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Abstract. In Euclidean space, the geodesics on a surface of revolution can be char-

acterized by means of Clairaut’s theorem, which essentially says that the geodesics

are curves of fixed angular momentum. A similar result is known for three dimen-

sional Minkowski space for timelike geodesics on surfaces of revolution about the

time axis. Here, we extend this result to consider generalizations of surfaces of rev-

olution to those surfaces generated by any one-parameter subgroup of the Lorentz

group. We also observe that the geodesic flow in this case is easily seen to be a com-

pletely integrable system, and give the explicit formulae for the timelike geodesics.

1. Introduction

The change of signature from Euclidean to Minkowskian geometry results in a fas-

cinating interplay between the two forms of geometry: there exists a formal alge-

braic similarity in many aspects of the geometry, coupled to important differences

between the two, especially in global situations. The lecture notes of López [4], for

example, provide a detailed consideration of many of the aspects of three dimen-

sional Minkowski space. The differences arise in various way, and we will here

be concerned with some of the consequences of the fact that vectors in Minkowski

space can be classified as timelike, null, or spacelike by means of the inner product.

In a previous work [8] we considered surfaces of revolution in the situation with the

closest analogy to the Euclidean situation, namely that of the timelike geodesics on

surfaces obtained by rotating a timelike curve about the t-axis in Minkowski space.

There are, of course, other types of surface of revolution in Minkowski space [3],

and in this work we will extend our consideration to these other classes of surface.

We will begin in Section 2 by briefly reviewing Clairaut’s theorem in the Euclidean

case (for a more detailed exposition, see, for example, Pressley’s text [7], and

for applications see [1, 5, 6]), and the situation for rotations about the t-axis in

Minkowski space. In Section 3 we see how there are three different types of one-

parameter subgroup of the three dimensional Lorentz group, giving rise to three

different class of surface of revolution. In Section 4 we establish an analogue of
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Clairaut’s theorem in each case. Finally, in Section 5, we note that the geodesics

are, in each case, determined by a completely integrable system of equations, and

obtain the explicit formulae for the geodesics in terms of quadratures.

2. Clairaut’s Theorem

We begin by setting up some notation, which will be useful in both the Euclidean

and the Minkowskian cases. For reference, we will equip three dimensional Eu-

clidean space E
3 with coordinates (x, y, z), the standard basis {ex, ey, ez} and

the metric dx2 + dy2 + dz2, and three dimensional Minkowski space M
3 with

coordinates (x, y, t), the standard basis {ex, ey, et} and metric dx2 + dy2 − dt2.

Let Σ be a surface of revolution in E
3, obtained by rotating the curve x = ρ(u), y =

0, z = h(u) about the z-axis, where we assume that ρ > 0 and that ρ′(u)2 +
h′(u)2 = 1. Then Σ is parameterized by

x(u, v) =

⎡⎣ ρ(u) cos(v)
ρ(u) sin(v)

h(u)

⎤⎦ (1)

and has first fundamental form

I =

[
xu.xu xu.xv

xv.xu xv.xv

]
=

[
1 0
0 ρ(u)2

]
. (2)

We also have

xu = nu and xv = ρnv (3)

where nu is the unit vector pointing along meridians of Σ and nv is the unit vector

pointing along parallels of Σ. Since nu.nv = 0, the two form an orthonormal basis

for the tangent plane at each point, and an arbitrary unit tangent vector vector t is

therefore of the form nu cos θ + nv sin θ where θ is the angle between t and nu.

From the first fundamental form, we have the Lagrangian

1

2
(u̇2 + ρ2v̇2) (4)

and so the Euler-Lagrange equations, whose solutions are arc-length parameterised

geodesics, are

ü = ρρ′v̇2,
d

ds

(
ρ2v̇

)
= 0. (5)

But now, if γ(s) is an arc-length paramaterised geodesic given by (u(s), v(s)) we

also have

γ̇ = u̇nu + ρv̇nv = nu cos θ + nv sin θ (6)
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where θ is the angle between γ̇ and a meridian.

Equating the components of nv in the latter two expressions, we see that ρv̇ =
sin θ, so that ρ2v̇ = ρ sin θ, and hence the second Euler-Lagrange equation is

equivalent to ρ sin θ being a constant along γ.

Conversely, if γ is a unit speed curve with ρ sin θ constant, the second Euler-

Lagrange equation is immediately satisfied: next, differentiating u̇2 + ρ2v̇2 = 1
and substituting this into the second Euler-Lagrange equation yields the first Euler-

Lagrange equation.

This establishes Clairaut’s theorem, and we observe in passing that all meridians

are geodesics.

If we now replace the z-axis of E3 by the t-axis of M3, the parameterisation of

the surface and the corresponding analysis are formally almost identical, where we

take ρ′(u)2 − h′(u)2 = −1 so that the generating curve is timelike, resulting in a

surface of revolution whose induced metric is Lorentzian.

We now have orthogonal unit timelike and spacelike vectors nu and nv given by

xu = nu and xv = ρnv respectively, so that a unit timelike tangent vector is given

by t = nu cosh(θ) + nv sinh(θ), where θ is the hyperbolic angle between t and

nu. Repeating the previous argument then tells us that timelike geodesics in the

surface of revolution are characterised by the constant ρ sinh(θ) = ρ2v̇.

Note in passing that if we were to choose a spacelike generating curve with ρ′(u)2+
h′(u)2 = 1, the metric induced on the tangent plane is Riemannian, and the situa-

tion for spacelike geodesics then becomes identical to that the Euclidean case.

3. Surfaces of Revolution in Minkowski Space

In the previous section we considered surfaces invariant under the action of a one-

parameter subgroup of the symmetry group of space, which in each case was iso-

morphic to SO(2), and could be regarded as the usual rotations about the ori-

gin in surfaces of constant z, or t, according as we consider the Euclidean or

Minkowskian case. In the Euclidean case, there is no other possibility: all one-

parameter subgroups of SO(3) are of this form, and by an appropriate choice of

coordinates consist of rotations fixing the z-axis. The situation is, however, rather

different in the Minkowskian case.

Let us denote by Λ an arbitrary member of the Lorentz group SO(2, 1), and by Λ(v)
a curve in SO(2, 1) such that Λ(0) is the identity. Differentiating the relationship

Λ(v)T ηΛ(v) = η, where η = diag(1, 1,−1) and setting v = 0 we find that λ =
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Λ̇(0) must be of the form

λ =

⎡⎣ 0 α β
−α 0 γ
β γ 0

⎤⎦ . (7)

For any choice of α, β, γ this matrix has zero determinant, and so an eigenvector

of eigenvalue 0. It follows then that the corresponding one-parameter subgroup of

SO(2, 1) given by exp(vλ) fixes pointwise the line through the origin determined

by this eigenvector, and so can be regarded as a one-parameter group of rotations

with this line as axis of rotation.

We observe that the vector et is an eigenvector with eigenvalue 0 if β = γ = 0,

and so we can take

λ =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (8)

giving

exp(vλ) =

⎡⎣ cos(v) sin(v) 0
− sin(v) cos(v) 0

0 0 1

⎤⎦ . (9)

This case is therefore the previously considered one of rotations about the t-axis.

Similarly, ey is an eigenvector with eigenvalue 0 if α = γ = 0 so that we can take

λ =

⎡⎣ 0 0 1
0 0 0
1 0 0

⎤⎦ and so exp(vλ) =

⎡⎣ cosh(v) 0 sinh(v)
0 1 0

sinh(v) 0 cosh(v)

⎤⎦ . (10)

For convenience we denote by By the group of boosts fixing the y-axis, and let

By(v) = exp(vλ).

Finally, ey + et is an eigenvector with eigenvalue 0 if α = −β, γ = 0, giving

λ =

⎡⎣ 0 1 −1
−1 0 0
−1 0 0

⎤⎦ and so exp(vλ) =

⎡⎣ 1 v −v
−v 1− v2/2 v2/2
−v −v2/2 1 + v2/2

⎤⎦ . (11)

Similarly to the previous case, denote by Bn the group of null rotations fixing the

axis given by ey + et, and let Bn(v) = exp(vλ).

Since every vector is spacelike, null, or timelike, any other one-parameter sub-

group of SO(2, 1) can be put into this form by an appropriate choice of axes. We

therefore consider those surfaces which are invariant under the action of each of

these groups and have a Lorentz metric induced on them, and will investigate the

timelike geodesics on each surface.
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We omit the case of the timelike axis of rotation, as this has been considered al-

ready. This leaves the two cases of a spacelike axis of rotation (corresponding to

the one-parameter group of boosts By) and a null axis of rotation (corresponding

to the one-parameter group of null rotations Bn).

3.1. Surfaces of Revolution About a Spacelike Axis of Rotation

Now, let (x, y, t) be a point on a surface, Σ, invariant under the action of By.

If |x| < |t| then the orbit of By on which (x, y, t) lies is spacelike, and intersects

the yt plane at some unique value of v. Assume for the moment that Σ lies entirely

in the region |x| < |t|. Then the intersection of Σ with the yt plane is a generating

curve for Σ. The tangent to any orbit is orthogonal to the yt plane at the point of

intersection; the tangent plane to Σ at the point of intersection cannot be space-

like, and so neither can the tangent to the generating curve (since any vector space

spanned by orthogonal spacelike vectors is itself spacelike). Thus Σ is generated

by a timelike curve in the yt plane, given by (0, ρ(u), h(u)) with u chosen so that

h′(u)2 − ρ′(u)2 = 1.

By the same type of argument, if |x| > |t| the orbits are timelike, and assuming that

Σ lies in the region |x| > |t|, Σ is generated by a spacelike curve lying in the xy
plane, which we take to be given by (ρ(u), h(u), 0) where now ρ′(u)2+h′(u)2 = 1.

There are therefore two simple classes of surface of revolution generated by By,

one confined to the region |x| < |t|, and the other to the region |x| > |t|. The

first has a timelike generating curve in the yt plane, and the second has a spacelike

generating curve in the xy plane. The first fundamental forms of these two (in

terms of the coordinates (u, v)) are, respectively[
−1 0
0 ρ2(u)

]
and

[
1 0
0 −ρ2(u)

]
. (12)

3.2. Surfaces of Revolution About a Null Axis of Rotation

Again, let (x, y, t) be a point on a surface, Σ, which is now invariant under the

action of Bn. This time we assume that the surface does not intersect the plane

y = t. Each point on Σ lies on a curve passing through the yt plane, and so Σ is

generated by a curve in the yt plane. In this case the orbits are spacelike, and so

the generating curve must be timelike. We take it to be of the form (0, q(u), h(u))
where h′(u)2 − q′(u)2 = 1. The fundamental form is now[

−1 0
0 ρ2(u)

]
(13)
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where ρ(u) = q(u)− h(u).

3.3. Parallels and Meridians

We generalize from the Euclidean situation the terminology of parallels and merid-

ians. Here, a meridian is the image of the generating curve under the action of an

element of By or Bn, and a parallel is an orbit of the group action. Note that in the

two cases where the generating curve is timelike, we have timelike meridians and

spacelike parallels, but in the case where the generating curve is spacelike, it is the

parallels which are timelike and the meridians which are spacelike.

4. Generalizations of Clairaut’s Theorem

Now, the general point on any of our surfaces is given by x(u, v), which is the

image under the appropriate group element with parameter v of the generating

curve element with parameter u. A curve γ(s) on the surface is given by a curve

(u(s), v(s)), and we assume that the parameter is chosen so that γ is parameterised

by proper time.

In each case of timelike meridians, the Lagrangian is given by

1

2
(−u̇2 + ρ(u)2v̇2) (14)

which is independent of v, so that ρ2(u)v̇ is a conserved quantity along the geodesic.

We also have in each case

xu = nu, xv = ρnv (15)

where nu and nv are orthogonal unit vectors pointing along meridians and parallels

respectively, so that nu is timelike and nv is spacelike.

Furthermore, differentiating γ gives

γ̇(s) = nuu̇+ nvρv̇ = nu cosh(θ) + nv sinh(θ) (16)

where θ is the hyperbolic angle between the tangent to γ and the meridian.

We therefore see that in these cases the quantity ρv̇2 = ρ sinh(θ) is conserved

along every timelike geodesic, where θ is the hyperbolic angle between the geodesic

and a meridian.

In the case of spacelike meridians, the Lagrangian becomes

1

2
(−u̇2 + ρ(u)2v̇2) (17)
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which again gives the conserved quantity ρ2v̇.

This time, however, it is nu that is spacelike and nv that is timelike, and so we have

the timelike vector γ̇ given by

γ̇(s) = nuu̇+ nvρv̇ = nu sinh(φ) + nv cosh(φ) (18)

where φ is now the hyperbolic angle between the geodesic and a parallel.

In this case, the conserved quantity is therefore ρ cosh(φ). As there is no analogue

to the trigonometric notion of complementary angle, we cannot express this as

ρ sinh(θ) for some angle: however, we note that in the Euclidean case the quanties

ρ sin(θ), where θ is the angle between the geodesic and a meridian, and ρ cos(φ),
where φ is the angle between the geodesic and a parallel, are equal. Thus in this

case also, the conserved quantity is the hyperbolic equivalent of the Euclidean

conserved quantity.

It is then a simple algebraic exercise to check that in each of the three cases, con-

servation of the conserved quantity along a curve parameterised by proper time

implies that the curve is a timelike geodesic, completing the analogue of Clairaut’s

theorem in each case.

It thus follows that for all three classes of surface of revolution, whether generated

by rotations, boosts, or null rotations, Clairaut’s theorem holds in the sense that

the natural quantity corresponding to ρ sin(θ) is constant along geodesics, and the

value of this constant determines the timelike geodesics on the surface.

5. Integrability

As a final comment, we note that in each case we have two conserved quanti-

ties, namely the Lagrangian and ρv̇2. Re-expressing this in terms of the Hamil-

tonian formalism, the conserved quantities are pv, the momentum conjugate to v,

and H , the Hamiltonian; since all conserved quantities Poisson commute with the

Hamiltonian, and the two are functionally independent, we know from the Arnol’d-

Liouville theorem [2] that the geodesics can in principle be expressed in terms of

quadratures.

In this case, we have

−u̇2 + ρ(u)2v̇2 = ±1, ρ(u)2v̇ = L (19)

where the sign on the right hand side of the first equation is positive in the case of

the By-invariant surface generated by a spacelike curve, and negative otherwise,

and L is the value of the conserved quantity specifying a particular geodesic.
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From the conserved quantity, we obtain

v̇ = L/ρ(u)2 (20)

so that

u̇2 = L2/ρ(u)2 ∓ 1 (21)

giving ∫
du√

L2/ρ(u)2 ∓ 1
=

∫
ds. (22)

This gives (in principle) u(s), so that we can finally obtain v(s) from

v =

∫
L

ρ(u(s))2
ds. (23)

6. Conclusion

We have shown that the geometrical analogy between Euclidean and Minkowski

space obtained by replacing the trigonometric functions by hyperbolic ones also

extends to Clairaut’s theorem, not only in the obvious case of surfaces generated

by rotations about the time axis, but also in the cases of surfaces generated by

boosts and null rotations. We also find the geodesics on such a surface of rotation

in terms of quadratures.
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