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Abstract. Variational geometries describing corrugated graphene sheets are pro-

posed. The isothermal thermomechanical properties of these sheets are described by

a two-dimensional Weyl space. The equation that couples the Weyl geometry with

isothermal distributions of the temperature of graphene sheets, is formulated. This

material space is observed in a three-dimensional orthogonal configurational point

space as regular surfaces which are endowed with a thermal state vector field fulfill-

ing the isothermal thermal state equation. It enables to introduce a non-topological

dimensionless thermal shape parameter of non-developable graphene sheets. The

properties of the congruence of lines generated by the thermal state vector field are

discussed.
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1. Introduction

Let us remind some statements concerning the physical properties of graphene

monolayer which are important first of all from the thermomechanical point of

view. It is known that crystals growth implies high temperatures θ but the pro-

duced thermal fluctuations of atoms are, in the case of bulk crystals, unable to

break atomic bonds of the 3D crystal structures. However, in the case of 2D crys-

tals, these thermal fluctuations of atoms are too large and it makes impossible the

creation of a stable crystalline structure. Nevertheless, it does not mean that they

cannot be made artificially. For example, “one can grow a monolayer inside or top

of another crystal (as an inherent part of a 3D system) and then remove the bulk at

sufficiently low θ such that thermal fluctuations are unable to break atomic bonds

even in macroscopic 2D crystals and they form them into a variety shapes” [11]. It

is consistent with the so-called Mermin-Wagner theorem [34] according to which

in an infinite 2D crystal, thermal fluctuations will destroy its long-range order.

Moreover, “unlike graphite’s surface, graphene is not flat but typically exhibits mi-

croscopic corrugations” [11]. The corrugations are roughly 1nm high and spread

over distances of between 10 and 25 nm. These corrugations have been observed

on all suspended and supported free-standing graphene sheets [12], [27]. Note also

that although “Ultraflat graphene” with ripples a few angstroms in height and sev-

eral nanometers in length, much smaller than the typical sample size, can be pro-

duced, their existence can be considered as a consequence of the Mermin-Wagner

theorem [25].

Importantly, the 2D crystals (and first of all the graphene) were found not only

to be continuous but to exhibit high crystal quality. It is perhaps because the 2D

crystallites, being extracted from 3D materials, are quenched in a metastable state,

whereas their small size and strong interatomic bonds ensure that thermal fluctua-
tions cannot lead to the generation of dislocations or other crystal defects even at

elevated temperature. A complementary viewpoint is that the extracted 2D crys-

tals become intrinsically stable due to crumpling in the third dimension. Such 3D

warping leads to a gain in elastic energy but suppresses thermal vibrations (anoma-

lously large in 2D), which above a certain temperature can minimize the total free

energy [13], [27]. Note also that many distinctive electronic and chemical proper-

ties of graphene have been attributed to the presence of these ripples [27].

We see that the existence of corrugated graphene sheets is a physical phenomenon

that clearly requires to take into account the occurrence of a correlation of surface

curvature not only with the internal energy of the surface but also with its thermal

state.
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Next, let us notice that “the most explored aspect of graphene physics is its elec-

tronic properties. It is because these are different from those of any other known

condensed matter systems. First of all electrons propagating through the honey-

comb graphene lattice completely lose their effective mass” [11]. Namely, “charge

carriers in graphene are massless effective Dirac fermions and are described by the

2D analog of the quantum Dirac equation, with the Fermi velocity vF ≈ 1×106 m/s

plying the role of the speed of light and a 2D pseudospin describing two sublat-

tices of the honeycomb lattice (this lattice consists of two interpenetrating trian-

gular sublattices such that the sites of one sublattice are the centre of triangles

defined by the other)” [11]. However, it ought to be stressed that the graphene

relativistic behavior arises not from required consistency with special relativity -

or more specifically with Lorentz invariance - but simply from the symmetry of the

honeycomb lattice [12].

Although graphene is a single atomic plane of graphite, “it is neither a standard

solid surface nor a standard molecule” [11] .... “For example, unlike any other

materials graphene shrinks with increasing temperature θ at all values of θ be-

cause membrane phonons dominate in 2D. Also, graphene exhibits simultaneously

high pliability (folds and pleats are commonly observed) and brittleness (it frac-

tures like glass at high strains)” [11]. Next, “graphene exhibits a breaking strength

∼ 40N/m, reaching the theoretical limit. Record values for room-temperature

thermal conductivity (∼ 5000Wm−1K−1) and Young’s modulus (∼ 1.0TPa)
were also reported. Graphene can be stretched elastically by as much as 20%,

more than other crystal” [11] .... “Speaking of non-electronic properties, we do

not even know such basis things about graphene as how it melts. Neither melting

temperature nor the order of phase transition is known. Ultrathin films are known

to exhibit melting temperatures that rapidly decrease with decreasing thickness.

The thermodynamics of 2D crystals in 3D space could be very different from that

of thin films and may be closely resemble the physics of soft membranes. For ex-

ample, melting can occur through generation of defect pairs and be dependent on

lateral size” [11].

It is observed that “the shape of a free-standing graphene often tends to be crum-

pled or form nanoscrols, in close relation with its bending properties. Therefore,

understanding the bending properties of graphene is very important for both prac-

tical and scientific points of view. It has been shown that the bending rigidity

depends on the temperature, size, edge shape (e.g., bending stiffness of armchair

graphene is different from that of zigzag graphene, see remarks below equation

(3)) and other factors.... Note that while the bending modulus of graphene exhibits

a slight nonlinearity as the bending curvature increases, the bending stiffness of

graphene is dependent on the bending curvature” [30]. It is reported also that the
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ripple structure can be controlled by thermal treatment. Moreover, graphene rip-

pling by thermal treatment is related to its negative thermal expansion coefficient
and its membrane-nature mechanical properties [53].

Membranes are usually considered as 2D materials with zero bending stiffness

(graphene exhibits its finite value). They can only sustain tensile loads; their in-

ability to sustain compressive loads leads to wrinkling. Consequently, the mem-

brane model of graphene can be useful e.g. in the case of estimation of an axial

tensile-strain curve. However, if a critical buckling strain is estimated, then the

model graphene as a thin plate is more appropriate [55]. In this case it ought to be

taken into account that due to the inextensible but bendable nature of the graphene’s

bonds, its effective mechanical thickness

heff = (12k/E2D)
1/2 , k ≈ 1 eV, E2D ≈ 2.12× 103 eV/nm2 (1)

where k is the bending rigidity and E2D is the tensile rigidity, is less than one Å.

It is, according to this estimation, the smallest mechanical thickness ever achieved

for any material [55]. The critical compressive strain εcr, for the buckling of a

rectangular thin shell under the uniaxial compression can be estimated by

εcr ≈ π2

3(1− v2)

(
heff
l

)2

(2)

where l is the length along which the uniaxial compression is applied and v is

the Poisson ratio. The above estimation is mainly valid for suspended thin films

[9], [59]. It ought to be stressed that the above estimations have only qualitative

meaning.

Thus, it seems physically reasonable to consider graphene as a solid surface treated

as a “membrane” endowed with such constitutive relations that define its internal

forces in a manner strongly dependent on the geometry of the considered sample

and allowing the existence of its finite tensile as well as bending rigidity. The-

oretically, the elastic properties of graphene can be studied in the local contin-
uum mechanics approach (see e.g. [2] and [50]) while the estimations of effective

mechanical properties needs also atomistic simulations (see e.g. [29]). The local

continuum mechanics approach is applicable if the samples are macro. Graphene

samples in the mechanical experiment have usually a radius r ≥ 0.75μm [21]. For

a planar and circular graphene sample of the radius r = 0.75μm, the ratio of the

number Nb of the boundary atoms to the number Ni of the inner atoms can be

estimated as [21]

Nb/Ni = 1.5
√
3 b/r ≈ 5× 10−4 (3)

where b = 1.42 Å is the C-C bond length in the graphene. “It shows that the

number of boundary atoms in the sample is about four orders lesser than the inner
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atoms. As a result, the contribution of the boundary atoms to the total energy is

also four order smaller than the inner atoms. In this sense, we can ignore the con-

tribution of the boundary atoms to the total energy in the graphene.” [21] However,

the graphene samples can be scaled to extremely fine scales, possibly down to a

single benzene ring, because unlike other materials graphene remains stable and

conductive at the molecular scale [12]. In this case, if we are dealing with the con-

tinuized models of graphene nanoclusters (e.g. graphene nanodisks - a nanometer-

scale disk-like graphene cluster [7]), then the above approximation as well as the

local continuum mechanics approach fail and models taking into account size and

shape effects ought to be applied (see e.g. [48] and [49]). For example, “the ef-
fects of edges of graphene nanostructures can be modeled using one-dimensional

periodic strips of graphene. Such models are commonly referred to as graphene
nanoribbons (e.g. [7]). There are two high-symmetry crystallographic directions in

graphene, armchair and zigzag. Cutting graphene nanoribbons along these direc-

tions produces armchair and zigzag (finite-length) nanoribbons, respectively.” It is

predicted, that the armchair nanoribbons would reveal either metallic or semicon-

ducting behavior and the two situations alternate as nanoribbon’s width increases.

Within the same model all zigzag graphene nanoribbons are metallic [56]. Notice

also that the melting temperature of small carbon flakes is lower than those for

graphene and graphene nanoribbons and the melting temperature of small flakes

on average increases versus the number of atoms in these nanoclusters [41].

Conventional three-dimensional crystal lattices are terminated by surfaces, which

can demonstrate complex substructures, localized strain and dislocation formation.

Two-dimensional crystal lattices are terminated by lines. The additional available

dimension of such interfaces opens up a range of new topological distortions of

crystal structures which are not available at “classic” surfaces of three-dimensional

materials. The result is a rich variety of potential interface types in graphene, all

of which can radically alter the properties of the material, even at quite long range

from the interface [20]. For example, topological defects are formed by replacing

a hexagon of the graphene sheet crystalline structure by a n-sided polygon. Partic-

ularly, it is known that a pentagon built between hexagons cause positive curvature

while a heptagon cause negative curvature [60]. However, while a pentagon and

a heptagon at short distances can be seen as a dislocation of the lattice [57] it is

not the case of the so called Stone-Wales defect. Namely, in this topological defect

four hexagons of planar graphene structure are changed into two pentagons and two

heptagons, and the outcome arrangement of this structure remains planar. Several

examples of the structures containing more pentagon-heptagon pairs but preserving

flatness of the graphene sheet are known [60]. Notice also that a model of amor-
phous graphene can be generated by introducing Stone-Wales defects into perfect
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honeycomb lattice. Namely, it was realized in a graphene nanocluster “containing

800 atoms, each of them three-coordinated, similar to the honeycomb lattice but

topologically distinct, with 34.5% of the elementary rings being pentagons, 38%
hexagons, 24% heptagons and 4.5% octagons. Since the average size of rings is

six, according to Euler’s theorem, such a system can exists as a flat 2D structure

with some distortions of bond lengths and angles” [24].

Let us quote yet interesting statements formulated in [60] and concerning the lat-

tice defects. “The mitosis is a lattice defect where two pentagons originate from

a given hexagon and consequently the neighbouring hexagons become heptagons.

The heptagons are separated by pentagons. The number of atoms increases by two.

In this case the distorted graphene structure is a planar structure if the heptagon pair

separated by the pentagon pair is studied alone, but the structure is not planar if this

defect is constrained in the graphene structure. If the mitoses are arranged next to

other along a line, the structure distortions are summarized along the line, the sum

is very large, and the solutions is a wavy pattern with alternating curvatures. Mito-

sis can be arranged next to each other not only along straight lines but along curves

or groups. For example: three pentagons placed next to each others produces a

larger curvature in the graphene structure than in the case two pentagons. It is

interesting that the largest curvature arises from six mitoses arranged in a group.

In this case, six pentagons placed next to each other created a half dodecahedron,

which can be the end of an armchair-type nanotube. If the six pentagons are ar-

ranged along a curve, the resulting structure is the end of a zigzag-type nanotube.

An arrangement of more than six pentagons next to each other cannot be solved in

a pentagon-heptagon-hexagon system. So, the pentagons and/or heptagons can oc-

cur in the system alone. When a pentagon is surrounded by hexagons, a spherical
surface forms and when a heptagon is surrounded by hexagons, the characteristic

saddle-shaped surface forms.”

The above mentioned types of disorder have to be, in general, distinguished from

dislocations and grain boundaries, structural defects characterized by the finite val-

ues of their respective topological invariants, Burgers vectors and misorientation

angles [57]. In this paper we will restrict ourselves to the case when a graphene

sheet is corrugated but the internal geometry of its continuized hexagonal-poly-

gonal crystalline structure can be described by a curvature tensor only. We are

leaving the analysis of another graphene structural defects, for example of these

appearing due to the applied technology of the production of graphene sheets, to

a separate study; see, e.g., [23], [30], [45]. It means, among others, that we are

dealing with a continuum model of the bending properties of corrugated graphene

sheets.
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The bending properties of graphene sheets are critical in attaining the structural

stability and morphology for both suspended and supported of these sheets, and

directly affect their electronic properties [3]. Moreover, the bending properties not

only control the morphology and electronic properties of (two-dimensional) gra-

phene, but also interplay with its magnetic and thermal properties [54]. The Gaus-

sian bending stiffness (associated with the Gaussian curvature of elastic graphene

sheets) and the bending rigidity (associated with the mean curvature of elastic

graphene sheets) are the two key parameters that govern the rippling of suspended

graphene - an unavoidable phenomenon of two-dimensional materials when sub-

ject to a thermal or mechanical field. The determination of these two parameters

is of significance for both the design and the manipulation of graphene morphol-

ogy for engineering applications [54]. The aim of this paper is to formulate such

geometrical model of this thermomechanical phenomenon that takes into account

some distortions of the crystal structure of graphene sheets.

To study the stability of the distorted structures, the cohesive energy (the average

energy of the chemical bonds: the total energy divided by the number of the bonds)

was calculated in [60] for the above discussed structures. It was concluded that:

“Cohesive energy in the environment of the defects increases several percent com-

pared to the cohesive of the perfect graphene in every case. The increase is smaller

for the planar structures and it is larger for the structures with curvatures. The more

pentagons are connected to each other, the larger the decrease of stability. The mi-

toses arranged along a straight line have the least stability because the pentagons

cause curvatures in both sides of the graphene sheet where they are connected with

each other.” [60]

Notice also that [23]: “In the context of electronic systems like graphene, the dy-

namics of the lattice defects occurs at a much higher energy than the electronic

processes (in graphene, lattice processes are related to the sigma bonds and have

typical energies of the order of tens of eV while the continuum relevant low en-

ergy processes are of few tens of meV). It then makes perfect sense to consider the

motion of electrons in a frozen geometry.”

The paper is organized as follows. In Section 2 is introduced the notion of a ma-
terial space of graphene sheets. This material space describes isothermal corruga-

tions of graphene sheets and is defined as a two-dimensional Weyl space with the

geometry of variational type. The equation that couples this Weyl material geom-

etry with isothermal distributions of the graphene temperature is formulated. In

Section 3 three-dimensional orthogonal configuration point spaces of mechanical

“spatial” or electronic “internal” configurations of graphene sheets, are considered.

Moreover, in Section 3 the case of developable graphene sheets is discussed. The

Weyl material space can be observed in the orthogonal configurational point space
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as developable regular surfaces or as non-developable regular surfaces with the ge-

ometry of variational type (Sections 3 and 4). These configurations of the graphene

sheet are additionally endowed with a distinguished tangent thermal state vector
field (Sections 2, 4 and 5) fulfilling the induced isothermal thermal state equation
(Section 4). It enables, among others, to define a non-topological dimensionless
thermal shape parameter of non-developable graphene sheets (Section 4). In Sec-

tion 5 the geometry of graphene sheets (developable as well as non-developable) is

analyzed in terms of the congruence of lines generated by the thermal state vector

field. Particularly, a representation of the thermal shape parameter formulated in

terms of the geometry of this congruence is given and the case of flat thermal state
vector field is discussed. In Section 6 the conclusions and remarks concerning

the shape and curvature effects, the thermal state of graphene, and the membrane

model of graphene sheets, are formulated.

2. Weyl Material Space of Graphene Sheets

If the existence of corrugated configurations of a graphene sheet is treated as the

material property of graphene (see Section 1), then it seems physically reason-

able to consider its 2D “material” geometry independent from the geometry of

configuration spaces of this graphene sheet (see Section 3). So, let M be a two-

dimensional manifold endowed with a metric a and a covariant derivative ∇ and

let in a general coordinate system (U, u), u =
(
u1, u2

)
: U ⊂ M ⊂ R

2 on M

a
.
= (aαβ) , Γ

.
=
(
Γκ
αβ

)
(4)

where Γκ
αβ are connection coefficients of the covariant derivative ∇. Let as con-

sider the variation of an appropriate action with respect to both the metric com-

ponents and the connection coefficients without imposing from the beginning that

Γκ
αβ be the usual Christoffel symbols. This variational principle, where the met-

ric and the connection are considered as independent variables, is called the Pal-

latini variation. Many distinctive electronic, chemical and bending properties of

graphene have been attributed, as it was mentioned in Section 1, to the presence

of ripples, which are also predicted to give rise to physical phenomena that would

be absent in a planar two-dimensional materials. Consequently, the extracted 2D

crystals can be intrinsically stable due to the curvature effects independently from

the existence of topological defects of their crystalline structure (see Section 1).

So, let us consider an action of the form [8]

S (Γ, a) =

∫
M

L(R)
√
a d2u, a = det (aαβ) = a11a22 − a212 (5)
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where the connection is torsionless (see Section 1 and e.g. [23]) and

Rαβ (Γ) = Rκαβ
κ (Γ) (6)

is the Ricci tensor of the covariant derivative ∇ (in the designations of [50]) while

R = aαβRαβ (Γ) , α, β = 1, 2 (7)

is the scalar curvature of ∇ and a. The Lagrangian L has the form L = L(R) =
−E(R), where the material internal energy E due to the curvature effect is a

given function of one real variable which is assumed to be analytic on its domain of

definition. This Lagrangian is proposed in the paper as a basis to the formulation of

an example of the geometry which describe the material properties of a corrugated

graphene sheet in a manner independent from its observation in the configurational

space.

The Euler-Lagrangian equations for the action (5) with respect to independent

variations of a and Γ can be written in the following form [8]

L′(R)R(αβ)(Γ)−
1

2
L(R)aαβ = 0 (8)

and

∇α

(
L′(R)

√
a aβκ

)
= 0 (9)

where ∇α is the covariant derivative with respect to Γ and R(αβ) is the symmetric

part of Rαβ . Taking the trace of equation (8) one obtains the following equation

for R

RL′(R)− L(R) = 0. (10)

Let us assume that equation (10) is not identically satisfied and has at least one real

solution. Then, since analytic functions can have at most a discrete set of zeros on

the real line, equation (10) has no more than a countable set of solutions R = ri,
i = 1, 2, . . ., where ri are constant. If at the point R = ri we have [8]

L′ (ri) �= 0 (11)

then equation (9) takes the form

∇α

(√
a aβκ

)
= 0 (12)

while equation (8) reduces to

R(αβ) (Γ) =
1

2
riaαβ . (13)



10 Andrzej Trzȩsowski

It can be shown that equation (12) has the Weyl connection as its general solution

[11]

Γσ
αβ = Γσ

αβ (Γ, w) = Γσ
αβ (a)−

1

2

(
wαδ

σ
β + wβδ

σ
α − wσaαβ

)
(14)

where

Γσ
αβ (a) =

1

2
aσω (∂αaβω + ∂βaαω − ∂ωaαβ) (15)

is the Levi-Civita connection for the metric a and w = wα∂α ∈ W (M), and

W (M) is the linear module of vector fields on M tangent to M (see [46] and the

Appendix). Then

∇a,w
σ aαβ = wσaαβ , wσ = aσωw

ω (16)

for the Weyl covariant derivative ∇a,w
σ defined by the connection of equation (14)

and, using equations (6), (7) and (13) - (15), one can see that equation (8) reduces

to the following condition [8]

aαβRαβ (Γ
a,w) = 2K +∇a

αw
α = ri, K = R (a) /2 (17)

where K and R(a) denotes the Gauss curvature and the scalar curvature of the

Riemannian manifold Ma = (M,a), respectively.

Although graphene is a single atomic plane of graphite, it is neither a standard solid

surface nor a standard molecule (Section 1). Unlike any other materials graphene

shrinks with the increasing temperature θ at all values of θ. Moreover, graphene

rippling by thermal treatment is related to its negative thermal expansion coefficient

and the membrane nature of mechanical properties (Section 1). Since the graphene

can be assumed to be thermally isotropic, the thermal extension can be assumed

to be the same in all directions in the any point P ∈ M and the change in the

measure of length of a vector tangent to the curved graphene can be described in

the framework of the Weyl geometry. Namely, let us denote, for a smooth vector

field v ∈ W (M) on M tangent to M , the length of a vector vP = v(P ) ∈ TPM
by

la,P (v) = la (vP ) = la(v)(P )

l2a,P (u)(v) = aαβ(u)v
α(u)vβ(u) (18)

vP (u) = vα(u)∂α|P (u)

where P = P (u) ∈ M if u = u (P ) ∈ R
2 in terms of the coordinate description

(U, u) of the manifold M . Next, let δ denotes the infinitesimal variation operator
defined by the Weyl covariant derivative (see e.g. [46] and the Appendix)

δ = duα∇a,w
α . (19)
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Then, according to equation (16), we have

δl2a(v) = 2la(v)dla(v), v = vα∂α ∈ W (M)

= 2vαδv
α + δaαβv

αvβ , δaαβ = aαβw.
(20)

If v ∈ W (M) is a covariant constant, that is

δv = (δvα) ∂α = 0, δvα = duα∇a,d
α vα (21)

then, independently of the choice of this vector field, we have

1

2

δl2a (v)

l2a (v)
=

dla (v)

la (v)
= ε, ε =

1

2
w

(22)
w = wαdu

α ∈ W (U)∗ , wα = aαβw
β.

Thus, along a curve γ : I → M such that for its tangent vector field γ̇ and for a

covariant constant tangent vector field v ∈ W (M), we have

γ̇ = v ◦ γ, t ∈ I �→ γ̇ (t) = v (γ (t)) ∈ Tγ(t)M, δv = 0 (23)

the following relation holds

la = l0 exp

⎛⎝∫
γ

ε

⎞⎠ , [l0] = cm. (24)

It follows that the length measurement in the Weyl space depends on the way along

this measurement is done.

If the intrinsic material metric tensor a undergoes a conformal transformation, i.e.,

ã = ρa, ρ = e−2σ, σ ∈ C∞ (M) (25)

then

δ (ρaαβ) = e−2σaαβw̃, w̃ = w − 2dσ. (26)

Hence, if we take ã as the metric tensor instead of a, and if at the same time w is

transformed into w̃ we get the same covariant derivative. Note that the antisym-

metric tensor field

Fαβ = ∂αεβ − ∂βεα (27)

is invariant under this gauge transformation. This tensor field can be interpreted

as the one corresponding to the effective electromagnetic field. However, this field

can be also endowed with the physical meaning of a measure of the influence of

the graphene effective temperature θ on the length measurement. Namely, if

ε = ε (P (u) , θ, dθ) = εα (u, θ, dθ) du
α ≥ 0 (28)
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where θ ∈ C∞ (M), θ ≥ 0, is a field of effective absolute temperatures, then

since in graphene is observed the negative thermal expansion, that is, this material

contracts upon heating rather than expands as most materials do (Section 1), this

relation should fulfill the following additional condition

dθ(u) ≥ 0 ⇒ 0 ≤ εα(u, θ(u), dθ(u)) ≤ 1, α = 1, 2. (29)

It follows from equations (17), (22) and (28) that

Statement 1. The Weyl material space admits to define the following relationship
between its geometry and an isothermal distribution of its effective absolute tem-
perature θ

divaw + 2K = r, w = wα (u, θ, dθ) ∂α (30)

where r ∈ R is a constant, the condition (29) is assumed, w ∈ W (M), and

divaw = ∇a
αw

α, wα = 2aαβεα. (31)

Thus, the equation (30) can be considered an isothermal thermal state equation
describing a relationship between the Gauss curvature of a graphene sheet and its

effective absolute temperature θ treated as a material state parameter.

If ε = ε (θ, dθ) and

εα (θ, dθ) = β (θ) ∂αθ (32)

then

ε (θ, dθ) = dσ (θ) , σ (θ) =

θ∫
θ0

β (τ) dτ (33)

where, according to equation (29), the coefficient of thermal expansion β(θ) should

fulfill the condition

dθ ≥ 0 ⇒ 0 ≤ β (θ) ≤ 1. (34)

In this case

δ (ρaαβ) = 0 (35)

that is, the thermal distortion of the intrinsic length measurement takes the form of

a conformal transformation of the intrinsic material metric tensor a

∇a,w = ∇ã (36)

where equation (25) was taken into account. Let us notice that because the thermal

distortion of the internal length measurement is considered and the effective tem-

perature θ is treated as a material state parameter, so it seems physically reasonable

to introduce the characteristic thermal length parameter l(θ) by the rule

β (θ) = l′ (θ) /l (θ) = d ln l (θ) /l0 (37)
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where l0 = l (θ0) is the characteristic length in a reference temperature θ0. We

can say then that the isothermal material structure of the graphene sheet is char-

acterized by this characteristic length. In this case equation (30) reduces to the

following relation (see Appendix C)

Δaσ +K = r/2. (38)

Particularly, if

K = r = 0 (39)

then the material space is called flat and

Δaσ = 0. (40)

If we assume that σ (θ) depends on the effective temperature θ linearly, we obtain

Δaθ = 0. (41)

This is exactly the same condition encountered in the linear thermoelasticity of

isotropic bodies being in isothermal and adiabatic conditions.

It ought to be stressed that the effective temperature θ is treated here as a material

state parameter due to the technology of the production of graphene. Namely, as

it was mentioned in Section 1, “the impossibility of growing 2D crystals does not

actually mean that they cannot be made artificaly”. If so, it ought to be taken

into account that, according to the Mermin-Wagner theorem (Section 1, see also

e.g., [5]), the existence of corrugated graphene sheets is interconnected with the

phenomenon of thermal fluctuations of their lattice atoms. Consequently, we can

consider w as a thermal state vector field or, shortly, as thermal state vector.

3. Orthogonal Configurational Spaces

The ideal graphene sheet is a subset of a two-dimensional Euclidean point space

(Appendix B) homeomorphic to this space. The graphene sheet is a subset of

the three-dimensional point space A3 (treated as a differential manifold - see Ap-

pendices A and B) homeomorphic to an ideal graphene sheet. In the paper are

considered graphene sheets being regular surfaces in the orthogonal point space

A3,g (Euclidean or Minkowski type - Appendix B). The regular surfaces in the Eu-

clidean point space will be referred to as spatial configurations of graphene. A dis-

tinguished spatial configuration is called the reference configuration of graphene.

Thus, the Euclidean point space A3,g can be named the configuration space of

graphene sheets (the mechanical configurational space). Really observed graphene
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sheets are their corrugated versions (which physical properties are studied with the

help of various 2D geometrical models such as, for example, membranes or plates,

Section 1). In the theory of graphene treated as a planar two-dimensional mate-

rial, the description of its quantum-mechanical phenomena needs to consider the

graphene sheets embedded (at least locally) in the three-dimensional Minkowski

point space as space-like regular surfaces (see Section 1 and Appendix B). In this

case we are dealing with the orthogonal geometry describing a configuration space
of internal processes in a graphene sheet.

Let us consider, as a global reference configuration of graphene, a plane Σn in the

Euclidean point space A3,g normal to a distinguished direction n ∈ W3,g. We can

introduce the associated Minkowski vector space W3,h = (W3,h) defined by the

following metric tensor

h = g − 2n⊗ n, (n, n)g = 1. (42)

Since

h|Σn = g|Σn, (n,n)h = −1 (43)

we conclude that the signature of h is (+,+,−). If

s ∈ Σn, (s, s)g = 1 (44)

then

(s,n)h = 0 (45)

and the pair Hs,h = (Hs,hs), where

Hs =
{
u ∈ W3,g ; (u, s)g = 0

}
, hs = h|Hs (46)

is called the hyperbolic plane and has the signature (+,−).

The vector product u ×h v of vectors belonging to the above defined orthogonal

vector space W3,h of Minkowski type can be defined in terms of the vector product

u× v in the Euclidean vector space W3,g in the following manner (see also [28])

u×h v = Rn (u× v) , Rn ∈ L (W3,g) , Rn = 1− 2n⊗ n. (47)

Let us notice that the vectors

e+ =
1√
2
(s+ n) , e− =

1√
2
(s− n) (48)

are h-isotropic

(e+, e+)h = (e−, e−)h = 0, (e+, e−)h = 1 (49)
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and

s =
1√
2
(e+ + e−) , n =

1√
2
(e+ − e−) . (50)

The question arrives how to define explicitly a coordinate system in the orthogonal

configurational space A3,g such that its coordinate surfaces are developable and

normal to a distinguished vector field, i.e., these surfaces are formed by the such

global bending of a planar coordinate surface that preserves its flatness. Thus, let us

consider the orthogonal point space A3,g = (A3,W3,g, ϕ) (see Appendices A and

B). Let P0 ∈ A3, ϕ (P0) = o ∈ W3, be the origin of A3, c ≡ cε = (ci)1≤i≤3 - the

g-orthonormal base defined by (171) and (172), and x =
(
x1, x2, x3

)
: A3 → R

3

- the corresponding affine coordinate system defined by equations (160) and (161).

Let f : A3 → A3 be a global diffeomorphism and k : A3 → W3, g - a non-vanishing

nowhere vector field of the class Cr−1, r ≥ 2. The coordinate descriptions kc and

fc of mappings k and f are given by

kc =
(
k1c , k

2
c , k

3
c

)
; R3 → R

3

k = kici : A3 → W3,g ⇒ kic = ki ◦ x−1 ∈ Cr−1(R3), r ≥ 2 (51)

fc = x ◦ f ◦ x−1 =
(
f1
c , f

2
c , f

3
c

)
; R3 → R

3.

If W3,g is the orthogonal Minkowski space (say endowed with the metric tensor

h defined by equation (42)), then we will assume that k is a timelike vector field

(Appendix B). We will denote in this Section by (·, ·)ε, ε = ±1, the scalar products

in R
3 defined by equation (172).

Theorem 1 ([35]) Let kc =
(
k1c , k2c , k3c

)
: R

3 → R
3 be a coordinate descrip-

tion of a vector field k : A3 → W3, g (timelike in the case of the orthogonal
Minkowski space), which satisfies the following conditions

i) k3c (x) �= 0 for each x ∈ R
3

ii) there exists a scalar field ϕ ∈ Cr
(
R
3
)
, r ≥ 2, such that

kic (x) =
∂

∂xi
ϕ (x) , i = 1, 2, 3, for each x ∈ R

3. (52)

Then there exists a coordinate description fc : R
3 → R

3 of a diffeomorphism
f : A3 → A3 such that

k′ic (x) =
3∑

j=1

∂f i
c

∂xj
kjc (x) =

{√|(kc (x) , kc (x))ε|, if i = 3

0, otherwise.
(53)
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Since k is C1, then there exists a congruence C[k] of curves in A3 generated by k

and possessing the coordinate representation C[kc] in R
3 generated by the vector

field kc of Theorem 1. That is, given any point x ∈ R
3, there exists a unique

integral curve σc, x ∈ C [kc] to which x belongs. For a fixed x0 ∈ R
3 let us

consider the equation

ϕ (x)− ϕ (x0) = 0 (54)

which defines a unique regular surface Σc,x0
in R

3. The vector

kc (x) =

(
∂ϕ

∂x1
(x) ,

∂ϕ

∂x2
(x) ,

∂ϕ

∂x3
(x)

)
∈ R

3 (55)

is by construction orthogonal to the surface in the point x ∈ Σc,x0
. In addition

σc,x0
∈ C [kc] is orthogonal to Σc, x0

in x0. In other words, the congruence C[kc]
is globally surface orthogonal.

Let us denote by x (o) = o = (0, 0, 0) ∈ R
3, o ∈ W3, g, the origin of x (o) =

o = (0, 0, 0) ∈ R
3. To construct a new coordinate system in R

3 let us fix a

point o′ ∈ R
3 as a new origin and consider σc, o′ ∈ C [kc] (with the natural ori-

entation) and Σc, o′ . Let us consider, in place of the triple of Cartesian reference(
R
2, R, o

)
being a coordinate description of the planar reference configuration

of the graphene considered previously, the triple
(
Σc, o′ , σc, o′ , o′

)
with Σc, o′ be-

ing a regular surface embedded in R
3 (let’s remind that embedding is an injective

immersion), i.e., Σc, o′ is also an two-dimensional Riemannian manifold. Let us

also introduce on Σc, o′ a coordinate system u =
(
u1, u2

)
(notice that this surface

has a unique chart in R
2) and let

a = aαβdu
α ⊗ duβ , α, β = 1, 2 (56)

be its metric tensor induced by the Euclidean product in R
3 (see Section 4). Then

to every point x ∈ R
3 there corresponds a unique point on σc, o′ (intersection be-

tween σc, o′ and Σc, x) with coordinates u (x) =
(
u1 (x) , u2 (x)

)
and vice versa.

Therefore, the map

fc : R
3 → R

3, x �→ ξ =
(
ξ1, ξ2, ξ3

)
:= fc (x) =

(
u1 (x) , u2 (x) , s (x)

)
(57)

is one to one and possesses a continuous first-order derivative. Notice that it is not

necessary to particularize the coordinate s to be the length of the arc on σc, o′ [35].

In fact we have the following

Theorem 2 ([35]) Let ξ3 = s be any coordinate on σc,o′ .
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1) Introducing on σc,o′ the positive metric function σ(s), we have in the case of
the Euclidean space W3.g

k′ic(x) =

⎧⎨⎩
√

(kc(x),kc(x))+1

σ(s(x)) if i = 3

0 otherwise
(58)

and the global coordinate transformation fc : x �→ ξ = fc (x), x ∈ R
3,

transforms the unity tensor δij(covering with the standard Euclidean metric
tensor in R

3 - see equation (172)) into the metric tensor gij with components

gij (ξ) =

⎧⎨⎩
aαβ
(
ξ1, ξ2

)
i = α, j = β ; α, β = 1, 2

0 i = 3, j = β = 1, 2; j = 3, i = α = 1, 2
σ
(
ξ3
)

i = j = 3.
(59)

The map fc, being a global coordinate transformation on the flat space R
3,

generates the identically vanishing Riemannian curvature tensor associated
with gij .

2) Introducing on σc,o′ the negative metric function g33 (s), we have in the case
of the orthogonal Minkowski space W3.g

k′ic (x) =

⎧⎨⎩
√

(kc(x),kc(x))−1

g33(s(x))
if i = 3

0 otherwise
(60)

and the global coordinate transformation fc : x �→ ξ = fc (x), x ∈ R
3,

transforms the standard fundamental Minkowskian tensor ηij( of the signa-
ture (+,+,−) - see equation (172)) into the metric tensor gij of the same
signature and with components

gij (ξ) =

⎧⎨⎩
aαβ
(
ξ1, ξ2

)
i = α, j = β ; α, β = 1, 2

0 i = 3, j = β = 1, 2; j = 3, i = α = 1, 2
g33
(
ξ3
)

i = j = 3.
(61)

3) In both cases, i.e., for the Euclidean as well as for the Minkowski space,
the surface Σc,o′ has the zero Gaussian curvature, i.e., it is a developable
surface.

Finally, if a global coordinate system possesses the developable coordinate sur-

faces normal to the k-direction, then the considered orthogonal metrics can be

represented in the following form

gε (ξ) = gij (ξ; ε) dξ
i ⊗ dξj = a

(
ξ1, ξ2

)
+ g33

(
ξ3; ε
)
dξ3 ⊗ dξ3

(62)
a
(
ξ1, ξ2

)
= aαβ (ξ

κ) dξα ⊗ dξβ , α, β, κ = 1, 2; i, j = 1, 2, 3
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where
[
ξi
]
= cm and

g33
(
ξ3; +1

)
= σ
(
ξ3
)
> 0

(63)
g33
(
ξ3;−1

)
= g33

(
ξ3
)
< 0.

In the case of Minkowski space, that is when we are dealing with the configuration

space of electronic processes in a graphene sheet, it is considered a stationary
metric with the temporal parameter τ defined by the conditions:

ξ3 = vF τ, g33
(
ξ3
)
= −1

[vF ] = cm s−1, [τ ] = s
(64)

where vF > 0 is the Fermi velocity (Section 1).

The Minkowski space is an effective configuration space of electronic processes in

a graphene sheet. If the graphene sheet is corrugated (see Sections 1 and 2), then

the non-developable surfaces ought to be taken into account as its configurations

(see Section 4) and, correspondingly, a space dependent effective Fermi velocity,

this is let’s say vF = vF
(
ξ1, ξ2

)
, is then frequently considered (see e.g. [22]).

Notice also that the temporal parameter τ can be treated as an internal time not

necessary equals to the dynamical time appearing when the dynamics (or kinemat-

ics) of graphene sheets is considered. The such defined configurational space is

not, in general, a flat pseudo-Riemannian space.

A simply connected three-dimensional flat (pseudo-)Riemannian manifold must

have a globally defined orthonormal triad of covariant constant vector fields. One

can use these vector fields to define globally three coordinate functions which pro-

vide a local isometry into an orthogonal space (Minkowski or Euclidean space).

This is in effect a global version of coordinates that put a flat metric locally in the

form of the orthogonal metric. This local isometry is called the developing map.

If the flat manifold is complete, then the developing map is a global isometry onto

the orthogonal space [6].

Let’s consider a smooth moving frame e = (ea)1≤a≤3 not generated by a coordi-

nate system and such that (see, for example, Section 5)

g = gabe
a ⊗ eb, sgn (e3, e3)g = ε, ε = ±1 (65)

where designations of equations (171), (172) and (62) were taken into account, and

e∗ = (ea)1≤a≤3 is the moving coframe dual to e. The transformation

ea �→ F k = Bk
ae

a, B =
(
Bk

a;
k↓1,2,3
a→1,2,3

)
: U ⊂ A3,g → GL+ (3) (66)
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defines a moving coframe F =
(
F k
)
1≤k≤3

generated by a global (local) coordi-

nate system if and only if there exists a global (local) diffeomorphism λ : A3,g →
A3,g such that if

dλP : TPA3,g → Tλ(P )A3,g, dλP (uP ) = F (P )uP , uP ∈ TPA3,g (67)

where TPA3,g � Tλ(P )A3,g � W3,g (see Appendix B), then

F (P ) = ∂k|λ(P ) ⊗ F k (P ) . (68)

If (O, x) is a coordinate system on A3,g and

Fk (P ) = F k
m (x (P )) dxmP (69)

then

F k
m = ∂λk/∂xm, λk = xk ◦ λ ◦ x−1, x (O) → R

3. (70)

Particularly, if λ = f is the above considered global bending, then this diffeomor-

phism defines the developing map that maps the developable coordinate surfaces

(space-like if we are dealing with the point space of Minkowski type) into the pla-

nar reference configuration Σn.

If c = (cm)1≤m≤3 is a global base of the orthogonal vector space W3,g defining

a global coordinate system of the orthogonal point space A3,g (Appendix A) such

that (cf. equations (42) and (43))

c1, c2 ∈ Σn, sgn (c3, c3)g = ε (71)

c∗ = (cm)1≤m≤3 is the corresponding dual frame of W ∗
3,g, and

ea = P a
mcm, P =

(
P a

m; a↓1,2,3
m→1,2,3

)
: U ⊂ A3,g → GL+ (3) (72)

then, according to equation (66), we have

F k
m = Bk

bP
b
m. (73)

Let us assume that Sa = (S, a) is a regular surface in the configurational orthogo-

nal point space A3,g, defined by a local isometric embedding of a two-dimensional

material space of a corrugated graphene sheet (see Sections 2 and 4, Appendix B

and [17], [42]), such that components of the metric tensor a cover with the two-

dimensional unity tensor δαβ

a := δαβe
α ⊗ eβ , α, β = 1, 2 (74)

and e3 is the vector field normal to Sa. Next, let us consider the tensor
(
F k

m

)
as a global deformation tensor of the planar reference configuration Σn of the
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graphene sheet. The equation (73) can be interpreted then as a decomposition

of this deformation tensor on two local distortions: the plastic distortion
(
P b

m

)
describing a corrugated state of the planar reference configuration of the graphene

sheet (and thus defining a parametrization of the corrugated graphene sheet), and

the elastic distortion
(
Bk

b

)
describing a deformation of the corrugated graphene

sheet. In our case the plastic distortion is due to the internal curvature effect (cf

Sections 1 and 2). Particularly, if the material space of graphene sheets is flat

(see equation (39)), then the field of plastic distortions defines locally developable
configurations of the graphene sheet diffeomorphic (at least locally) to a graphene

sheet located in the planar reference configuration Σn ⊂ A3,g (see Sections 4

and 5). It can be, for example, the case of amorphous graphene generated by

introducing Stone-Wales defects into the perfect graphene lattice (Section 1).

4. Geometry of Embedded Graphene Sheets

If we are dealing with a graphene regular surface in the affine point space A3,g

modelled on the orthogonal vector space W3,g (Appendices A and B, Section 3),

then the knowledge of its first and second fundamental tensors (defined in this Sec-

tion) facilitates the analysis of the influence of surface shape on the physical states

of graphene. First fundamental tensor is an intrinsic object of the surface at repre-

sents the states of the graphene material structure in a manner invariant with respect

to translations and g-orthogonal motions of the surface in the ambient three-space

(preserving additionally the space-like type of geometry of the graphene surface

if we are dealing with the Minkowski-type point space). Concerning the second

fundamental tensor, it is an extrinsic tool to characterize the shape of graphene

configurations in terms of the orthogonal geometry of the ambient three-space. It

is a basic fact that we can talk about characteristics of the embedded graphene

surface measured by means of its second fundamental tensor only when it can be

considered as a metric tensor on the surface, that is, only if it is a non-degenerate

symmetric two-covariant tensor field (Appendix B).

So, given a smooth two-dimensional Riemannian manifold Ma = (M,a), say

e.g. appearing in the description of the isothermal stability of the graphene ma-

terial structure due to the curvature effect (Section 2). This internal geometry is

observed in the Euclidean physical configurational space A3,g as wrinkling the

graphene sheet. It is because two-dimensional Riemannian manifolds are locally
embeddable in the Euclidean point space A3,g (see remarks below). So, let as as-

sume that there exists a mapping κ : Ma → A3, g, S ≡ Mκ := κ (M) ⊂ A3, such
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that S is a regular surface (Appendix B) and

κ∗g = a (75)

where g is the metric tensor of the Euclidean point space A3,g, and κ∗ is the pull

back mapping (Appendix C). Let’s notice that smoothly and isometrically local

immersing a two-dimensional Riemannian manifold Ma into A3 is equivalent to

finding locally three smooth functions xi : M → R, [xi] = cm (see Appendix C),

i = 1, 2, 3, such that

a
.
= δij dx

i ⊗ dxj , [a] = cm2,
[
dxi
]
= cm. (76)

In local coordinates u =
(
u1, u2

)
: O → R

2, [ui] = cm, O ⊂ M , the metric a is

of the form

a
.
= aαβdu

α ⊗ duβ (77)

where

aαβ = δij∂αx
i∂βx

j , ∂α = ∂/∂uα, [∂α] = cm−1 (78)

xi = xi
(
u1, u2

)
, i = 1, 2, 3, are embedding functions and, for the simplicity of

the notation, the images u (Q) =
(
u1 (Q) , u2 (Q)

) ∈ U ⊂ R
2 of points Q ∈ O

under the mapping u, are designated also by u =
(
u1, u2

)
. The mapping κ is

called isometric embedding or isometric immersion if κ is embedding or immer-

sion, respectively. If A3,g is the Minkowski point space, then above statements are

preserved under the condition that the surface S = Mκ is a space-like surface (i.e.,

S is endowed with the positive definite metric tensor [28]). In this case we are

saying that κ is a space-like isometric immersion (or embedding) [28]. There are

several surveys on this topic (e.g., [10], [17], [28] and Appendix B).

Let c = (ci)1≤i≤3, be a g-orthonormal base of the orthogonal vector space W3,g

fulfilling the condition (71) (i.e., the space can be Euclidean or Minkowski type)

with the versor c3 parallel to the versor n appearing in equation (42). We will

denote

x = xici, O ⊂ M, r = x ◦ u−1, U ⊂ R
2, u =

(
u1, u2

)
[x] = [r] = [1] , [ci] = cm−1,

[
xi
]
= [uα] = cm.

(79)

In these designations

aαβ = (rα, rα)g , rα = ∂αr, [rα] = cm−1, [aαβ ] = [1] (80)

where ∂α = ∂/∂uα, α = 1, 2. Let us denote by Sa = (S,a) the range S = Mκ ⊂
A3,g of M under an isometric regular embedding κ (see Appendix B) endowed

with the induced metric a defined locally on the surface S by equations (77) - (80).
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The Riemannian two-dimensional manifold Ma can be locally identified, without

losing of the generality of description of the internal geometry, with the regular
surface Sa endowed with the metric a. This metric tensor is called then the first
fundamental tensor of the (regular) surface S.

Consider a curve γ : T → S on the surface Sa defined by (see Appendix A)

t ∈ T ⊂ R �→ γ (t) =
−−−−→
Oγ (t) := r (u (t)) (81)

where t, [t] = [1], is an affine parameter. The arc length element dsa of this curve

is given by

ds2a (t) = (γ̇ (t) , γ̇ (t))a = I (u) (t) , [sa] = cm

I (u) = E (u)
(
du1
)2

+ 2F (u) du1du2 +G (u)
(
du2
)2 (82)

where
E = (r1, r1)a , F = (r1, r2)a , G = (r2, r2)a

[γ̇] = [E] = [F ] = [G] = [1] , γ̇ (t) = dγ (t) /dt
(83)

and the subscripts 1, 2 denote partial derivatives. This tensor I , [I] = cm2, is called

the first fundamental form. One then introduces embedding functions xi = xi (u),
[xi] = cm, i = 1, 2, 3, such that

δijdx
i (u) dxj (u) = I (u) (84)

which implies

E = δijx
i
1x

j
1, F = δijx

i
1x

j
2, G = δijx

i
2x

j
2 (85)

and where xiα = ∂xi/∂uα. Notice that if x′ =
(
x′i ; i → 1, 2, 3

)
: U ⊂ R

2 →
R
3 is the different embedding mapping that defines the same first fundamental

form I(u), then the so-called Rigidity Theorem [19] states that the mapping x′ ◦
x−1 : x (U) → x′ (U) is an isometry in R

3.

The system (85) of non-linear first order partial differential equations is not any

standard type. For example, it is known, that any analytic two-dimensional Rie-

mannian manifold admits a local analytic isometric embedding in R
3 (and thus -

in A3,g) [17], [19], while any smooth two-dimensional Riemannian manifold ad-

mits a local smooth isometric embedding in R
4 [19]. However, for any point of a

C1 two-dimensional Riemannian manifold there is a neighbourhood which has a

C1 isometric embedding in R
3 [10] and any smooth nonnegatively curved metric

always admits a local smooth embedding in R
3 [19]. Moreover, if the Gaussian

curvature K of a smooth surface Sa satisfies the following condition at the point

P ∈ Sa

K (P ) = 0 and dK (P ) �= 0 (86)
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or it satisfies the condition

dK (P ) ≤ 0 and d2K (P ) �= 0 (87)

then it admits a smooth local isometric embedding in R
3 near P [19].

Let us notice also that, according to Theorem 3, the existence of a global isomet-
ric embedding needs the existence of a global planar reference configuration (cf

Section 3). Moreover, the following theorems hold

Theorem 3. (Embeddings) [19]

3.1 (Olovjasnikov-Pogorelov) Any smooth complete positive curvature metric de-
fined on R

2 admits a smooth global isometric embedding in R
3.

3.2 (Hilbert-Efimov) Any complete surface with negative constant curvature (with
curvature bounded above by a negative constant) has no smooth global isometric
immersion in R

3.

The Gaussian curvature K characterizes the intrinsic geometry of the surface. But

for a complete description of its embedding into the Euclidean point space A3,g we

need additionally to introduce the so-called second fundamental tensor of Sa =
Mκ,a

b = bαβdu
α ⊗ duβ , [b] = cm, b = det (bαβ) , [b] = cm−2 (88)

where

bαβ (u) = (∂αrβ , n)g , [bαβ ] = cm−1 (89)

and further on the vector field

n =
r1 × r2

‖r1 × r2‖g

, [n] = cm−1 (90)

denotes the unit vector field normal to the surface. It is an external tensorial mea-
sure of the surface geometry. For example, it is known that the second fundamental

tensor of a surface in the Euclidean point space A3,g is non-degenerate (i.e., b �= 0)
if and only if this surface is non-developable [36]. The same statement is valid in

the case of a space-like surface in the affine point space modeled on the orthogo-

nal Minkowski space. Embedding of the surface into A3,g is dictated now by the

Gauss-Weingarten equations [32]

bαβn = ∂αrβ − Γκ
αβ [a] rκ, ∂αn = −aβκbακrβ , α, β, κ = 1, 2 (91)

where Γκ
αβ [a] are the Christoffel symbols corresponding to the first fundamental

form a.
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In order to quantify the curvatures of the surface Sa ⊂ A3,g, we consider the so

called natural curve γ on Sa defined by the condition that t = γ̇, [t] = cm−1 , is

its unit tangent [42]. Let κ denotes the curvature vector of this curve [14], [37]

κ =
dt

ds
= κa+κn, (κa, κn)g = 0

κn = κnn, κn = (t, t)b = bαβl
αlβ , [κn] = cm−1

(92)

where s, [s] = cm, is the length of the arc on γ and (u, v)b denotes the bilinear

symmetric form defined by the second fundamental tensor b. The vector κn is

called the normal curvature vector of the surface Sa in the direction t and the

scalar κn is called the normal curvature (of the surface Sa in the direction t). The

second fundamental form II = II (u) is defined by

II := bαβdu
αduβ = L

(
du1
)2

+ 2Mdu1du2 +N
(
du2
)2

(93)

where [II] = cm, and [58]

L = (n, ∂1r1)g = − (r1, ∂1n)g , N = (n, ∂2r2)g = − (r2, ∂2n)g

M = (n, ∂2r1)g = − (r1, ∂2n)g = − (r2, ∂1n)g
(94)

where [M ] = [N ] = [L] = cm−1. Let us denote

ϕ = u2 ◦ (u1)−1
, u1 (T ) → R, T = 〈0, l〉 , λ = dϕ/du1 (95)

where u1 : s ∈ T �→ u1 ≡ u1 (s) ∈ R. The normal curvature can be expressed

by [58]

κn =
II

I
=

Nλ2+Mλ+L

Gλ2+Fλ+E
· (96)

The extreme value of κn can be obtained by evaluating the condition dκndλ = 0
of equation (96), which gives the condition [58]

κ2n − 2Hκn +K = 0 (97)

where

K =
LN −M2

EG− F 2
, H =

EN +GL− 2FM

2 (EG− F 2)
· (98)

If

H2 ≥ K (99)

then the above equation defines the so-called principal curvatures κ1 and κ2, κ1 ≥
κ2, such that

K = κ1κ2 , H =
1

2
(κ1 + κ2) (100)
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or equivalently [32], [44]

K = det
(
a−1b

) .
= det

(
bαβ
)
, 2H = tr

(
a−1b

) .
= tr

(
bαβ
)
, bαβ = aακbκβ .

(101)

From equations (89) and (101) follows

Statement 2. A non-developable surface Sa ⊂ A3,g with the positive Gaussian
curvature K posseses a positive definite second fundamental tensor b if Sa is ap-
propriately oriented.

Let us notice that, according to our convention concerning the dimensions of geo-

metric objects (see Appendix C, equations (76) - (80), and equations (88) - (90)),

the second fundamental tensor can be treated as a measure of the length only after

its rescaling, say, for example, in this manner

b → bθ = l (θ)b, [l (θ)] = cm (102)

where l(θ) is the characteristic thermal length at the temperature θ (Section 2).

So, if a graphene sheet is embedded in a configurational space (its space of con-

figurations or its space of internal processes - see the definitions at the beginning

of Section 3), then its physical properties can be represented not only by its topo-
logical shape effects (say e.g. the difference of physical properties of fullerenes

and nanotubes) but also by its non-topological shape effects depended on both its

curvatures (Gaussian and mean). The case of developable surfaces was discussed

in Section 3. If the surfaces are non-developable, then the problem of the formula-

tion of physically sensible constitutive relation between the energy and curvatures

leads us to the theory of regular surfaces with the geometry obtained from a vari-
ational principle. For this purpose, let us consider a variational principle based on

the energy functional E which is defined for open regular domains O ⊂ Sa of the

regular surface Sa in the Euclidean point space A3,g (Appendix B) by

E (O ; H, K) =

∫
O
e (H, K) dS, detb

.
= det (bαβ) �= 0 (103)

where the so-call surface energy density e is some function of the curvatures H
(mean) and K (Gauss) of the (regular) surface Sa. The first variation of the above

functional E gives the following Euler-Lagrangian equation for the energy density

function e (see [51], [44] and also references therein)

1

2
Δa (∂e/∂H) + Λa, b (∂e/∂K) +

(
2H2 −K

)
(∂e/∂H)

+ 2KH (∂e/∂K)− 2He = 0 (104)
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where the differential operators Δa and Λa, b are defined as (cf Appendix C)

Δa =
1√
a

∂

∂uα

(√
aaαβ

∂

∂uβ

)
, Λa, b =

1√
a

∂

∂uα

(√
aKbαβ

∂

∂uβ

)
(105)

and aαβ and bαβ are the inverse components of the first and second fundamental

tensors, respectively, and a = deta
.
= det (aαβ).

If the Riemannian geometry of the graphene sheet is consistent with the Weyl ma-

terial space defined in Section 2, that is the conditions (75) - (80) are fulfilled and

thus the Riemannian material space Ma can be locally identified with the regular

surface Sa, then we can introduce the induced “thermal state vector” v (see the

commentary at the end of Section 2) as

v = κ∗w ∈ W (Sa) (106)

and equation (30) transforms into the isothermal thermal state equation

divav + 2K = r, v = vα (u, θ, dθ) ∂α, vα = 2aαβεα (107)

where the differential operator diva is defined by equation (31), the covector field ε
is defined by equation (28) for a temperature field θ defined on the surface Sa, and

the condition (29) should be taken into account. If the material Riemannian mani-
fold Ma = (M , a) is flat, then the observed graphene sheet is locally developable
(see Section 3) and the condition (107) with K = 0 ought to be taken into ac-

count. If the graphene sheet is a non-developable surface, then the condition (104)

ought to be additionally fulfilled. The system of equations (104) - (107) defines

the geometry of isothermal configurations of the nonplanar corrugated graphene

sheet represented by the pair (a, v). This pair defines also the local description of

isothermal material Weyl geometry discussed in Section 2.

Particularly, if the case defined by equations (32) - (34) and (37) is considered, then

the material Weyl geometry of the embedded corrugated graphene sheet reduces to

the conformal rescaling a → ã = aθ, where

aθ = e−2σ(θ)a = η (θ)2 a, η (θ) = lo/l (θ) (108)

and θ : S → R+ is the distribution of the absolute temperature. The Gaussian

curvature transforms according to the rule K → K̃ = Kθ, where

Kθ = e2σ(θ) (Δaσθ +K) (109)

and it was denoted σθ = σ (θ) ≡ σ ◦ θ. Thus, according to equation (38), we

obtain that

Kθ =
r

2
e2σ(θ) =

r

2
η (θ)−2 , [r] = cm−2. (110)
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This means that, in this particular case (see Theorem 3), the Gaussian curvature

can not change the sign. If r �= 0, then a spherical or saddle-shaped surface

occurs alone what corresponds to the case when the pentagon or heptagon defect

occurs alone, respectively, if r = 0, then, for example, the case of a developable

amorphous graphene sheet can takes place (Section 1).

Let us notice that the existence of the characteristic thermal length parameter l(θ)
(see equations (37) and (108)) allows to introduce the following non-topological

dimensionless thermal shape parameter of non-developable graphene sheets

υ (θ) :=
H

l (θ)K
(111)

representing the observed correlation of the curvature of surface with the thermal

state of this surface (Section 1).

5. Congruence of Lines Generated by the Thermal State Vector Field

The proposed model of isothermal geometry of corrugated graphene sheets is as-

sociated with two distinguished vector fields. Firstly, the coupling of the curvature

and thermal effects is represented by the thermal state vector v tangent to the sheet

(equations (106), (107) and Section 2). Secondly, a vector field normal to the sheet

appears (Section 3 - the vector field k and Section 4 - the unit vector field n normal

to the regular surface Sa). Suppose that the vector field v is non-vanishing and

denote

t =
v

‖v‖ g

· (112)

Now, we can consider the ordered triple (t, m, n) of g- orthonormal smooth vector

fields tangent to the configurational orthogonal point space A3,g and such that the

pair (t, m) is a base of the module Wn(A3,g) of all smooth vector fields normal

to the n - direction (that is, tangent to the surface Sa). Let us remind that if the

space A3,g is Minkowski type, then Sa is a space-like surface and n - a timelike

vector field. Next, let us assume that this triple covers with the Frenet moving
frame of the congruence C[t] of lines generated by the direction t. The Frenet

moving frame is defined by the generalized formulas of Frenet (called also the

Serret-Frenet formulas), which may serve as a definition of the curvature κ and

torsion τ of lines of the congruence C[t] [28], [31], [47]

κ = ∇g
t
t = κn, κ > 0

∇g
t
n = −εκt+ τm, τ ≥ 0 (113)

∇g
t
m = −ετn, κ, τ ∈ C∞ (A3,g)
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where

ε =

{
+1 Minkowski space

−1 Euclidean space
(114)

and in the case of Minkowski space (of the signature (+,+,−) are considered

space-like curves (i.e., the tangent t and the binormal m are space-like vector

fields); the principal normal n is then a timelike vector field. The principal normal

is indeterminate when the curvature κ vanishes. The Frenet moving frame defines

three distributions of planes: πm = π(t, n) - osculating planes, πt = π(n, m) -

normal planes, πn = π(m, t) - rectifying planes. The vector field κ is the curvature
vector of the congruence C[t].
Let us restrict ourselves to the case of the Euclidean configurational space A3,g.

Then, in the case of nonplanar graphene sheets, the rectifying planes are tangent

to the non-developable regular surfaces (Section 4). In the case of flat graphene

sheets the rectifying planes are tangent to developable surfaces (Section 3).

We can define, for a curvilinear coordinate system on A3,g (or, more generally,

in the case of a general three-dimensional Riemannian space endowed with the

metric tensor g), the so called curl operator of vector fields v = vk∂k tangent to

this manifold, by

u = curlv = uk∂k, uk = eklm∇g
lvm = eklm∇g

lvm (115)

where ∇g is the Levi-Civita covariant derivative corresponding to the metric tensor

g, eklm is the so called Ricci vector defined as

eklm =
√
gεklm, g = det (gkl) (116)

and εklm is the permutation symbol. This operator is frequently written in the form

curl v = ∇× v (117)

which has its origin in the Euclidean cross product

c = a× b ⇐⇒ ck = gklεlmna
mbn (118)

where gkl = (ek, el)g and (ek)1≤k≤3 is a vector base of the Euclidean vector

space W3,g.

Let us quote some formulas and statements taken from [31]. It follows from equa-

tions (113) - (114) that curl t has no components in the principal normal

curl t = ωlt+ κm. (119)

It tell us that if a surface were to exist which contained both t-lines and m-lines,

then t-lines would have to be geodesics on this surface, and m-lines would have
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to be parallel on the surface. Let us now suppose that at each point P of A3,g the

triad (t, m, n) be such that

(n, curln)g = 0. (120)

Since the condition (120) is necessary and sufficient for the existence of a family

of surfaces whose normal coincide with the principal normal of t-lines, we have

Theorem 4 ([31]) The lines of the congruence C[t] will be geodesics on a family
of surfaces, if and only if the condition (120) holds. Moreover this condition is
equivalent to the condition

n = ψ gradϕ (121)

and the condition (121) is necessary and sufficient for the existence of a family
surfaces

Σc = ϕ−1 (c) ⊂ A3,g, c = const (122)

whose normal is n.

Let us consider also the representation of the Weyl material space given by the

pair (Sa, v) located in the Euclidean point space A3,g (Sections 2 and 4) and such

that the surface Σc is a slice of the regular surface Sa. Since the tangent planes

to the surface Σc are spanned by t and m, their integral curves are contained in

this surface. Thus, although in general the arc distances along an n-line can not be

considered as coordinates, we may consider coordinates u = (u1, u2) on Σc such

that u1-parametric curves (u2 = m = constant) cover with the t-lines and such

that u2-parametric curves (u1 = l = constant) cover with the m-lines). Moreover,

according to the above theorem, we can take for the coordinate u1 the length l of

arc of the geodesics of Σc tangent to the t direction, that is the metric tensor of Σc

is [31]

a = du1 ⊗ du1 + a
(
u1, u2

)
du2 ⊗ du2. (123)

The mean H and the Gaussian curvatures K of such surface Sa are (in designa-

tions [31] where it is assumed that H ≡ κ1 + κ2)

2H = −divn (124)

and

K = −κ (κ+ divn)− τ 2. (125)

It follows from equations (124) and (125) that the curvature κ and the torsion τ ap-

pearing in the generalized formulas of Frenet and the curvatures of the considered

regular surface are coupled by the relation

2
H

κ
− K

κ2
= 1 +

(τ
κ

)2
. (126)
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Thus, if the condition (120) is fulfilled, then apart of the condition (107) which

limits the thermal state versor t of equation (112), the relation (126) ought to be

fulfilled.

Let us notice that the Darboux vector

d = τt+ κm (127)

is inclined to the t direction at the angle ϑ, where [31]

ctgϑ =
τ

κ
· (128)

Thus, according to equations (111), (126) and (128), the thermal shape parame-

ter υ (θ) of the non-developable regular surface Sa such that Σc ⊂ Sa has the

following representation

υ (θ) =
1

2l (θ)

[
1

κ
+

κ

K

(
1 + ctg2ϑ

)]
. (129)

The m-lines can be geodesics if and only if

K = 0 (130)

that is if and only if the surface Σc of equation (122) is developable. It can be

shown that the only type of surface that can accommodate orthogonal families of

geodesics is a developable [31]. For example, if, in addition to the condition (120),

the vector field t satisfies the following condition

(gradt (m) , m)g = 0, gradv (u) := ∇g
uv, u ∈ W (A3,g)

gradv ∈ W (A3,g)⊗W (A3,g)
∗ , v ∈ W (A3,g)

(131)

where the Euclidean point space A3,g is treated as a Riemannian manifold (Ap-

pendix B), then the surface Σc is a developable. From the condition (112) it follows

that then the thermal state vector v has the form

v = v t (132)

where t is the versor which appears in the generalized of formulas of Frenet and

fulfils the conditions (120) and (131). In this case the vector field v can be named,

modify the onomastic of [31], a flat thermal state vector. The first fundamental

form of Σc associated with the flat thermal state vector is

ds2a = dl2 + dm2. (133)
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It means that the t-lines and the m-lines comprise a two dimensional Euclidean

space on this surface (see, for example, the Stone-Wales defect, Section 1). The

conditions (107) and (126) reduce then to

divav = r, r = const (134)

and

2
H

κ
= 1 +

(τ
κ

)2
(135)

respectively.

The rectifying plane belonging to the distribution πn of planes has the equation(−−−−→
P (l)X, n (l)

)
g
= 0 (136)

where X is a point on the plane and P (l) is a point on the t-line (with its length

of the arc parameter l ≥ 0, [l] = cm). As l varies the rectifying planes comprise

a one-parameter family of planes which envelope the rectifying developable of the

t-line. We have (cf. Theorem 2)

Theorem 5 ([31]) A normal congruence of developable surfaces defined by the
condition (120) is possible if and only if a representative surface ϕ (P ) = constant
is the common rectifying developable of all t-lines situated upon it.

Thus, the representative surface ϕ (P ) = constant is then a locally developable

surface endowed with the flat thermal state vector (see Section 3 - locally devel-

opable surfaces defined by local plastic distortions). The thermal state t-line is a

curve upon this surface. By Theorem 4 it is a geodesic on the surface. Finally, we

see that the Frenet moving frame (t, m, n) of equation (113) with ε = 1 defines

an orthogonal family of geodesics on the graphene sheet Sa with its normal versor

field n if and only if the slice Σc = ϕ−1 (c) of this sheet is a developable surface.

It is the case of the flat Riemannian material space Ma = (M,a) (Section 2) with

the parametrization of its local isometric embedding in A3,g (Section 4) defined by

the plastic distortions (Section 3) and endowed with the flat thermal state vector
defined by equations (112) and (132) - (135).

6. Conclusions and Remarks

The new method of description of isothermal corrugations of graphene sheets pro-

posed in the paper is based on the notion of the Weyl material space introduced in

Section 2. This theory begins with the observation that the curvature and the lat-

tice thermal fluctuations of graphene sheets are coupled with their thermal stability
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(see Section 1). It is a counterpart of the Tolman-Ehrenfest relation considered in

the theory of stationary space-times (e.g. [38]). Namely, this relation states that the

temperature is not constant in space at equilibrium but varies with its curvature.

However, in contrast to the case of Tolman-Ehrefest relation, the 2D-dimensional

Weyl material space can be observed (at least locally) in the (2D+1)-dimensional

physical configurational space (Sections 3 - 5). Consequently, a graphene sheet

can be treated as a thermodynamic system in diathermal and isothermal conditions

(cf. [48] and [49]) which is in contact with a heat bath (see, e.g. [16], [18]). Next,

a graphene sheet is additionally endowed with the distinguished thermal state vec-

tor field defined by equations (106) and (107). It enables to consider the equation

(107) and the condition (126) as relations that can be associated with the influence

of the heat bath on this sheet (cf. [38]).

The proposed model of the isothermal geometry of graphene sheets concerns, in

general, the case of local continuous thermomechanic description of macroscopic

graphene samples (see Section 1 and the estimation for planar samples quoted

therein). However, the model of a nonplanar regular surface defined by equation

(104) means that the influence of the mean curvature H on the surface energy of

graphene sheets is taken into account. Consequently, effects conditioned not only

by the intrinsic geometry of a graphene sheet (represented by the Gauss curvature

K - (Section 2) but also by his shape observed in the configurational space (Sec-

tions 4 and 5), can be taken into account (see remarks in Section 1 concerning the

non-local effects and, for example, [2], [48], [49]). For example, the existence of

the thermal state vector field and the characteristic thermal length parameter (Sec-

tion 2) enables to introduce a common representation of these effects in the form

of the non-topological dimensionless thermal shape parameter (equation (111))

which is dependent on the geometry of the congruence of lines generated by the

thermal state vector field (equation (129)) and is consistent with the observed cor-

relation of the geometry of graphene sheets with their thermal state (Section 1).

Let us compare the proposed description of corrugated graphene sheets as regular

surfaces with the variational geometry based on the curvature dependent surface

energy density (Section 4) with the model of the surface tension proposed in papers

[1] and [2]. It was observed in [1] that the membrane model of the surface tension

is not adequate for the satisfactory description of mechanical behaviour of such an

interface for which the energy density depends on curvatures only (see remarks in

Section 1 relating to this problem). For this reason, a more complex Cosserat two-
dimensional model (shell model) (see e.g. [15]) was proposed in [1]. However,

this approach leads to the more general theory of material surfaces than this is

necessary to the description of curvature dependent surface tension only [1], [2].

For example, the case of boundary surfaces of incompressible fluids endowed with
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the surface energy density of form e (H, K) = aH+bK+c, where a, b, c are some

constants, was considered in [2]. In this case, the general approach presented in [1]

(and reformulated in [2]) leads, when the surface cannot transmit tangential forces,

to the following generalization of the well known Laplace formula: (p, n)g =
αH + βK, where α, β are constants, n is the unit vector normal to the surface and

p is the vector of the surface density of external forces acting on the surface (it can

be a resultant of forces exerted on the surface of separation of two liquid phases). It

suggests that the 2D-model of Cosserat continuum can be useful for the description

of a broad class of internal forces acting in corrugated graphene sheets treated as

solid surfaces endowed with the variational isothermal geometry (see remarks in

Section 1 concerning this problem). The differential equation (104) can be treated

then as a constitutive relation that defines a relationship between the energy density

and curvatures of the considered Cosserat surface. The equations (107), (112) and

(126) connect then the geometry of this surface with the isothermal distribution

of its temperature. Consequently, this approach enables to consider a relationship

between the Cosserat-type internal forces of a corrugated graphene sheet and its

temperature. We leave the detailed analysis of this topic to a separate study.

Appendix A - Affine Spaces and Mappings

Let Wn be the n-dimensional real vector space, L(Wn) - the real linear space of all

R-linear mappings L : Wn → Wn, and let T 1
1 (Wn) denotes the real linear space

of all one-contravariant and one-covariant tensors over the vector space Wn. If

e = (ei)1≤i≤n is an ordered base in Wn and e∗ =
(
ei
)
1≤i≤n

is the base of the

covector space W ∗
n dual to e, then the tensor

A = Ai
kei ⊗ ek ∈ T 1

1 (Wn) = W ∗
n ⊗Wn,

〈
ei, ek

〉 ≡ ei (ek) = δik (137)

acts according to the following rules

x = xiei ∈ Wn =⇒ y = Ax = Ai
kxj
〈
ei, ej

〉
ek

y = ykek ∈ Wn, yk = Aj
kxj

(138)

and if additionally

x = Bu, B =Bk
iek ⊗ ei, u ∈ Wn (139)

then

y = Cu, C = AB = Cj
iej ⊗ ei, Ci

j = Ak
iBj

k. (140)

The above formula, treated as a multiplication rule in the R-linear space T 1
1 (Wn),

defines in this space the structure of a ring with the unit element 1 = δije
j ⊗ ei,
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where δij ≡ δij is the so called unity tensor. It enables to define the following

canonical isomorphism

ι : A ∈ T 1
1 (Wn) �→ ι (A) = LA ∈ L (Wn) , u ∈ Wn ⇒ LA (u) = Au.

(141)

We have

LA ◦ LB = LAB, detA = detLA, L1 = I ≡ idW3
. (142)

Let us denote

Gaf (Wn) = Wn ×GT 1
1 (Wn)

GT 1
1 (Wn) :=

{
A ∈ T 1

1 (Wn) ; detA �= 0
}
.

(143)

The multiplication rule (140) defines in the set GT 1
1 (Wn) the structure of a group

and enables to define in the set Gaf (Wn) the following algebraic structure of the

semidirect product of groups GT 1
1 (Wn) and (Wn, +) with the unit element eaf

(a,A) (b,B) = (a+Ab, AB) , e = (o, 1)

(a, A) (a, A)−1 = e, (a, A)−1 =
(−aA−1, A−1

)
.

(144)

We will denote by Af(Wn) the set of all nonsingular affine mappings of the vector

space Wn, that is, the bijections (i.e., mappings onto and one-one) f : Wn → Wn

acting according to the rule

f (x) = f(a,A) (x) = Ax+ a, (a, A) ∈ GafT
1
1 (Wn) (145)

and with the group structure defined by

f(a,A) ◦ f(b,B) = f(a,A)(b,B), idW3
= fe. (146)

Let us denote by (An,Wn, ϕ) the triple of geometrical objects defined by the n-

dimensional real vector space Wn and a set An such that there exists a bijection

ϕ : An → Wn. (147)

The space An is called a n-dimensional point space modelled on the vector space

Wn. If Σ is the set of all bijections of the set An into itself, then we can define the

following representation of the group Gaf(Wn) in Σ [39]

Φ: Gaf (Wn) → Σ

Φ: (a, A) �→ Φ(a, A) := Φ(a, A) := ϕ−1 ◦ f(a, A) ◦ ϕ
Φ(a, A) ◦ Φ(b, B) = Φ(a, A)(b, B), f(a, A) ∈ Af (Wn) .

(148)
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Let us denote

l : An ×An → Wn,
−−→
XY ≡ l (X, Y ) := ϕ (Y )− ϕ (X) . (149)

Then

l1)
−−→
XY = −−−→

Y X

l2)
−−→
XZ +

−−→
ZY =

−−→
XY

l3) P, X, Y ∈ A3,
−−→
PX =

−−→
PY = x ∈ W3 ⇒ X = Y.

(150)

A surjection (i.e., onto) l : An ×An → Wn defined by the conditions (l1) - (l3) is

called an affine structure in An and the point O = ϕ−1 (o) ∈ An, where o ∈ Wn

is the neutral element (zero vector) of Wn, is called an origin of An. The set An

of equation (149) endowed with an affine structure is called the affine point space
modelled on Wn and the bijection ϕ is called then an affine structural bijection (of

the affine point space An). Notice that if l is an affine structure in An and O ∈ An

is an arbitrary established point, then the mapping

ϕO : An → Wn (151)

defined by

X ∈ An �→ ϕO (X) =
−−→
OX ∈ Wn (152)

is bijective, fulfils the condition

l (X, Y ) = ϕO (Y )− ϕO (X) (153)

and the condition

ϕ−1
O (o) = O. (154)

Thus, we can identify, up to the choice of a point O ∈ An, a bijection ϕ fulfilling

the conditions (149) and (150) and the mapping ϕO defined by equations (151) and

(152). A mapping ϕP , P ∈ An, is called the localization of the affine structure at

the point P (or the radius-vector fastened at this point).

The mapping ψ defined by

ψ : (Wn , +) → Σ, ψ (a) = ψa

ψa = Φ(a, 1) ; An → An, a ∈ Wn
(155)

defines an action of the abelian group (Wn,+) in An, that is

ψa ◦ ψb = ψa+b = ψb ◦ ψa. (156)

The group (Wn,+) is called the group of translations and acts not only transitively
(i.e., for each pair of points (X, Y ) ∈ An ×An there exists a vector a ∈ Wn such
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that ψa (X) = Y ) but also freely in the sense that isotropy groups of all points are

trivial [43].

Let Af(An) denotes the set of all mappings f : An → An preserving the affine

structure l. These mappings are called the affine mappings and induces the linear

mappings L (f) ∈ L (Wn) such that, for each pair of points (X, Y ) ∈ An × An,

the following condition is fulfilled

−−−−−−−−→
f (X) f (Y ) = L (f)

(−−→
XY
)
. (157)

Let us denote

Af (An)O = {f ∈ Af (An) ; f (O) = O}
T (An) = {f ∈ Af (An) ; f = ψa, a ∈ Wn } .

(158)

Then all mappings f ∈ Af (An) are of the form

f = t ◦ fO, t ∈ T (An) , f ∈ Af (An)O , O ∈ An (159)

that is, for each point X ∈ An, we have

−−−−−→
Of (X) = L (f)

(−−→
OX
)
+
−−−−→
Of (O). (160)

Thus, if O ∈ An is arbitrary established, then the mappings f ∈ Af (An) act

according to the rule

−−−−−→
Of (X) = f(a,A)

(−−→
OX
)
, f(a,A) ∈ Af (Wn) (161)

for each X ∈ An, where equation (145) was taken into account. We will designate

by GL (Wn) ⊂ L (Wn) the set of all linear bijections in Wn. Because GL (Wn) =
ι
(
GT 1

1 (Wn)
)

(see equations (141) - (143)), we can define in this set the algebraic

structure of a group induced from GT 1
1 (Wn).

Let us consider the pair e (P0) = {P0, e}, P0 ∈ An - a distinguished point,

e = {ei}1≤i≤n - a base of Wn. The such defined pair e(P0) is called an affine
frame in An localized in P0 and associated with the (local) base e. If ϕP0

is the

localization of the affine structure at the point P0 (see equations (151) - (154)), and

r : An → Wn is the radius-vector fastened at this point, then the formula

r (P ) ≡ ϕP0
(P ) = xi (P ) ei, P ∈ An (162)

defines the following affine coordinate system on the point space An

x : An → R
n

x (P ) =
(
xi (P ) ; i → 1, .., n

)
, x (P0) = 0 ≡ (0, ..., 0) ∈ R

n (163)
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associated with the affine frame e(P0). If e′ (P ′
0) = (P ′

0, e′), e′ = (e′i)1≤i≤n,
−−−→
P0P

′
0 = a =aiei ∈ Wn, is a second affine frame, then the mapping f ∈ Af (An)

such that e′ (P ′
0) = f (e (P0)) is uniquely defined and if y ≡ x′ : An → R

n is a

new affine coordinate system, then the coordinate description of this mapping is

given by the following bijective affine mapping acting in the arithmetic space R
n

yi = Ai
jx

j + ai, A =
∥∥∥Ai

j
i↓1,2,...,n
j→1,2,...,n

∥∥∥ ∈ GL (n) . (164)

If the vector space Wn is oriented, then the set of matrices

GL+ (n) = {A ∈ GL (n) ; detA > 0} (165)

defines the orientation preserving affine mappings.

Appendix B - Differential Geometry of Affine Spaces

Let us denote by Ψn the set of all affine coordinate systems on the affine point

space An modelled on the vector space Wn (Appendix A). The topology τn in An

is defined as a weaker topology in which the affine coordinate systems on An are

continuous mappings. It is the family of the following sets

τn =
{
x−1 (U) ; U ∈ topRn, x ∈ Ψn

}
. (166)

Consequently, the set Ψn can be considered as an atlas that defines the differential
structure Ωn of the affine space An. consisting of all real functions f on An such

that [40]

Ωn =
{
f : An → R ; f ◦ x−1 ∈ C∞ (Rn) , x ∈ Ψn

}
. (167)

The affine space endowed with this differential structure is a differential manifold.

Let’s notice that if the affine point space An is considered as a differential man-

ifold and TPAn is the vector space tangent to An at the point P ∈ An, then the

localization ϕP of An enables to identify the space TPAn and Wn in this sense,

that (see Appendix A)

TPAn � ϕP (An) =
{−−→
PQ ∈ Wn ; Q ∈ An

}
≡ (P, Wn) � Wn. (168)

The affine frame e (P ) = {P, e}, e = {ei}1≤i≤n, localized at the point P is then a

base of TPAn and can be identified with the system E (P ) = {P, P1, ..., Pn} of

points uniquely defined by the condition

ei =
−−→
PP i ∈ ϕP (An) , i = 1, ..., n. (169)
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Let U ⊂ An be an open subset and let W (U) denote the module of all smooth vec-

tor fields on U tangent to U (see [46] - Appendix). These fields can be identified,

according to equation (168), with the mappings v : U → Wn. However, it is fre-

quently more convenient to consider these fields as the first-order linear differential

operators defined at each point P ∈ U as the operators ∂vP
of differentiating of

smooth functions f ∈ C∞ (U) in the direction vP ≡ v (P ) ∈ Wn (see, for more

precise reasoning, [46] - Appendix).

Let ST2 (Wn) ⊂ T2 (Wn) = W ∗
n ⊗ W ∗

n denotes the linear space of all sym-

metric two-covariant tensors. A distinguished tensor g ∈ ST (Wn) is called

the fundamental tensor of Wn and defines, independently from the choice of the

base e = {ei}1≤i≤n of the vector space Wn, the R-bilinear symmetric mapping

(·, ·)g : Wn ×Wn → R acting according to the rule

u · v ≡ ugv ≡ (u,v)g = giju
ivj

g = gije
i ⊗ ej , u = uiei, v = vjej

(170)

where e∗ =
(
ei
)
1≤i≤n

is the base of the covector space W ∗
n dual to the base e

of Wn and the set R of real numbers is considered here as a field [4]. The space

Wn,g = (Wn,g) is called orthogonal. The orthogonal space is called pseudo-
Euclidean (or nondegenerate) if the mapping

G : Wn → W ∗
n , v = G (v) := (v, ·)g (171)

is injective, that is for any 0 �= v ∈ Wn there exists u ∈ Wn such that (v,u)g �= 0.

If the mapping G is not injective, then the space Wn, g is called degenerate. In

pseudo-Euclidean spaces the mapping G defines a canonical isomorphism [26].

Particularly, if e = (ei)1≤i≤n is a base of Wn and e∗ =
(
ei
)
1≤i≤n

is the base of

W ∗
n dual to e, then this dual base can identified with the base eG =

(
ei
)
1≤i≤n

of

Wn defined by the condition

ei = G
(
ei
)
, i = 1, . . . , n. (172)

If the affine point space An is considered as a differential manifold whose tangent

spaces are identified with an orthogonal vector space Wn,g = (Wn,g), then this

space is called the orthogonal point space modelled on Wn,g and can be identified

with the (semi-)Riemannian space denoted as An,g. In this paper are considered

three-dimensional orthogonal point spaces Minkowski or Euclidean type. These

spaces can be defined by the condition of the existence such g-orthonormal vector

base eε = (ei)1≤i≤3 of the space W3,g = (W3,g) that if

gij = (ei, ej)g (173)
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then

Gε =
∥∥∥gij ; i↓1,2,3

j→1,2,3

∥∥∥ = diag (1, 1, ε) (174)

where ε = 1 for the Euclidean space and ε = −1 for the Minkowski space. In the

case of orthogonal Minkowski spaces we are dealing with three kinds of vectors

0 �= v ∈ W3,g

(v,v)g > 0 − space-like vector

(v,v)g < 0 − timelike vector

(v,v)g = 0 − isotropic (or null) vector.

(175)

The null vectors form a cone in W3 called the null cone (“light cone” in physics).

Let us consider a smooth immersion κ : M → A3 of a two-dimensional smooth

manifold M into the three-dimensional affine point space A3 modelled on an or-

thogonal vector space W3,g (Euclidean or Minkowski type). It means that the

induced tangent mapping κ∗ : W (M) → W (A3), where W (M) is the module

of smooth vector fields tangent to M (see e.g. [46] - Appendix) and W (A3) is

the module of smooth vector fields tangent to A3 with values in the considered

orthogonal vector space, is injective. An immersion is not necessarily injective.

An injective immersion is an embedding. The set κ (M) with the differentiable

structure induced by the embedding κ is a manifold. The differentiable structure

on κ (M) induced by κ is the set of charts
{(

K (U) , u ◦K−1
)}

where {(U, u)}
is an atlas on M and K−1 : κ (M) → M is a bijection such that K−1 ◦ κ = idM ;

the mapping K differs from κ in that it is surjective [4].

The manifold structure induced by κ on κ(M) may not be equivalent to a subman-
ifold structure on κ (M) treated as a space endowed with the topology induced

from A3. If κ (M) has a submanifold structure equivalent to the manifold struc-

ture induced by the embedding, then the embedding is said to be regular [4], [14].

If κ is a regular embedding, then κ (M) is a submanifold of A3 called the regular
surface [14].

Appendix C - Differential Operators

Let Ma = (M, a) be a m-dimensional (semi-) Riemannian space. The (semi-)

metric a induces many operations called “raising” and “lowering” indices. Name-

ly, a non-singular metric tensor induces at each point P ∈ M the non-singular

mapping G of TPM onto T ∗
PM acting according to the rule

uP ∈ TPM �→ G (uP ) ∈ T ∗
PM

G (uP ) (vP ) = (uP , vP )a , vP ∈ TPM.
(176)
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We let G∗ denote the inverse map of T ∗
PM onto TPM acting according to the rule

uP ∈ T ∗
PM �→ G∗ (uP ) ∈ TPM, (G∗ (uP ) , vP )a = uP (vP ) . (177)

If ϕ ∈ C∞ (M), then we can define the gradient field of ϕ by the rule

gradaϕ = G∗ (dϕ) , dϕ (u) = ∂uϕ, u ∈ W (M) (178)

and the Laplacian operator by

Δaf = diva (gradaf)

divau = |a|−1/2 ∂k

(
|a|1/2 uk

)
, u = uk∂k ∈ W (M) .

(179)

It follows that in local coordinates x = (x1,...,xm) on M

Δaf = |a|−1/2 ∂i

(
|a|1/2 aij∂jf

)
= aij∂i∂jf − Γk∂kf (180)

where

Γk = aijΓk
ij = − |a|−1/2 ∂

∂xi

(
|a|1/2 aik

)
. (181)

Γk
ij are Christoffel symbols, and a = det

.
= a det (aij).

If M and N are smooth differential manifolds (m-dimensional and n-dimensional,

respectively), and f : M → N is a smooth mapping, then the differential of f at

the point P ∈ M is a R-linear mapping defined by

dfP ≡ dP f : TPM → Tf(P )N

dP f (vP ) (α) = vP (f∗α) , f∗α ≡ α ◦ f ∈ C∞ (N) , α ∈ C∞ (M) .
(182)

If additionally f is a surjective diffeomorphism, then we can define the tangent
mapping (also called the differential) induced by f as a R-linear mapping f∗ acting

according to the following rule

f∗ : W (M) → W (N) , f∗v = df ◦ v ◦ f−1, v ∈ W (M) (183)

where

df : P ∈ M �→ df (P ) := df |TPM = dP f. (184)

The reciprocal image (pull back) f ∗ω of the form ω is defined by

f∗ω (u1, ...,uk) = ω (f∗u1, . . . , f∗uk)

ui ∈ W (M) , i = 1, . . . , k ≤ m = dimM, k ≤ n = dimN.
(185)

The reciprocal image f ∗ω is also called the form induced by f from ω.
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In the paper are considered, because of physical interpretations of geometrical ob-

jects, dimensional coordinate systems (U, x) on the differential manifold M with

coordinates x =
(
xi
)

of the dimension of length, i.e., [xi] = cm. If the corre-

sponding natural base vectors ei ∈ W (U), 1 ≤ i ≤ m, tangent to the coordinate

lines are identified with differentiations in the directions of these vectors, i.e.,

ei (f) ≡ ∂eif = ∂f/∂xi, f ∈ C∞ (M) (186)

(see [45] - Appendix), then would be [ei] = cm−1 and [ei] = [dxi] = cm. In this

case, we have

v = viei ∈ W (U) , [v] = cm−1 ⇒ [
vi
]
= [1] (187)

or, for example

v = viei ∈ W (U) ,
[
vi
]
= cm ⇒ [v] = [1]. (188)
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[45] Trzȩsowski A., Geometrical and Physical Gauging in the Theory of Disloca-
tions, Rep. Math. Phys. 32 (1993) 71–98.
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