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Abstract. Asymmetric heavenly equation, presented in a two-component form,

is known to be 3+1-dimensional bi-Hamiltonian system. We show that symmetry

reduction of this equation yields a new two component 2+1-dimensional integrable

bi-Hamiltonian system. We prove that this new 2+1-dimensional system admits

bi-Hamiltonian structure, so that it is integrable according to Magri’s theorem.

1. Introduction

Asymmetric heavenly equation was obtained as one of the canonical equations in

the classification of nonlinear second order partial differential equations that pos-

sess partner symmetries [1]. The asymmetric heavenly equation in 3+1-dimension

is given by

utxuty − uttuxy + autz + buxz + cuxx = 0 (1)

where u is the unknown function that depends on the four independent variables

t, x, y, z and the subscripts denote partial derivatives of u, e.g., utx = ∂2u/∂t∂x,

uxx = ∂2u/∂x2..., while a, b, c are constants. By choosing ut = v as the sec-

ond unknown, we have converted the asymmetric heavenly equation to the two-

component evolution system [2]

ut = v, vt =
1

uxy

(
vxvy + avz + buxz + cuxx

)
≡ Q. (2)

The physical significance of the singe scalar equation (1) follows from the fact that

it is equivalent to complex Einstein field equations for (anti-)self-dual gravitational

fields [3], with u being the metric potential.

In [2] we found all point symmetries of asymmetric heavenly equation. In general,

a symmetry reduction of this equation has no Hamiltonian structure. Here we show

that one particular symmetry reduction yields a two-component 2+1-dimensional

new bi-Hamiltonian integrable system. For this system we present Hamiltonian
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structure, recursion operator, Lax pair, Lie point symmetries and integrals of mo-

tion.

In Section 2, we present new 2+1-dimensional integrable system in two-component

form obtained by a symmetry reduction of asymmetric heavenly system.

In Section 3, we obtain the first Hamiltonian structure of this system of equations.

We start with a degenerate Lagrangian and construct its Dirac bracket [4] to find a

Hamiltonian operator.

In Section 4, we construct a recursion operator in a matrix form using the results

presented in [2]. The recursion operator and operator of the symmetry condition

form a Lax pair of the Olver-Ibragimov-Shabat type for the two-component system

[5].

In Section 5, we give explicitly the second Hamiltonian structure which shows that

the asymmetric heavenly equation is an integrable bi-Hamiltonian system.

In Section 6, we present all point symmetries of the reduced system. Using the in-

verse Noether theorem for Hamiltonian symmetries, we determine the correspond-

ing integrals of motion.

2. Symmetry Reduction of Asymmetric Heavenly Equation

Basic generators of one-parameter subgroups of a total Lie group of point symme-

tries for the asymmetric heavenly system (2) has the form [2]

X1 = y∂y + u∂u + v∂v

X2 = (
akx

b2
− kt+ aF ′(s))∂t + bF ′(s)∂x + ky∂y

Xd = ((bt− ax)dyz − vdyy) ∂t + cdy∂x − bdz∂y + bdy∂z

+(−
1

2
dyyv

2 + (
1

2
a2x2 − abtx+

1

2
b2t2)dzz − actdz)∂u (3)

+
(
−bdyzv + (b2t− abx)dzz − acdz

)
∂v

Xf = fy∂t + (bt− ax)fz∂u + bfz∂v

Xg = g(y, z)∂u.

We use a particular choice of d = y for Xd and we obtain

Xy = c∂x + b∂z. (4)

The invariants of Xy are determined by the characteristic system as

X = bx− cz, Y = y, T = t, U = u, V = v. (5)
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The symmetry reduction implies the ansatz: u = U(X,Y, T ) and v = V (X,Y, T ).
The total derivatives in terms of new variables become

Dx = bDX , Dy = DY , Dz = −cDX , Dt = DT (6)

where D stand for partial derivative ∂, i.e., Dxu = ∂xu = ux. Substituting this

into the original system (2) and renaming U → u, V → v and T → t we obtain

new 2+1-dimensional reduced system in two component form as

ut = v, vt =
vx

uxy

(
vy −

ac

b

)
≡ Q, b �= 0. (7)

3. Dirac’s Constraints Analysis, Symplectic and Hamiltonian Structure
of Reduced System

In general, in order to prove that 2+1-dimensional reduced system (7) is an inte-

grable bi-Hamiltonian system, we should start with a degenerate Lagrangian and

follow the same procedure as we did for asymmetric heavenly system [2]. There-

fore we apply (6) to the Lagrangian given in [2] and we obtain reduced Lagrangian

density for the system (7) as follows

L = b

(
v2

2
− vut

)
uxy −

ac

2
utux. (8)

In order to get a Hamiltonian formulation, we need to apply Dirac’s constraints [4]

analysis. Thus, we define the canonical momenta

Πi =
∂L

∂uit
(9)

which satisfy the canonical Poisson brackets

[Πi(ξ), u
kη] = δki δ(ξ − η) (10)

where ξ, η are generic names for independent variables, each of which stands for

the collection of our original independent variables x, y. In other words, δ(ξ−η) =

δ(x− x′)δ(y− y′) for ξ = {x, y} and η = {x′, y′} and using (9) we get πu and πv

πu =
∂L

∂ut
= −bvuxy −

ac

2
ux, πv =

∂L

∂vt
= 0 (11)

that cannot be solved for velocities ut and vt, and therefore the Lagrangian (8) is

degenerate. Following Dirac’s theory of constraints [4], we treat the definitions

(11) as the second class constraints

φu = πu + bvuxy +
ac

2
ux = 0, φv = πv = 0 (12)
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and calculate the Poisson bracket of the constraints

Kij = [φi(x, y), φj(x
′, y′)], i, j = 1, 2 (13)

where φ1 = φu and φ2 = φv. Organizing them in the form of a matrix, we find

K =

(
−((bvy − ac)Dx + bvxDy + bvxy) buxy

−buxy 0

)
. (14)

Below we show that this explicitly skew-symmetric operator is a symplectic oper-

ator in the sense of Fuchssteiner and Fokas [6]. Here the corresponding symplectic

two-form is the volume integral

Ω =

∫
V

ωdxdydz (15)

of the density

ω =
1

2
dui ∧Kij du

j = buxy du∧dv−
b

2
vx du∧duy−

1

2
(bvy−ac) du∧dux (16)

where u1 = u and u2 = v. In ω under the sign of volume integral (15), we

can neglect all the terms that are either total derivatives or total divergences due

to suitable boundary condition on the boundary surface of the volume. For the

exterior differential of this two-form we obtain

dω = b duxy ∧ du ∧ dv −
b

2
dvx ∧ du ∧ duy −

b

2
dvy ∧ du ∧ dux

or

dω =
b

2
Dx[duy ∧ du ∧ dv] +

b

2
Dy[dux ∧ du ∧ dv] ⇔ 0. (17)

Here the application of total derivatives to differential forms is performed in the

context of the variational complex as explained in the Olver’s book, Section 5.4 [7].

In (17) dω is a total divergence, which is equivalent to zero as we have explained

above, so that two-form Ω is closed and therefore it is a symplectic two-form and so

K, defined by (14), is a symplectic operator [6]. Hence its inverse is a Hamiltonian

operator

J0 = K−1 =

⎛⎜⎜⎜⎝
0 − 1

buxy

1
buxy

J22
0

⎞⎟⎟⎟⎠ (18)
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where

J22
0 =

ac

b2uxy
Dx

1

uxy
−

1

2b

(
vy

u2xy
Dx +Dx

vy

u2xy
+

vx

u2xy
Dy +Dy

vx

u2xy

)
(19)

and Dt, Dx, Dy denote operators of total derivatives with respect to t, x, y, respec-

tively. The closeness of the symplectic two-form (16) is equivalent to satisfaction

of the Jacobi identity for the Hamiltonian operator J0 [6].

The Hamiltonian density, corresponding to J0, is defined as

H1 = πuut + πvvt − L

which leads to

H1 = −
b

2
v2uxy. (20)

One can obtain the flow specified in equation (2) by applying J0 to variational

derivatives of Hamiltonian density H1(
ut
vt

)
= J0

(
δuH1

δvH1

)
=

(
v

vx
uxy

(
vy −

ac
b

)) (21)

where δu and δv are Euler-Lagrange operators [7] with respect to u and v applied

to the Hamiltonian density H1 (they correspond to variational derivatives of the

Hamiltonian functional
∫
V

H1dV ).

4. Recursion Operator and Lax Pair for Reduced System

Lie equations for symmetries of reduced system (7) have the form(
uτ
vτ

)
=

(
ϕ

ψ

)
≡ Φ (22)

where ϕ and ψ = ϕt are components of the symmetry characteristic and τ is a

symmetry group parameter. From the Fréchet derivative of the flow (7), we find

the equation that determines its symmetries Â(Φ) = 0, where the operator Â is

Â =

⎛⎜⎜⎝
Dt −1

Q
uxy

DxDy Dt −
1

uxy
(vy +

ac
b
)Dx −

vx
uxy

Dy

⎞⎟⎟⎠ . (23)
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The recursion operator is defined as a linear operator which maps any symmetry of

a given equation again into a symmetry of the same equation. As a consequence,

this operator commutes with the operator Â of the symmetry condition Â(Φ) = 0
on solution of the latter equation and equation (7). It is obtained by a symmetry re-

duction from the recursion operator for the four dimensional asymmetric heavenly

system corresponding to (1) that was given in [2], and reads

R =

(
D−1

x

(
vxDy −

ac
b
Dx

)
−D−1

x uxy

QDy −vy

)
(24)

where D−1
x is the inverse of Dx. The commutator of the recursion operator R and

the operator Â of the symmetry condition has the form

[R, Â] =

⎛⎜⎜⎜⎜⎜⎜⎝
−D−1

x (vt −Q)xDy D−1
x (ut − v)xy

1
uxy

(
−cb2(ut − v)xx + bQ(ut − v)xy

−b2c(ut − v)xx − bvy(vt −Q)x
−bvx(vt −Q)y + ac(vt −Q)x)Dy (vt −Q)y

⎞⎟⎟⎟⎟⎟⎟⎠ (25)

and as a consequence, the operators R and Â form a Lax pair of the Olver-Ibragimov-

Shabat [5] type for the asymmetric heavenly system (7), so that R and Â commute

on solutions of this system.

5. Second Hamiltonian Structure and Hamiltonian Function

By using theorem of Magri [8, 9], one can generate the second Hamiltonian op-

erator, by applying the recursion operator (24) to the first Hamiltonian operator

J1 = RJ0 with the result

J1 = RJ0 =

⎛⎝−D−1
x

vy
uxy

−
vy
uxy

J22
1

⎞⎠ (26)

where J22
1 in an explicitly skew-symmetric form is defined as

J22
1 =

1

2b

(
v2yDx

1

u2xy
+

1

u2xy
Dxv

2
y

)
−

ac

2b2

(
vy

uxy
Dx

1

uxy
+

1

uxy
Dx

vy

uxy

)
(27)

+
1

2b

(
vx

uxy
Dy

vy

uxy
+

vy

uxy
Dy

vx

uxy

)
−

1

2b

(
QDy

1

uxy
+

1

uxy
DyQ

)
.
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This operator is manifestly skew-symmetric. The proof of the Jacobi identity is

straightforward and lengthy. The calculation are simplified by using Olver’s cri-

terion, namely Theorem 7.8 in his book [7], formulated in terms of functional

multi-vectors. Moreover, J0 and J1 are compatible Hamiltonian operators, that is,

every linear combination αJ0 + βJ1 with constant coefficients α and β satisfies

the Jacobi identity. We again note that operator (26) could be obtained by a sym-

metry reduction from the second Hamiltonian structure in [2]. Thus, we obtain the

second Hamiltonian form of the reduced system (7)(
ut
vt

)
= J1

(
δuH0

δvH0

)
(28)

with the Hamiltonian density

H0 = b(c0 − y)vuxy (29)

where c0 is a constant, so that reduced system (7) is a bi-Hamiltonian system, that

is, it can be written in the two Hamiltonian forms(
ut
vt

)
= J0

(
δuH1

δvH1

)
= J1

(
δuH0

δvH0

)
. (30)

By repeated applications of the recursion operator to the first Hamiltonian oper-

ator J0 according to Magri’s theorem we could generate an in finite sequence of

Hamiltonian operators as

Jn = RnJ0, n = 1, 2, 3, . . . (31)

which proves that reduced system considered in two component form is a multi-

Hamiltonian system in above sense.

6. Symmetries and Integrals of Motions

Hamiltonian operators provide a natural link between commuting symmetries in

evolutionary form [7] and conserved quantities (integral of motions) that are in

involution with respect to Poisson brackets. Our two-component reduced system

(7) is also a member of an infinite hierarchy of symmetries. Point symmetries

generators of (7) read

X1 = f(x)∂x

X2 = (−tgv − tvhv − uhv − wv + th)∂t + e(y)∂y (32)

+(−tvgv + tv2hv − uvhv − vwv + tg + uh+ w)∂u + g∂v
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where f(x), g(y, v), h(y, v), w(x, y, v) and e(y) are arbitrary functions. These

point symmetries are generated by integrals of motion, that is, they are variational

symmetries and the integrals are given by the Hamiltonian form of Noether’s the-

orem(
δuH

δvH

)
= K

(
η̂u

η̂v

)
=

(
−((bvy − ac)Dx + bvxDy + bvxy) buxy

−buxy 0

)(
η̂u

η̂v

)
.

(33)

We determine the integral of motion H (for a variational symmetry), correspond-

ing to known symmetry characteristics η̂u, η̂v via the relation (33). For the first

symmetry X1, the corresponding symmetry characteristic is: η̂u = −uxf(x),
η̂v = −vxf(x) and we obtain

H1 = (bvuxuxy +
ac

2
u2x)f(x) (34)

which is the conserved density corresponding to the first point symmetry X1. For

the second point symmetry X2, we can find an integral of motion only for a special

choice of arbitrary functions. For example, if we choose h = 0, w = 0, g = b and

e = 1 we obtain

X2 = ∂y + bt∂u + b∂v, η̂u = bt− uy, η̂v = b− vy. (35)

Using (35) into (33) we get

H2 = bvuxy(uy − bt) +
1

2
(b2 − ac)uuxy. (36)

It may be possible to find different integrals of motion for different choices of

arbitrary functions.

7. Conclusion

We have shown that a certain symmetry reduction of the 3+1-dimensional asym-

metric heavenly equation, taken in a two-component form yields a two component

2 + 1-dimensional multi-Hamiltonian integrable system. For this system, we have

presented explicitly two Hamiltonian operators, a recursion operator for symme-

tries, a complete set of point symmetries and corresponding integrals of the motion.

The first impression of the major part of this work could be that it is an easy and

even trivial task to obtain a three-dimensional multi-Hamiltonian system by a sym-

metry reduction of the original four-dimensional asymmetric heavenly system. All

main objects J0, J1,K, Â, R,H0, H1 and L could be obtained by the symmetry
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reduction. However, a slight change in a symmetry chosen for the reduction, ruins

all these properties and creates a difficulty in discovering bi-Hamiltonian structure

of the reduced system. If we choose more general symmetries for the reduction, for

example from the optimal system of one-dimensional subalgebras from [2], then

we shall be unable to discover even a single Hamiltonian structure of reduced sys-

tems. The problem of conservation of multi-Hamiltonian structure under symmetry

reductions seems to be an important and interesting subject for a future research.
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