is determined by its generating

vector fields, namely, by the radial and tangent vector fields

E = x∂x + y∂y, I = y∂x − x∂y

J = y∂x + x∂y, IJ = x∂x − y∂y
(57)

where the vector field IJ is orthogonal to E in the metric of the pseudo-Euclidean

plane (x + y, x − y), and, hence, it is tangent to an equilateral hyperbola xy =
const. Thus, in this case A∇(R

2) is the algebra of linear vector fields of a system

of planes {21R2,R2} ∼= R
2.

If referring to the Lie algebras AT , we should note that since a set of elements of

this algebra is obtained by excluding the radial component of E from the algebra

A∇, then the geometry of the Lie algebra AT is completely determined by the

geometry of the corresponding tangent vector fields. In particular, if we consider

the Lie algebra of the tangent vector fields of the algebra A∇(R4) with the structure

of the algebra of quaternions H, then we would find that these vector fields are

tangent to hyperspheres of the four-dimensional Euclidean space R4. Indeed, in

this case

AT (R4) = 〈iσ1, iσ2, iσ3〉R = su(2) (58)

where σj are the Pauli matrices, and iσj is the matrix representation of vector fields

iσ1 : x4∂x1 − x3∂x2 + x2∂x3 − x1∂x4

iσ2 : x3∂x1 + x4∂x2 − x1∂x3 − x2∂x4

iσ3 : x2∂x1 − x1∂x2 − x4∂x3 + x3∂x4

(59)

each of which is orthogonal to the radial vector field

σ0 : x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 (60)

in the metric of the Euclidean space R4. So, in this case A∇(R4) is the algebra of

linear vector fields in the Euclidean space R4.
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Similarly, if

AT ({3
{2}

R6}) =
〈
[iσj ]k

〉
R
= su(3) (61)

where [iσj ]k is the matrix representation of vector fields with zero components

∂x2k−1 and ∂x2k, namely

[iσ1]1 : x6∂x3 − x5∂x4 + x4∂x5 − x5∂x6

[iσ1]2 : x6∂x1 − x5∂x2 + x2∂x5 − x1∂x6

[iσ1]3 : x4∂x1 − x3∂x2 + x2∂x3 − x1∂x4

[iσ2]1 : x5∂x3 + x6∂x4 − x3∂x5 − x4∂x6

[iσ2]2 : x5∂x1 + x6∂x2 − x1∂x5 − x2∂x6

[iσ2]3 : x3∂x1 + x4∂x2 − x1∂x3 − x2∂x4

[iσ3]1 : x4∂x3 − x3∂x4 − x6∂x5 + x5∂x6

[iσ3]2 : x2∂x1 − x1∂x2 − x6∂x5 + x5∂x6

[iσ3]3 : x2∂x1 − x1∂x2 − x4∂x3 + x3∂x4

(62)

where

[iσ3]1 + [iσ3]3 = [iσ3]2 (63)

it is simple to verify that each of these vector fields is tangent to a hypersphere

of the space {2}
R6, i.e., of a six-dimensional semi-Euclidean space of defect two.

Thus, in this case A∇({3
{2}

R6}) is an algebra of linear vector fields of a system

of semi-Euclidean spaces {3{2}R6}.

In turn, if

AT ({2
{2}

R4}) = 〈(σj)3, (iσj)3〉R = sl2(C) (64)

then the vector fields represented by the matrix (iσj)3 are tangent to hypersphere

in the Euclidean space R4, and the vector fields represented by the matrix (σj)3,

are tangent to hyperspheres of the space 2
R4, i.e., the Euclidean spaces of index

2 which are, in other words, four-dimensional pseudo-Euclidean spaces with the

metric signature (2, 2). In this case A∇({2
{2}

R4}) is the algebra of linear vector

fields of a system of the Euclidean spaces {2R4,R4} or of an equivalent system of

the semi-Euclidean space {2{2}R4}.

Finally, let

AT ({4
{6}

R8}) =
〈
γ0, iγ0, γ[1,2,3], iγ[1,2,3], γ0γ[1,2,3], iγ0γ[1,2,3]

〉
R
= sl4(C) (65)

where γ[1,2,3] is a set of seven Dirac matrices (γ1, γ2, γ3, γ1γ2, γ1γ3, γ2γ3, γ1γ2γ3).
Then one can notice that a half of this algebra, namely the vector fields repre-

sented by the matrices
(
γ[1,2,3], iγ0, iγ0γ[1,2,3]

)
, is tangent to hyperspheres in the
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Euclidean space R8, while the other half of these vector fields, namely the vec-

tor fields represented by the matrices
(
iγ[1,2,3], γ0, γ0γ[1,2,3]

)
are tangent to hyper-

spheres in the Euclidean space 4
R8. Thus, the geometric structure which would be

interesting from the point of view of physical applications of the algebra of linear

vector fields A∇ with the structure of the matrix algebra M4(C) is closely related

to the geometry of the Euclidean spaces R8 and 4
R8. More precisely, in this case

A∇({4
{6}

R8}) is the algebra of linear vector fields of a system of the Euclidean

spaces {34R8,R8} or of an equivalent system of semi-Euclidean spaces {4{6}R8}.

Moreover, since

γ5 · γα + γα · γ5 = 0 (66)

where α = 0, 1, 2, 3, γ5 = iγ0γ1γ2γ3, then, in a four-dimensional vector space

〈γ5γ0, γ5γ1, γ5γ2, γ5γ3〉R = t∗γ5γ0 + x∗γ5γ1 + y∗γ5γ2 + z∗γ5γ3 (67)

a quadratic metric form

s∗2 = −t∗2 + x∗2 + y∗2 + z∗2 (68)

is induced by the square

(t∗γ5γ0 + x∗γ5γ1 + y∗γ5γ2 + z∗γ5γ3)
2 = (−t∗2 + x∗2 + y∗2 + z∗2)E (69)

where E is the identity matrix. At the same time, in a four-dimensional vector

space

〈γ0, γ1, γ2, γ3〉R = tγ0 + xγ1 + yγ2 + zγ3 (70)

a quadratic metric form

s2 = t2 − x2 − y2 − z2 (71)

is induced by the square

(tγ0 + xγ1 + yγ2 + zγ3)
2 = (t2 − x2 − y2 − z2)E. (72)

The sum of these two squares induces a doublet (a Finsler product) of the Minkowski

spaces with the metric form

S2 = t2 − x2 − y2 − z2 − t∗2 + x∗2 + y∗2 + z∗2. (73)

Then, if we pass to the dual representation

τ0 = γ0 + γ5γ0, τ1 = γ1 + γ5γ1

τ2 = γ2 + γ5γ2, τ3 = γ3 + γ5γ3
(74)

τ∗0 = γ0 − γ5γ0, τ∗1 = γ5γ1 − γ1

τ∗2 = γ5γ2 − γ2, τ∗3 = γ5γ3 − γ3
(75)
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then the sum of four squares induces a metric form of the hyperbolic type, namely

(Tτ0+T ∗τ∗0 )
2+(Xτ1+X∗τ∗1 )

2+(Y τ2+Y ∗τ∗2 )
2+(Zτ3+Z∗τ∗3 )

2 = TT ∗+XX∗

+ Y Y ∗ + ZZ∗ = t2 − x2 − y2 − z2 − t∗2 + x∗2 + y∗2 + z∗2. (76)

As an example of a space which does not allow building an algebra of linear vector

fields (due to the lack of tangent vector fields on the even-dimensional spheres),

we can consider the Euclidean space R3. Here we should note that the system of

the semi-Euclidean space {3{1}R3}, which corresponds to the system of equations

x21 + x22 = const, x22 + x23 = const, x21 + x23 = const (77)

already allows building an algebra of linear vector fields, its Lie algebra being

isomorphic to the algebra su(2).

4. The Dynamics of the Algebra of Vector Fields

As a simple example of the dynamic representation of linear vector fields, we shall

consider the local algebra of linear vector fields with the structure of the algebra

of complex numbers. Since, due to the Cauchy-Riemann equations, the coordinate

functions x′i(x) imply the harmonic condition

∂2x′i
∂x21

+
∂2x′i
∂x22

= 0 (78)

we can regard a potential u(x, y), which is defined on the plane (x, y) and which

satisfies the differential equation

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 (79)

as a dynamic representation of the local algebra of linear vector fields with the

structure of the algebra of complex numbers. Similarly, in virtue of the Cauchy-

Riemann equations, the local algebra of linear vector fields with the structure

of the matrix algebra M4(C) has a dynamic representation in the form of a po-

tential u(z, ϕ) on an eight-dimensional cylindrical manifold with the coordinates

(zi, ϕi)4, which satisfies the system of equations

∂2u(z, ϕ)

∂z2i
+

∂2u(z, ϕ)

∂ϕ2
i

= 0. (80)
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However, if we return to the original coordinates (xj)8, then, in these coordinates

the system would have a similar form

Δi =
∂2u(x)

∂x22i−1

+
∂2u(x)

∂x22i
= 0 (81)

or an equivalent form

Δ1 +Δ2 +Δ3 +Δ4 = 0

Δ1 −Δ2 +Δ3 −Δ4 = 0

Δ1 +Δ2 −Δ3 −Δ4 = 0

Δ1 −Δ2 −Δ3 +Δ4 = 0

(82)

which implies that the potential u(x) should satisfy the harmonic function condi-

tion in the Euclidean space and in pseudo-Euclidean spaces with the metric signa-

ture (4, 4). It should also be noted that we deal with the local (differential) condi-

tions for the potential, and there are no global (integral) conditions which would

be more interesting from the point of view of physics. However, let us try to guess

which might be the vacuum solution of the Laplace equations.

First of all, note that since the function f(x + iy) = ln ρ + iϕ, where i is the

generator of the algebra of complex numbers, ρ =
√
x2 + y2, ϕ = arctan

y

x
, is

analytic in the sense of satisfying the Cauchy-Riemann conditions, and since the

function f(x + jy) = ln ρ + jϕ, where j is the generator of the algebra of double

numbers, ρ =
√
x2 − y2, ϕ = ln

√
x+y
x−y

, is analytic in the sense of satisfying the

hyperbolic Cauchy-Riemann conditions, then the functions of ln ρ and ϕ are har-

monic either in the Euclidean metric or in the metric of a pseudo-Euclidean plane.

Furthermore, it should be noted that, if the Cartesian (linear) coordinates (x′, y′)

defined in the modified polar coordinates
(
ln

√
x2 − y2, ln

√
x+y
x−y

)
by using the

identities {(x′, 0), (0, y′)} = {(ln ρ, ϕ = 0)} are associated with the cylindrical

manifold
(
X = ln

√
x2 + y2, Y = arctan

y

x

)
by the relation

x′ + y′ = X, x′ − y′ = Y (83)

then, we can speak about two coordinate systems of the same cylindrical manifold

R× S1, homeomorphic to a punctured plane.
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Thus, since the functions

X =
1

2
ln(x21 + x22), ϕX = X∗ = arctan

x2

x1

Y =
1

2
ln(x23 + x24), ϕY = Y ∗ = arctan

x4

x3
(84)

Z =
1

2
ln(x25 + x26), ϕZ = Z∗ = arctan

x6

x5

T =
1

2
ln(x27 + x28), ϕT = T ∗ = arctan

x8

x7

satisfy the Cauchy-Riemann equations, each of these functions satisfies the system

of Laplace equations, whereas the values of these functions are equal to the cor-

responding coordinates of the linear subspace 〈τ0, τ1, τ2, τ3, τ
∗
0 , τ

∗
1 , τ

∗
2 , τ

∗
3 〉R of the

algebra M4(C) which induces a quadratic metric form

S2 = t2 − x2 − y2 − z2 − t∗2 + x∗2 + y∗2 + z∗2 (85)

of the space 4
R8 that contains a pair of Minkowski spaces, namely, 3

R4 and 1
R4.

Thus, by using the following substitution of variables

T = t+ t∗, T ∗ = t− t∗

X = x∗ + x, X∗ = x∗ − x

Y = y∗ + y, Y ∗ = y∗ − y

Z = z∗ + z, Z∗ = z∗ − z

(86)

we can reduce this quadratic to the hyperbolic form

S2 = TT ∗ +XX∗ + Y Y ∗ + ZZ∗ (87)

where the coordinates of the (X,X∗, Y, Y ∗, Z, Z∗, T, T ∗) are isotropic coordi-

nates of the space 4
R8, and the scalar product associated with this hyperbolic form,

is as follows

2ab = aT bT ∗ + aT ∗bT + aXbX∗ + aX∗bX

+ aY bY ∗ + aY ∗bY + aZbZ∗ + aZ∗bZ . (88)

A pair of isotropic coordinates of the pseudo-Euclidean plane is the simplest sys-

tem of coordinates of a corresponding cylinder R×S1 or of a torus S1×S1, which

are obtained by compactifying the plane as a result of the compactification of, re-

spectively, one or two isotropic coordinates. However, the full compactification

(the compactification of two isotropic coordinates) of all pseudo-Euclidean planes
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of the space 1
R4 turns this space into a toroidal manifold S3×S1. Indeed, since the

space of 1
R4 is given by the set of pseudo-Euclidean planes, such as 1

R4 (where

the prime index of the coordinate x′∗ is the index of a set of centre-symmetric lines

of the Euclidean space (x∗, y∗, z∗), i.e., this index runs over the projective plane

RP
2), then we obtain a topological equivalence 1

R4
∼= RP

2 × 1
R2, whereas the

compactified space 1
R4 is homeomorphic to RP

2 × S1 × S1 ∼= S3 × S1. Note

here that, as a result of the compactification of the space 1
R4, this space turns

into a cone isotropic two adjoining spheres S3. Similarly, one can compactify the

Minkowski space (t, x, y, z). In turn, as 4
R8

∼= RP
3 × RP

3 ×1
R2, the result

of the compactifications of two Minkowski spaces will be the product of spheres

RP
3×RP

3×S1×S1 ∼= S4×S4, while the isotropic cone of the Euclidean space
4
R8 will be compactified to two contiguous spaces RP3 × RP

3 × S1.

From the point of view of mathematical modelling of physical phenomena, space
4
R8 is of particular interest. Indeed, suppose that in this space we have a dynamic

flow of a continuous medium with the vector field v of the test particle velocities

being divergence-free everywhere. However, this vector field v may have some

topological singularities were the flow lines of the vector field compactify on the

corresponding toroidal manifold (in the simplest case, to a circle), which happens

when v2 = 0. In addition, let the path integral

S =

∫
L

v∗dl (89)

of the scalar product between the co-vectorial velocity field v∗ of test particles

and the differential path element dl along the path of a topological singularity

moving across the vector field in 4
R8 (not taking into account the vector fields of

the topological singularity itself) be a measure of the amount of the proper rotation

of this topological singularity, the rotation being caused by the action of the flow.

Then this curvilinear integral can be associated with the action along a world line of

a material point moving in the Minkowski space 3
R4, this world line being obtained

by orthogonal projection of the trajectory from 4
R8 to 3

R4. On the other hand, if

the Minkowski subspace 3
R4 of 4

R8 is not defined globally (by a single basis), but

it is defined only locally (by the reference bundle of a four-dimensional manifold),

then we can define the covariant derivative of a vector field tangent to the path

specified in 4
R8 along the world lines of the corresponding global manifold as the

orthogonal projection of the derivative of this field on a given manifold.

In addition, let the covector velocity field of the particle flow be a potential, i.e.,

v∗ = ∇u. Then, demanding the implementation of the following variational equa-

tion

δ

∫
∇2ud8x = 0 (90)
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that provides the uniformity of the flow, we obtain a necessary condition in the

form of the differential equation

∂2u

∂t2
−

∂2u

∂x2
−

∂2u

∂y2
−

∂2u

∂z2
=

∂2u

∂t∗2
−

∂2u

∂x∗2
−

∂2u

∂y∗2
−

∂2u

∂z∗2
· (91)

We should keep in mind that each pair of coordinates (t, t∗), (x, x∗), (y, y∗), (z, z∗)
corresponds to a coordinate system of a cylindrical or toroidal manifold and, there-

fore, equation (91) should be accompanied by the condition of periodicity of the

gradient of the potential ∇u(T,X, Y, Z, T ∗, X∗, Y ∗, Z∗) along the isotropic coor-

dinates with the asterisks or along all the isotropic coordinates. We note here that,

in isotropic coordinates, equation (91) takes the form

∇2u

∂T∂T ∗
+

∇2u

∂X∂X∗
+

∇2u

∂Y ∂Y ∗
+

∇2u

∂Z∂Z∗
= 0. (92)

In turn, a stronger requirement of stability (equilibrium) of the flow, which is equiv-

alent to the local extremality of the curvilinear integral along an arbitrary path

δS = δ

∫
L

∇udl = 0 (93)

yields us the necessary condition, which consists of the fact that the level surfaces

of the potential function u(x) is minimal in the space 4
R8. That is, the mean cur-

vature of these surfaces must be vanishing. In other words, the variational equation

(93) has a solution given by the differential equation

d � n(x) = 0 (94)

where n(x) =
∇u(x)

|∇u(x)|
, and the star denotes the Hodge operator. However, if we

are interested in the dynamical characteristics of the vector field, we should refer to

the same variational equation (93), provided the condition that what is varied here

is the trajectory of a topological singularity moving in 4
R8, whereas the gradient

of the potential plays the role of an external field.

Let us now consider the classical limit of a particular trajectory L, such that the

coordinates of the trajectory satisfy the system of equations

t− t∗ = 0, x∗ − x = 0, y∗ − y = 0, z∗ − z = 0 (95)

which implies that L reduce to a path S in the space 3
R4 and the mirror path S∗

in the space 1
R4. In this case, the equation (93) is reduced to the equation in the

classical limit

δ

⎡
⎣m∫

S

pr3R4
∇uds+ q

∫
S∗

pr1R4
∇uds∗

⎤
⎦ = 0 (96)
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where m, q are the characteristics of the topological singularity (particle), and the

fields pr3R4
∇u, pr1R4

∇u — are the orthogonal projections of the gradient of

the potential in the corresponding Minkowski space. We now construct a pseudo-

Riemannian manifold (t′, x′, y′, z′), such that t′ = t′∗, x′ = x′∗, y′ = y′∗, z′ = z′∗,

the metric is gij(x) = (∇xi(x),∇x′j(x)) (where x ∈ 4
R8, x1, . . . , x4 = t, x, y, z)

which is induced by an inner product of the space 4
R8; and the length of the

coordinate increments in the tangent (locally pseudo-Euclidean) space (Δt′,Δx′,

Δy′,Δz′) of the pseudo-Riemannian manifold is calculated by the formula

|Δx′i| = ∇x′i(x) ·Δx

=
∂x′i(x)
∂x1

Δx1 −
∂x′i(x)
∂x2

Δx2 −
∂x′i(x)
∂x3

Δx3 −
∂x′i(x)
∂x4

Δx4

−
∂x′i(x)
∂x∗1

Δx∗1 +
∂x′i(x)
∂x∗2

Δx∗2 +
∂x′i(x)
∂x∗3

Δx∗3 +
∂x′i(x)
∂x∗4

Δx∗4 (97)

=

(
∂x′i(x)
∂x1

−
∂x′i(x)
∂x∗1

)
Δx1 −

(
∂x′i(x)
∂x2

−
∂x′i(x)
∂x∗2

)
Δx2

−

(
∂x′i(x)
∂x3

−
∂x′i(x)
∂x∗3

)
Δx3 −

(
∂x′i(x)
∂x4

−
∂x′i(x)
∂x∗4

)
Δx4.

However, since it is assumed that t′ = u, the scalar product of ∇udl taken from

the integrand of the equation (93) is equal to |Δt′| and, therefore, the integral in

equation (93) is equal to the length of the world line of the topological singularity

in a pseudo-Riemannian four-manifold (t′, x′, y′, z′), i.e., it is equal to proper time

of this topological singularity.

Thus, the potential function

u0(x1, . . . , x8) = tϕ =
eϕ

2
(T +X +Y +Z)+

e−ϕ

2
(T ∗ +X∗ +Y ∗ +Z∗) (98)

is proposed to be used as a vacuum potential without taking into account the local

(field) changes of the shape of this potential, whereas the parameter ϕ is proposed

to be regarded as responsible for the global (evolutionary) changes of the vacuum

potential shape. Note also that formally the vacuum potential can be represented

by a complex analytic function

ū0(x1, . . . , x8) =
eϕ

2
(T +X + Y + Z) + i

e−ϕ

2
(T ∗ +X∗ + Y ∗ + Z∗). (99)

In this case, we simply assume that

u0(x1, . . . , x8) = Re ū0(x1, . . . , x8) + Im ū0(x1, . . . , x8).
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However, if, in addition to linear harmonic functions, we are to consider the har-

monic functions generated by a linear combination of the real and imaginary com-

ponents of the rational complex linear functions, these can be regarded as particle-

like solutions of a system of Laplace equations. For example, the function

ū(x1, . . . , x8) = ū0 +
1

ρ+ iρ∗
(100)

wherein ρ =
√
x2 + y2 + z2, ρ∗ =

√
x∗2 + y∗2 + z∗2, with the proviso that

x = T −X + Y − Z, x∗ = T ∗ −X∗ + Y ∗ − Z∗

y = T +X − Y − Z, y∗ = T ∗ +X∗ − Y ∗ − Z∗

z = T −X − Y + Z, z∗ = T ∗ −X∗ − Y ∗ + Z∗

(101)

can be considered a complex extension of the Newtonian potential of a material

point.

On the other hand, let the radius of the sphere be

ρ =
√

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28

the radius of a pseudo-sphere being

R =
√
x21 + x22 + x23 + x24 − x25 − x26 − x27 − x28

and hyperbolic angle being ϕ = ln
ρ

R
. These define a complex potential function

ū(x1, . . . , x8) = lnR+ iϕ. (102)

Then, we can see this as an evolving vacuum potential of the Universe, where

the evolution parameter τ coincides with the hyperbolic angle ϕ. And, since it is

implicitly assumed that radius ρ of the sphere is a constant which is independent

on the evolution parameter τ , then

τ = ln
1

R
· (103)

We note here that the level surface of the potential function u(x) = lnR is home-

omorphic to the product S3 × R
4.

In conclusion, it should be noted that all these analogies with the physical world

require further study, including also the possibility of expanding the space of par-

tial solutions of our system of the Laplace equations. It is also necessary to pay

attention to the following transformation of a complex vector

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ξx + iξt∗

ξy + iξz
ξx∗ + iξt
ξy∗ + iξz∗

⎞
⎟⎟⎠ (104)
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where

(ψ∗γ0, ψ) = ξ2 = ξ2t − ξ2x − ξ2y − ξ2z − ξ2t∗ + ξ2x∗ + ξ2y∗ + ξ2z∗ = 1,−1, 0 (105)

which induces an isometric transformations of a real linear space 4
R8. As for the

Lorentz transformations of the Minkowski space (t, x, y, z), we have to note that

these transformations have a bispinor representation realized in the form of the

algebra of vector fields tangent to the space 4
R8 (which is equivalent to the algebra

of tangent vector fields of {2R4,R4} isomorphic to sl2(C)). The rotation of the

Euclidean space (x, y, z) is reduced to a spinor representation implemented in the

algebra of vector fields tangent to the space R4, the latter being isomorphic to

su(2). Thereby, the bispinor ψ has the meaning of complexified directional vector

of the congruence of straight parallel trajectories of topological singularities and, in

combination with the rotation angle (phase action) of the topological singularities,

this makes it possible to construct a bispinor wave function of the congruence of

the topological singularity trajectories Ψ = ψeiS , where S is the action of the

topological singularities depending on its trajectory. Moreover, if we regard the

vector ξ as a vector-valued functions ξ(t, x, y, z) with its domain in the Minkowski

space, which delivers an extremum of the functional∫
ξ(x) · ∇ξ(x)d4x (106)

and, hence, it is a solution of the variational equation

δ

∫
ξ ·

(
∂tξ

t + ∂xξ
x + ∂yξ

y + ∂zξ
z
)
d4x = 0 (107)

where ξt, ξx, ξy, ξz are the values of the corresponding tangent vector fields of the

space 4
R8 at the point ξ, namely ξt = γ0ξ, ξx = γ1ξ, ξy = γ2ξ, ξz = γ3ξ, with

γ0, γ1, γ2, γ3 being the real Dirac gamma matrices, then a complex vector function

ψ(t, x, y, z) satisfies the Dirac equation.

On the other hand, since the topological singularities are compact geometrical ob-

jects (circles, eight-shaped twisted circles, tori, etc.) lying on the compactified

isotropic cone of the Euclidean space 4
R8, then it makes sense to explore the sym-

metries of these compact geometrical objects from the point of view of their cor-

respondence to the global gauge symmetries of the Standard Model of particle

physics. We note here that an arbitrary circle is associated with an arbitrary com-

plex number of unit length, a two-dimensional torus (the product of two circles)

can be associated with a pair of unit complex numbers, a three-dimensional torus

can be associated with a triplet of unit complex numbers, and so on. The proper

rotation of a unit circle z = eiϕ can be presented as an action of the group U(1).
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However, if the rotation of a pair of unit circles
(
z1 = eiϕ1 , z2 = eiϕ2

)
is repre-

senting the action of the orthogonal group SOR(2), then an arbitrary composition

of rotations of these circle pairs, together with their proper rotations, represented

by the action of unimodular diagonal matrices, all the matrix elements of which

have modulus one, i.e., diag
[
eiα1 , eiα2

]
, given the condition α1 + α2 = 2πk, be-

longs to the unitary transformation group SU(2). At the same time, an arbitrary

composition of the rotations of three unit circles
(
z1 = eiϕ1 , z2 = eiϕ2 , z3 = eiϕ3

)
,

represented by the action of SOR(3), and their proper rotations represented by the

action of diag
[
eiα1 , eiα2 , eiα3

]
, where α1 + α2 + α3 = 2πk, belongs to the group

of unitary transformations SU(3). Thus, given the identity

n2 − 1 =
(n− 1)n

2
+ (n− 1) +

(n− 1)n

2
(108)

meaning the equality of the dimensions of the groups SU(n) and of the group

formed of the products of the group SU(n), where the first and the third ele-

ments belong to the group SOR(n), and the second element belongs to the group

diag
[
eiα1 , . . . , eiαn

]
, given the condition α1 + · · ·+αn = 2πk, one can conclude

that all these rotation of a circle, of a two-torus and of a three-torus form a group

U(1)× SU(2)× SU(3), which coincides with the group of unbroken symmetries

model, which describes both the strong, weak and electromagnetic interactions.

Thus, the group of the unbroken symmetries describes the symmetries of the cir-

cle, two-torus and three-torus lying on the compactified isotropic cone of the space
1
R4, that is, on the two touching spheres S3.

In general, it should be understood that the isotropic coordinates (T,X, Y, Z) of

the Minkowski space (t, x, y, z), as well as the isotropic coordinates (T ∗, X∗,

Y ∗, Z∗) of the space (t∗, x∗, y∗, z∗), where

t = T +X + Y + Z, x∗ = T ∗ +X∗ + Y ∗ + Z∗

x = T −X + Y − Z, x∗ = T ∗ −X∗ + Y ∗ − Z∗

y = T +X − Y − Z, y∗ = T ∗ +X∗ − Y ∗ − Z∗

z = T −X − Y + Z, z∗ = T ∗ −X∗ − Y ∗ + Z∗

(109)

are compactified. But this compactification happen as a result of the evolution of

the vacuum potential (due to the presence in it of the multipliers eϕ and e−ϕ), the

diameter of one of the compactified isotropic cones being increasing, whereas the

diameter of the other decreasing. At the same time, the vacuum potential is trans-

formed not only globally, resulting in the formation and evolution of its globally

minimal level surfaces, but also locally, either as a result of the formation and mo-

tion of its locally minimal level surfaces without topological singularities (fields),

or as a result of the formation and motion of its local minimal level surfaces with
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singularities / topological singularities (particles), or as a result of random fluctua-

tions in the dynamic flow of a continuous medium.
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