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Abstract. The governing equation of the Helfrich spontaneous-curvature model is

the Helfrich equation. It is a coordinate free equation that describes the equilibrium

shapes of biological (fluid) membranes. We make use of the conformal metric rep-

resentation of the Helfrich equation and by applying the symmetry group reduction

method we obtain a translationally invariant solution. Based on that solution, we

derive analytic expressions for the position vector of special cylindrical equilibrium

shapes. Plots of the graphs of some closed directrices of these shapes are presented.

1. Introduction

Biomembranes (membranes of living cells), or fluid membranes as they are gen-

erally called, consist of lipid compounds, mostly phospholipid molecules, hav-

ing two parts – one or two hydrocarbon tails (the hydrophobic part) and a polar

head group (the hydrophilic part). Placed in aqueous solution the phospholipid

molecules spontaneously assemble to form closed lipid bilayer structure: two lay-

ers of molecules locating their hydrophilic heads to point outward in order to pre-

vent the hydrophobic tails from direct contact with the water molecules. The lipid

bilayers are the typical constituents of the semipermeable membranes of all the liv-

ing cells (plant and animal) playing a dominant role for determining cell’s shape.

The modern biomechanical models of the fluid membranes [2, 5, 20] dates back to

the works of Canham [3] and Helfrich [7] in the early 70s of the previous century.

Their basic concept, first suggested by Canham, is to think of the membrane as of

a two-dimensional fluid in which the lipid molecules are moving freely in a way

that no in-plane displacements can be developed, except bending. It follows from

this idea that the shape of the living cells is controlled exclusively by the bending

energy associated with the curvature elasticity of the lipid bilayer.

In the so-called Helfrich spontaneous-curvature model [7], the fluid membrane is

described as a two-dimensional elastic surface S , obtained as a solution of the
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Helfrich equation

ΔSH + 2(H2 + IhH −K)(H − Ih)− 2λH

k
+

p

k
= 0 (1)

where H and K are, respectively, the mean and the Gaussian curvatures of S ,

and ΔS is the Laplace-Beltrami operator on S . The Helfrich equation (1) is an

equilibrium condition for attaining the minimum of the free elastic energy of the

membrane

F = k

∫
S
(H − Ih)2dS + k̄

∫
S

KdS (2)

where the curvature energy (energy contribution due to the curvatures H and K) is

taken into account through the two elastic moduli of the membrane – the bending

rigidity k and the Gaussian rigidity k̄. The additional curvature parameter Ih, the

so called spontaneous curvature, is introduced to reflect the asymmetry between

the membrane and its environment. According to the stalk model, this parameter

participates also in the description of the fusion of two planar membranes [6] .

The pressure difference (osmotic pressure) p and the tensile stress λ are related,

respectively, to the constraints of fixed volume and area of the membrane.

We are interested in immersed surfaces in the Euclidean space that satisfy the Hel-

frich equation (1). The necessary and sufficient condition for the immersed surface

to exist is that the coefficients of its first and second fundamental form satisfy the

so called Gauss-Codazzi-Mainardi integrability equations [15]. For this reason,

when looking for the equilibrium surfaces of the Helfrich model, equation (1) has

to be solved together with the Gauss-Codazzi-Mainardi equations. The number of

equations and the order of the derivatives being involved depend on the coordinates

that have been specified. In our work, we introduce the conformal metric on S

ds2 = 4q2ϕ2(dx2 + dy2) (3)

and the matrix of the second fundamental form

b =

(
θ ω
ω 8q2ϕ(1 + Ihϕ)− θ

)
(4)

so that the Helfrich equation (1) is replaced by a system of four second order partial

differential equations [9, 10, 18] (hereinafter referred to as the Helfrich system)
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q2(ϕxx + ϕyy) + 2qϕ(qxx + qyy)

−2ϕ(q2x + q2y) + q4(8ϕ+ α2ϕ
2 + α3ϕ

3 + α4ϕ
4) = 0

θy − ωx − (8 +
α2

3
ϕ)q(ϕqy + qϕy) = 0

(5)
ωy + θx − α2

3
qϕ(ϕqx + qϕx)− 8qϕqx = 0

4q2ϕ(ϕxx + ϕyy) + 4qϕ2(qxx + qyy)

−4ϕ2(q2x + q2y)− 4q2(ϕ2
x + ϕ2

y)− ω2 − θ2 + (8 +
α2

3
ϕ)q2ϕθ = 0

where q = q(x, y), ϕ = ϕ(x, y), θ = θ(x, y) and ω = ω(x, y) are unknown

functions of the conformal coordinates (x, y), and ϕx = ∂ϕ/∂x, etc. The newly

defined phenomenological constants are α2 = 24Ih, α3 = 8(2Ih2 − λ/k), α4 =
4p/k − 8λIh/k. In comparison with the fourth order nonlinear partial differential

equation in the Mongé representation of the Helfrich equation (see e.g. [21]), the

system of differential equations (5) is a simpler version of the Helfrich model.

In the conformal metric coordinates, defined by (3) and (4), the mean H and the

Gaussian K curvatures take the form

H =
1

ϕ
+ Ih (6)

K =
1

4q4ϕ4

(
ϕ2(q2x + q2y) + q2(ϕ2

x + ϕ2
y)

−qϕ2(qxx + qyy)− q2ϕ(ϕxx + ϕyy)
)
. (7)

The latter is obtained by using the Brioschi formula

K = −Δ log(2qϕ)

by making use of the respective Laplace-Beltrami operator

Δ =
1

4q2ϕ2

(
∂2

∂x2
+

∂2

∂y2

)
.

In this setting, the functional (2) reads

F = 4k

∫ ∫
q2dxdy + k̄

∫ ∫
8q2ϕθ(1 + Ihϕ)− θ2 − ω2

4q2ϕ2
dxdy
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and this is an obvious manifestation of the fact that the squared function q plays the

role of a free elastic energy density due to the mean curvature H of the membrane

(cf [9, 10]).

The main goal of this paper is to apply a Lie symmetry reduction method for find-

ing cylindrical equilibrium shapes of the Helfrich model. To this end we look for

solutions of the Helfrich system with the corresponding lipid configurations having

zero Gaussian curvature K = 0. By creating and solving of the so called deter-
mining system of equations [14] we obtain the Lie symmetry algebra (respectively

the Lie symmetry group) of the Helfrich system. It is shown in [10] that all the

one-dimensional Lie subalgebras, of the general Lie symmetry algebra of the Hel-

frich system are equivalent to each other under the group of inner automorphisms.

Based on this knowledge, in the next Section 2, we apply a symmetry group re-

duction technique [14] to obtain a group-invariant solution. In Section 4, a class of

cylindrical shapes of fluid membranes are explicitly determined and some plots of

closed graphs of the directrices of the obtained surfaces are presented. The solution

and the directrices are expressed by the Weierstrassian functions.

2. Group-Invariant Solution

A group-invariant solution of a given system of partial differential equations is a

solution invariant under the group action of the symmetry group of the system.

The group-invariant solutions are found by solving the so called reduced system of

differential equations [14]. It is of great practical importance that in comparison

with the original system the reduced system of equations has fewer independent

variables. Particularly, if the number of the group parameters is one less the number

of the independent variables, then the initially given system of partial differential

equations is reduced to a much simpler system of ordinary differential equations.

The determining system is a system of partial differential equations that is used for

finding the coefficient functions ξi(�x, �u) and ηα(�x, �u) of the Lie group generator X
of the Lie group of symmetries (Lie symmetry group) of the considered system of

differential equations [14]. In the case of the Helfrich system (5) the one-parameter

Lie group of symmetry transformations has the form

x̃i = Φi(�x, �u, ε), Φi|ε=0 = xi, i = 1, 2

ũα = Ψα(�x, �u, ε), Ψα|ε=0 = uα, α = 1, 2, 3, 4
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and the Lie group generator is given by

X =
2∑

i=1

ξi(�x, �u)
∂

∂xi
+

4∑
α=1

ηα(�x, �u)
∂

∂uα

where ε (ε ∈ I ⊂ R, 0 ∈ I) is the group parameter and the vectors �x = (x1, x2)
and �u = (u1, u2, u3, u4) denote the independent and the dependent variables,

respectively: x1 = x, x2 = y, u1 = q, u2 = ϕ, u3 = θ, u4 = ω. The functions

Φi(�x, �u, ε) and Ψα(�x, �u, ε) are found by solving the Lie equations [14]

dΦi

dε
= ξi(�Φ, �Ψ), Φi|ε=0 = xi, i = 1, 2

dΨα

dε
= ηα(�Φ, �Ψ), Ψα|ε=0 = uα, α = 1, 2, 3, 4.

The coordinates of the vectors �Φ and �Ψ are Φi and Ψα, respectively. The set of

all Lie group generators constitute a Lie algebra – the Lie symmetry algebra of the

Lie symmetry group.

In order to find the Lie symmetry algebra one has to solve the determining system
of equations. For most of the important physical applications the determining sys-

tem consists of hundreds of equations. Creating and solving of such a large sys-

tem of differential equations, though algorithmically straightforward, may cause

serious technical difficulties. In order to cope with the great number of tedious

calculations, we take advantage of the specially developed Mathematica package

LieSymm-PDE [19]. By applying the LieSymm-PDE package to the considered

Helfrich system (5), we obtained a determining system of 206 first and second

order partial differential equations. All these equations have the general form∑
k

μk(u
1)j(u2)l(u3)m(u4)nfk(�x, �u) = 0, j, l,m, n = 0, 1, . . . , 7

where μk are real constants and fk(�x, �u) are either one of the functions ξi(�x, �u),
ηα(�x, �u) or their first or second order derivatives. Thirty five equations are with

more than 10 addends (expressions of the above form), six are with more than

20 addends. The largest are two equations with 43 and 44 addends. Many of

these equations are equivalent to each other or are functionally dependent, which

means that the determining system is overdetermined. Nevertheless, manipulation

of so many equations without making errors is quite boring and time consuming.

With the aid of the LieSymm-PDE facilities for solving determining systems we

managed to do all the symbolic calculations automatically, eluding the tedious
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substitutions, transformations and other technicalities, which otherwise we should

had made by hand.

We started up the solving process by invoking the LieSymm-PDE iterative func-

tion for solving some predetermined types of equations with known solutions. If

LieSymm-PDE identifies such an equation, its solution is substituted for the respec-

tive variable in the remainder part of the equations. In this way the determining

system of the Helfrich model has been reduced to 29 partial differential equations

for six unknown functions of the form

ξ1 = h(x, y), η1 = v(x, y, q, ϕ), η3 = g(x, y, q, ϕ, θ, ω)

ξ2 = r(x, y), η2 = w(x, y, q, ϕ), η4 = ρ(x, y, q, ϕ, θ, ω)

where h(x, y) and r(x, y) satisfy the Cauchy-Riemann conditions

∂h

∂y
= −∂r

∂x
,

∂h

∂x
=

∂r

∂y
· (8)

We proceeded with applying the LieSymm-PDE package in an interactive mode

feeding back the program with the solutions we had found. After seven interactive

cycles two of the coefficient functions changed their form to

η1 = qσ(x, y), η2 = −Cϕ

(C ∈ R) and the determining system reduced to the 10 equations below

qϕ(24 + α2ϕ)ρθ + 3ρq = 0

24q2rx + α2q
2ϕρθ + 3ρϕ = 0

q2ϕ(24 + α2ϕ)σx − 3gx − 3ρy = 0

q2ϕ(24 + α2ϕ)σy − 3gy + 3ρx = 0

24q2rx − q2(24 + α2ϕ)ρθ − 3ρϕ = 0

3gϕ + α2q
2ϕρω − 2α2q

2ϕσ + 2α2Cq2ϕ = 0

3gϕ + q2(24 + α2ϕ)ρω − 2q2(24 + α2ϕ)σ + 2Cq2(12 + α2ϕ) = 0

3gq + qϕ(24 + α2ϕ)ρω − 2qϕ(24 + α2ϕ)σ + 2Cqϕ(12 + α2ϕ) = 0

2σxx + 2σyy + 2q2(8 + α2ϕ+ α3ϕ
2 + α4ϕ

3)ry

+ 2q2(8 + α2ϕ+ α3ϕ
2 + α4ϕ

3)σ − Cq2ϕ(α2 + 2α3ϕ+ 3α4ϕ
2) = 0

2(α2q
2ϕ2θ − 6α2q

4ϕ3 − 6α3q
4ϕ4 − 6α4q

4ϕ5 − 48q4ϕ2

+ 24q2ϕθ − 3θ2 − 3ω2)ry + (α2q
2ϕ2 + 24q2ϕ− 6θ)g − 6ωρ

− 6(2α2q
4ϕ3 + 2α3q

4ϕ4 + 2α4q
4ϕ5 + 16q4ϕ2 − θ2 − ω2)σ

+ 6Cq4ϕ3(α2 + 2α3ϕ+ 3α4ϕ
2) + 6C(4q2ϕθ − θ2 − ω2) = 0.
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Continuing in the same manner of solving we have obtained the solution of the

determining system, arriving at the Lie symmetry algebra of the Helfrich system

for the two distinguished cases (compare with [10])

Case 1. |α2|+ |α3|+ |α4| �= 0

XI(ξ1, ξ2) = ξ1∂x + ξ2∂y − qξ1x∂q − 2(θξ1x + ωξ2x)∂θ

− 2

(
ωξ1x −

(
θ − 4q2ϕ− α2q

2ϕ2

6

)
ξ2x

)
∂ω

Case 2. α2 = α3 = α4 = 0

XII(ξ1, ξ2) = X1(ξ
1, ξ2) + cX2, c ∈ R

X1(ξ
1, ξ2) = ξ1∂x + ξ2∂y − qξ1x∂q

−2(θξ1x + ωξ2x)∂θ − 2
(
ωξ1x −

(
θ − 4q2ϕ

)
ξ2x
)
∂ω

X2 = ϕ∂ϕ + θ∂θ + ω∂ω

where ξ1 = h(x, y), ξ2 = r(x, y) are arbitrary real-valued harmonic functions

satisfying the Cauchy-Riemann conditions (8) and ∂x ≡ ∂/∂x, etc.

The full sets of group generators XI(ξ1, ξ2) and XII(ξ1, ξ2) constitute two sym-

metry Lie algebra LI and LII for each one of the considered cases. The Lie algebras

LI and LII are infinite dimensional with the commutator operator defined by

[X(ξ1, ξ2), X(ξ̂1, ξ̂2)] = X(Ξ1,Ξ2)

where

Ξ1 = ξ1ξ̂1x − ξ2ξ̂2x − ξ̂1ξ1x + ξ̂2ξ2x, Ξ2 = ξ2ξ̂1x + ξ1ξ̂2x − ξ̂2ξ1x − ξ̂1ξ2x

(X equals X I or X II respectively).

Once we have the symmetries of the Helfrich system (5), we can look for solutions

that are invariant under certain subgroups of the general symmetry group. As it

is shown in [10], all the group-invariant solutions of the Helfrich system, related

to the one-parameter Lie symmetry subgroups of the general Lie symmetry group,

are equivalent (conjugate) to each other in a sense that the related subalgebras are

pairwise conjugate under the group of the adjoint representations [14]. Hence, it

suffices to consider one representative of the conjugacy class of the one-parameter

group-invariant solutions from which every other such solution can be derived by

acting with a transformation of the symmetry group.
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We look for solutions of the Helfrich system (5) invariant under the subgroup of

translations of the variable x, i.e., a subgroup related to the subalgebra spanned

by the group generator XI(1, 0) ≡ ∂x. The reduction procedure leads to group-

invariant solutions of the form [10]

q = q(y), ϕ = ϕ(y), θ = θ(y), ω(y) = α5 ≡ const

and the reduced system of ordinary differential equations

q2ϕyy + 2qϕqyy − 2ϕq2y + q4(8ϕ+ α2ϕ
2 + α3ϕ

3 + α4ϕ
4) = 0

θy − q(8 +
α2

3
ϕ)(ϕqy + qϕy) = 0 (9)

4qϕ2qyy + 4ϕq2ϕyy − 4ϕ2q2y − 4q2ϕ2
y + q2ϕθ(8 +

α2

3
ϕ)− θ2 − α2

5 = 0.

Searching for cylindrical equilibrium shapes of the Helfrich model, we confine to

the case of vanishing Gaussian curvature

K = 0.

From (7) it follows the equation

ϕ2q2y + q2ϕ2
y = qϕ(ϕqyy + qϕyy)

whence, by adding to both sides the expression 2qϕqyϕy, we conclude that the two

functions q(y) and ϕ(y) must satisfy the relation

q(y) =
becy

ϕ(y)
, b ∈ R/0, c ∈ R. (10)

By substituting of this latter result in the reduced system of equations (9) it is easily

observed that the solutions obtained for c �= 0 do not concern the geometry of the

membrane (see the explanation below).

In the following we will assume that c = 0. Then the relation (10) takes the form

q(y) =
b

ϕ(y)
, b ∈ R/0 (11)

and the system (9) is transformed to

θ(y) = 0, ω(y) = 0

and

ϕy = b(C1ϕ
4 − 2α4ϕ

3 − α3ϕ
2 − 2

3
α2ϕ− 4)

1

2 (12)
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where C1 is an integration constant. The obtained equation is directly solvable in

terms of elliptic functions [1] (and in some special cases in elementary functions)

which means that we have arrived at a group-invariant solution of the Helfrich

system. Before giving any explicit solution of (12), we will introduce new variables

that will reproduce the original geometrical considerations.

As it is known from the classical differential geometry [15], the directrices of the

cylindrical surfaces are plane curves Γ (Fig. 1) whose curvature κ(s) is related to

the mean curvature of the surface H(s)

κ(s) = 2H(s)

where the parameter s is the arclength of Γ. For solutions invariant under the

subgroup of translations of the variable x, the arclength s is connected through the

formula (3) to the conformal coordinate y

s = 2y.

Figure 1. Geometry of a plane curve.

By changing the variables in (12) from (y, ϕ(y)) to (s, κ(s)), via the expression

(6) for H(y), a differential equation for κ(s) is obtained

κ̇ = b(−1

4
κ4 +

μ

2
κ2 + νκ+ 2E)

1

2 (13)

where the coefficients μ, ν and E are defined by

μ = 4(Ih2 +
λ

k
), ν = −4p

k
, E =

4Ih

k
(p− λIh)− 2Ih4 +

C1

2
·
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Here and henceforth the dots denote the derivatives with respect to s.

On solving the equation (13) we will first assume that the quartic polynomial

f(t) = −1

4
t4 +

μ

2
t2 + νt+ 2E

has no repeated factors, which means that we can make use of the Weierstrassian

integral form of this equation (see e.g. [23])

∞∫
z

(4t3 − g2t− g3)
− 1

2dt = bs+ C2 (14)

where

g2 =
1

48

(
μ2 − 24E

)
, g3 =

1

64

(
ν2 − μ3

27
− 8μE

3

)
are the invariants of the polynomial f(t). The lower limit of the integral is

z =
f ′(a)

4(κ− a)
+

f ′′(a)
24

(15)

where a is an arbitrary root of the polynomial and f ′(a) ≡ df(t)/dt|t=a
, etc. The

equation (14) is equivalent to the relation [1, 23]

z = ℘(bs+ C2; g2, g3) (16)

where ℘(bs + C2; g2, g3) is the Weierstrassian elliptic ℘-function. Combining the

equations (15) and (16) we obtain the solution

κ(s) = a+
f ′(a)
4

(
℘(bs+ C2; g2, g3)− f ′′(a)

24

)−1

. (17)

In the case when the equation f(t) = 0 has multiple roots the solution can be

expressed in terms of elementary functions. For example, given an arbitrary β ∈ R,

and on writing μ = 3β2, ν = 2β3 and E = 3β4/8, we have the polynomial

f(t) = (3β − t)(β + t)3/4 and the solution

κ(s) =
3β − β3(bs+ C2)

2

1 + β2(bs+ C2)2
·

The directrices Γ related to the above curvature are not closed and will not be

considered as they do not correspond to membrane shapes. The reason for which

we have omitted the solutions of the general form (10) when c is not zero, is the

same – they all lead to directrices of curvature κ(s) ≡ 0. Closed directrices are

generated by the solution (17) – several graphs of these directrices with and without

intersections are given in the next section.
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3. Cylindrical Equilibrium Shapes

Given the intrinsic equation κ = κ(s) of a plane curve, the coordinates of its

position vector x(s) = (x̃(s), z̃(s)) are recovered in a standard way (up to a rigid

motion) by calculating the quadratures [15]

x̃(s) =

s∫
0

cosψ(τ)dτ, z̃(s) =

s∫
0

sinψ(τ)dτ (18)

where ψ(s) is the slope angle of Γ (Fig. 1) expressed by

ψ(s) =

s∫
0

κ(τ)dτ. (19)

For the directrices of the Helfrich cylindrical surfaces with the intrinsic equation

(17) these coordinates, for ν �= 0, are given by

x̃(s) =
2

bν
κ̇(s) cosψ(s) +

1

ν
(κ2(s)− μ) sinψ(s)

(20)

z̃(s) =
2

bν
κ̇(s) sinψ(s)− 1

ν
(κ2(s)− μ) cosψ(s).

In the derivation of these formulas the integration of (18) can be avoided, which is a

direct consequence of the fact that the curvature function (17) satisfies the equation

(for detailed explanation cf [22] and the references cited therein)

2κ̈(s) + b2κ3(s)− b2μκ(s)− b2ν = 0. (21)

The equation is obtained via the quadrature (19) and by making use of the integral

[1, 8] ∫
dτ

℘(τ)− ℘(̊τ)
=

1

℘′(̊τ)

(
2ζ (̊τ)τ + ln

σ(τ − τ̊)

σ(τ + τ̊)

)
the slope angle ψ(s) in (20) is expressed in terms of the Weierstrassian functions

℘(s), σ(s) and ζ(s)

ψ(s) = abs+
f ′(a)
2℘′(̊s)

(
2bsζ (̊s) + ln

σ(bs− s̊)

σ(bs+ s̊)

)
(22)

where s̊ is defined by ℘(̊s) = f ′′(a)
24 ·
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We are interested in the directrices Γ that close up smoothly in the sense that there

exists a real number L, such that

x(L) = x(0), t(L) = t(0) (23)

where t(s) = ( ˙̃x, ˙̃z) is the tangent vector to the curve (Fig. 1). The second one of

the above two equalities, on choosing ψ(0) = 0, implies

ψ(L) = ±2πm, m = 1, 2, 3, . . . . (24)

On the basis of the first of the equalities (23) and the formulas (20), it follows, via

the equation (21), that L is a multiple for some integer n > 0 of the least period T
of the function κ(s)

L = ±nT. (25)

The closure condition (in the case of ν �= 0)

ψ(T ) = ± 2πm

n
, m, n = 1, 2, 3, . . . (26)

is obtained by combining (24) and (25) and the relation

ψ(nT ) = nψ(T ).

The latter is a direct consequence of the integral (19). The sign in (26) changes

on reversing the direction of revolving the curve: ψ(−T ) = −ψ(T ). More details

about the closure conditions of the directrices of the Helfrich cylindrical surfaces

can be found in [22].

Taken with respect to the moving reference frame (t(s),n(s)), built up by the

tangent t(s) and the normal n(s) = (− ˙̃z, ˙̃x) vectors to the curve (Fig. 1), the

coordinates (ξ̃(s), η̃(s)) of the position vector

x(s) = ξ̃(s)t(s) + η̃(s)n(s)

have the form (compare with (20))

ξ̃(s) =
2

νb
κ̇(s), η̃(s) = −1

ν
(κ2(s)− μ).

Several graphs of closed directrices of the so obtained cylindrical Helfrich surfaces,

defined by (x̃, z̃) and (ξ̃, η̃) in the respective fixed and moving reference frame, for

b = 1 and different values of the parameters ν, μ, E, a, are presented in Fig. 2 and

Fig. 3.

The graphs are plotted with the help of the computer program Mathematica�

exploring different values of the parameters and visualizing the curves until the
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Figure 2. Closed directrices without self-intersections in the fixed (top) and

the moving (bottom) reference frame.

Figure 3. Closed directrices with self-intersections in the fixed (top) and the

moving (bottom) reference frame.

closure condition is satisfied. The directrices on Fig. 2 have the form of rosettes

with different number of ribs. As a closure condition of these curves one can make

use of the empirical relation

ψ(T )

2π
= ±γ − 1

γ
, γ = 2, 3, . . .

where γ is the number of ribs. We found this formula by trying to satisfy the closure

condition (26) on the base of the values of the half-periods of the Weierstrassian

℘ -function. We fixed two of the parameters

μ = 0, ν = 1

and then by varying the third parameter E, we kept calculating T until an agree-

ment with the closure condition, within the machine precision, had been reached.

The directrices from left to right on Fig. 2 have been plotted with the obtained

values of E :

0.210912, 0.439387, 1.24723, 2.19854, 6.0736 .
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The directrices on Fig. 3 correspond to μ = 3, ν = 1 and respectively, from left to

right, to the parameter E as follows:

0.0850036, 0.0849733, 0.0850046, 0.0849733, 0.0850046, 0.034 .

The curves with equal number of stitches, inner and outer, have equal parameters

except the root of the polynomial a:

−0.345556, −2.05243, −2.05245, 2.74703, −0.346066, 2.73809 .

4. Conclusion

In this paper the Helfrich spontaneous curvature model has been studied from

the viewpoint of the Lie groups of symmetries of the Helfrich system of equa-

tions (5). The Helfrich system is the governing system of equations for the equi-

librium shapes of fluid membranes. The fluid membranes are represented here in

terms of the conformal metric coordinates. The Lie group analysis of the Helfrich

system has been carried out through the solution of 206 second order partial differ-

ential equations – the so called determining system of equations. The determining

system has been solved in full explicit form by the help of the Mathematica�

package LieSymm-PDE [19]. Its solutions constitute an infinite dimensional sym-

metry algebra of the Helfrich system (cf [10] where this symmetry algebra has

been recently reported).

The main outcome of knowing the Lie symmetry group of a given system of differ-

ential equations is the possibility to apply a special group reduction technique, so

that a reduced system of equations with fewer number of independent variables is

obtained. Each solution of the reduced system remains unchanged under the group

action. Such solutions are called group-invariant solutions.

We have found a translationally invariant solution that corresponds to generalized

cylindrical surfaces. As it is shown in the aforementioned paper [10] all the one-

parameter group-invariant solutions of the Helfrich system can be obtained from

this solution by acting with an appropriate group transformation. It means that the

solutions of the Helfrich system (5) that are invariant with respect to one-parameter

subgroups of the general symmetry group are equivalent to each other.

We expressed the obtained solution in terms of the Weierstrassian functions. In

the case of ν �= 0, we provide explicit expressions for the position vector of the

directrices of the cylindrical surfaces by the equations (17), (20) and (22). With the

help of Mathematica� we have explored different values of the free parameters

in the Helfrich system in order to obtain smoothly closing directrices.
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Most of the graphs of the directrices that we present here (Fig. 2 and Fig. 3) have

similar shapes to the plots of the graphs in reference [22], which is not so much

surprising as the graphs in [22] also represent the directrices of cylindrical Helfrich

surfaces, but note that they are plots of solutions obtained by another approach that

lead to Jacoby and not to the Weierstrassian elliptic functions. The similarity of

the graphs shows that their analytic expressions are different representations of one

and the same solution to the Helfrich equation (1). As a matter of future work it is

a challenging perspective to get more inside in this similarity and the mathematical

relations behind it. It is also a good problem to reveal how the choice of the root a
of the polynomial involved impacts the curves as those on Fig. 3.

Solutions of the Helfrich equation (1) that have been recovered in [10] from the

group invariant solutions of the Helfrich system (5) corresponding to equilibrium

membrane shapes known in the literature: sphere [17], Clifford torus [16], circular

cylinder [17], Delaunay surfaces [11, 13] and circular biconcave discoid [11, 12].

They have been obtained on the basis of several simplifying assumptions for the

four unknown functions q(y), ϕ(y), θ(y) and ω(y) and specific relations between

them. Here, by assuming that q(y) and ϕ(y) satisfy the equation (11), this list of

Helfrich surfaces obtained from the Lie group method for finding group-invariant

solutions have been extended with the generalized cylindrical Helfrich shapes [22].

Substitutions that will reduce the system (9) to quadratures describing other classes

of surfaces (e.g. the generalized DelaunayŠs unduloids [4]) can also be envisaged

as a future work.

Acknowledgements

The first named author acknowledges the financial support provided by the Euro-

pean Social Fund and the Ministry of Education and Science of Bulgaria under

the project BG051PO001-3.3.05-0001 “Science and Business” of the Operational

Programme “Human Resources Development”.

The authors owe special thanks to Professor Ivaïlo Mladenov for many inspiring

discussions on the geometry of membranes.

References

[1] Abramowitz M. and Stegun I. (Eds), Handbook of Mathematical Functions,

Dover, New York 1972.

[2] Brown F., Elastic Modeling of Biomembranes and Lipid Bilayers, Annu. Rev.

Phys. Chem. 59 (2008) 685–712.



114 Vladimir I. Pulov and Eddie J. Chakarov

[3] Canham P., The Minimum Energy of Bending as a Possible Explanation of
the Biconcave Shape of the Human Red lood Cell, J. Theor. Biol. 26 (1970)

61–81.

[4] Djondjorov P., Hadzhilazova M., Mladenov I. and Vassilev V., Beyond De-
launay Surfaces, J. Geom. Symmetry Phys. 18 (2010) 1-11.

[5] Faller R., Jue T., Longo M. and Risbud S. (Eds), Biomembrane Frontiers:

Nanostructures, Models, and the Design of Life, Handbook of Modern Bio-
physics vol. 2, Humana Press, New York 2009.

[6] Hadzhilazova M. and Ganghoffer J.-F., Membrane Fusion Based on the Stalk
Model, Bulg. Chem. Comm. 46 (2014) 62-67

[7] Helfrich W., Elastic Properties of Lipid Bilayers: Theory and Possible Exper-
iments, Z. Naturforsch C 28 (1973) 693–703.

[8] Janhke E., Emde F. and Lösch F., Tafeln Höherer Funktionen, Teubner,

Stuttgart 1960.

[9] Konopelchenko B., On Solutions of the Shape Equation for Membranes and
Strings, Phys. Lett. B 414 (1997) 58–64.

[10] de Matteis G. and Manno G., Lie Algebra Symmetry Analysis of the Helfrich
and Willmore Surface Shape Equations, Comm. Pure Appl. Anal. 13 (2014)

453–481.

[11] Mladenov I., New Solutions of the Shape Equation, Eur. Phys. J. B 29 (2002)

327–330.

[12] Naito H., Okuda M. and Ou-Yang Z.-C., Counterexample to Some Shape
Equations for Axisymmetric Vesicles, Phys. Rev. E. 48 (1993) 2304–2307.

[13] Naito H., Okuda M. and Ou-Yang Z.-C., New Solutions of the Helfrich Vari-
ational Problem for the Shapes of Lipid Bilayer Vesicles: Beyond Delaunay
Surfaces, Phys. Rev. Lett. 74 (1995) 4345–4348.

[14] Olver P., Applications of Lie Groups to Differential Equations, Springer,

Berlin 1986.

[15] Oprea J., Differential Geometry and its Applications, Mathematical Associa-

tion of America, Washington D. C. 2007.

[16] Ou-Yang Z.-C., Anchor Ring-Vesicle Membranes, Phys. Rev. A 41 (1990)

4517–4520.

[17] Ou-Yang Z.-C. and Helfrich W., Bending Energy of Vesicle Membranes: Gen-
eral Expressions for the First, Second, and Third Variation of the Shape En-
ergy and Applucations to Spheres and Cylinders, Phys. Rev. A 39 (1989)

5280–5288.



Cylindrical Shapes of Helfrich Spontaneous-Curvature Model 115

[18] Pulov V., Chacarov E., Hadzhilazova M. and Mladenov I., Symmetry Proper-
ties of the Membrane Shape Equation, Geometry, Integrability & Quantiza-

tion, 14 (2013) 152–159.

[19] Pulov V., Chacarov E. and Uzunov I., A Computer Algebra Application to
Determination of Lie Symmetries of Partial Differential Equations, Serdica J.

Computing 1 (2007) 505–518.

[20] Tu Z.-C., Geometry of Membranes, J. Geom. Symmetry Phys. 24 (2011) 45–

75; arXiv:1106.2370 [cond-mat.soft].

[21] Vassilev V, Djondjorov P. and Mladenov I., Symmetry Groups, Conservation
Laws and Group-Invariant Solutions of the Membrane Shape Equation, Ge-

ometry, Integrability & Quantization 7 (2006) 265-279.

[22] Vassilev V., Djondjorov P. and Mladenov I., Cylindrical Equilibrium Shapes
of Fluid Membranes, J. Phys. A: Math. & Theor. 41 (2008) 435201, 16 pp.

[23] Whittaker E., Watson G., A Course of Modern Analysis, Reprinted from

Fourth Edition, Cambridge University Press, Cambridge 1996.

Vladimir I. Pulov

Department of Physics

Technical University of Varna

Varna 9010, Bulgaria

E-mail address: vpulov@hotmail.com

Eddie J. Chakarov

Department of Informatics

Varna Free University

Varna 9000, Bulgaria

E-mail address: eddy@abv.bg


