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Abstract. Discussed is the problem of the mutual relationship of differentially

first-order and second-order field theories and quantum-mechanical concepts. We

show that unlike the real history of physics, the theories with algebraically second-

order Lagrangians are primary, and in any case more adequate. It is shown that in

principle, the primary Schrödinger idea about Lagrangians which are quadratic in

derivatives, and leading to second-order differential equations, is not only accept-

able, but just it opens some new perspective in field theory. This has to do with

using the Lorentz-conformal or rather its universal covering SU(2, 2) as a gauge

group. This has also some influence on the theory of defects in continua.
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1. Summary

It is well-known that fundamental laws of motion of discrete or continuous sys-

tems of material points are given by the second-order differential equations, in any
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case second-order in time. The equations of electrodynamics, when formulated in

a proper four-potential way are also second-order. Therefore, the whole tradition

of classical physics created the paradigm of second-order differential equations as

a fundamental tool of theoretical physics. When formulating the ideas of wave me-

chanics in the sense of de Broglie and others, Schrödinger followed this paradigm

and formulated what is today known as Klein-Gordon equation, with the potential

term of course. The results, although in a sense qualitatively reasonable, were not

encouraging, in any case they were worse than the traditional Bohr-Sommerfeld

spectrum. Then Schrödinger resigned and, basing on the analogy suggested by

the Hamilton-Jacobi equation, formulated what is today known as the Schrödinger

equation. The results were beautiful. But the spin phenomena were discovered and

to describe them in a relativistic way, Dirac suggested the wave equation which is

known today under his name. But this is a first-order differential equation in space-

time variables, however imposed onto the four-component wave function. In any

case, this was a revolutionary step of introducing first-order differential equation

as a fundamental law of physics. This was reinforced by the whole school of more

or less sophisticated use of Clifford-algebraic paradigm. We are going to show that

this triumph might have been relatively premature.

2. Heuristics of the U(1) Gauge Group

Let us begin with the academic, or rather scholar discussion. We deal with the

complex scalar field Ψ: M → C over the space-time manifold M , subjected to

the natural multiplicative action of the group U(1). If M is endowed with the

metric tensor g, then the globally U(1)-invariant Lagrangian of Ψ without external

interactions or self-interaction is given by

Lm =

(
1

2
gμν ∂μΨ ∂νΨ−

c

2
ΨΨ

)√
|g|. (1)

Now we assume the theory to be locally U(1)-invariant, i.e., we admit the multi-

plication factor to be xμ (space-time point)-dependent. To achieve this, we must

introduce the gauge covector Eμ and replace the derivative ∂μ by the covariant one

Dμ

DμΨ = ∂μΨ− iqEμΨ. (2)

Here q denotes the coupling constant, the “charge” so to the speak. The Lagrangian

(1) is replaced by its local counterpart, namely

Lm [Ψ, E] =
1

2
gμν DμΨDνΨ

√
|g| −

c

2
ΨΨ

√
|g|. (3)
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And, of course, to speak we must admit the Lagrangian for the field E

LE [E] = −
1

4
gμκgνλFμνFκλ

√
|g| (4)

where F = dE, i.e., coordinates-wise

Fμν = ∂μEν − ∂νEμ. (5)

After performing the usual variational procedure on the action built in terms of the

total Lagrangian L
L = Lm [Ψ, E] + LE [E] (6)

then we obtain the following field equations

qiEμ∂μΨ−

(
c

2
−

q2

2
EμEμ −

iq

2
Eμ

;μ

)
Ψ−

1

2
gμνΨ;μν = 0 (7)

∂νF
μν =

qi

2

(
Ψ∂μΨ−

(
∂μΨ

)
Ψ
)
+ q2EμΨΨ. (8)

Obviously, the tensor indices in (7) (8) are moved in the sense of the metric tensor

gμν and the covariant derivatives in (7) are meant in the sense of the Levi-Civita

connection built of g. This is the system of second-order partial differential equa-

tions imposed onto (Ψ, Eμ).

Let us observe that in the asymptotic situation of slowly-varying fields, when

derivative terms are small in comparison with algebraic ones, equations (7) and

(8) approximately reduce to

iEμ∂μΨ−

(
c

2q
−

q

2
EμEμ −

i

2
Eμ

;μ

)
Ψ = 0 (9)

∂νF
μν = q2EμΨΨ. (10)

But those are first-order differential equations which may be derived from the aux-

iliary “Lagrangian”

L′

m = q gμνEμ
i

2

(
Ψ∂νΨ−

(
∂νΨ

)
Ψ
)√

|g|

(11)

−

(
c

2
−

q2

2
gμνEμEν

)
ΨΨ

√
|g|.

Obviously, it is easy to see that Lm [Ψ, E] is related to L′
m [Ψ, E] as follows

Lm [Ψ, E] = L′

m [Ψ, E] +
1

2
gμν∂μΨ ∂νΨ. (12)
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It is easy to see that if one omit the Clifford-ideology, the simplified equations (9)

and (10) following from the Lagrangian (11) for slowly-varying fields are struc-

turally similar to the Dirac-Maxwell system of equations. The current in (10) is

algebraically built of Ψ, and Eμ in (9) is an analogue of the tetrad field.

3. SU(2, 2) as a Gauge Group

Of course, the system (9), (10) following from (11) is rather non-physical. But

structurally, it resembles the system for the bispinor-tetrad object. This suggests

us the idea that perhaps the first-order Dirac equation is also an approximation to

some second-order system of equations. And this again raises the question: what

is the proper order of the fundamental field equations: first-order or second-order?

This is in a sense very important and natural question. Remind that in the first

years of quantum mechanics the Klein-Gordon equation invented by Schrödinger

was disqualified, but later on, within the framework of quantum field theory it

was in a sense rehabilitated as one describing quantum phenomena. Let us begin

with a short repetition of Dirac theory on a manifold. For simplicity we do not

use the sophisticated language of fibre bundles, but rather, almost exclusively, the

analytical representation.

Degrees of freedom are described by the triple of objects

1. The C
4-valued bispinors field Ψ: M → C

4.

2. The tetrad, equivalently cotetrad field, eμA or eAμ, where eAμe
μ
B = δAB ,

i.e., the objects are essentially identical via duality.

3. The SL(2,C)-ruled spinor connection given by the system of differential

one-forms ωr
sμ.

Let us stress: the Greek indices μ run over the range 0, 1, 2, 3, the capital Latin ones

- as well, but they are referred to the R4 space, not to the tangent spaces TxM , and

the small Latin indices like r, s refer to the bispinor space, analytically C
4.

The R
4-space is endowed with the Lorentz metric η

[ηAB] = diag(1,−1,−1,−1). (13)

Similarly, in C
4 we assume the geometry based on the sesquilinear Hermitian prod-

uct G of signature (++−−), e.g., diag(1, 1,−1,−1). In C
4, we introduce a family

of Dirac matrices, to be more precise, of Dirac linear operators. It is spanned by a

system of matrices γA satisfying the Clifford anticommutation relations{
γA, γB

}
= γAγB + γBγA = 2ηABI4. (14)
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They are assumed to be Hermitian with respect to the bispinor scalar product G in

the sense that

ΓA
r̄s = ΓA

s̄r, ΓA
r̄s = Gr̄wγ

Aw
s. (15)

And finally, on the basis of those objects we introduce some spatio-temporal ob-

jects, namely the metric tensor gμν and the Einstein-Cartan affine connection Γα
βμ,

or, equivalently, the spinor connection ωr
sμ. They are defined and interrelated as

follows

gμν = ηAB eAμe
B
ν (16)

Γα
βμ = eαAΓ

A
Bμe

B
β + eαAe

A
β,μ (17)

ΓA
Bμ =

1

2
γAr

s ω
s
wμ γB

w
r =

1

2
Tr
(
γA ωμ γB

)
(18)

ωμ =
1

2
ΓABμΣ

AB =
1

2
ηAC ΓC

BμΣ
AB. (19)

ΣAB =
1

4

(
γAγB − γBγA

)
=

1

4

[
γA, γB

]
. (20)

The capital indices are moved with the help of Minkovski tensor ηAB in R
4.

We have said above that Γ is an Einstein-Cartan connection. Therefore, the follow-

ing holds

∇μ gαβ = 0, ηACΓ
C
Bμ + ηBCΓ

C
Bμ = 0. (21)

If the Levi-Civita connection built of g is denoted by

{
α
βμ

}
, then it is clear that

Γα
βμ =

{
α
βμ

}
+ Sα

βμ + Sβμ
α − Sμ

α
β . (22)

Let us introduce the Dirac-conjugate bispinor field Ψ̃ : M → C
4� given by

Ψ̃r = Ψ
r̄
Gs̄r. (23)

Therefore, at any x ∈ M , Ψ̃(x) is a covector in the sense of the internal space C
4.

An important remark: in majority of textbooks one identifies G with γ0. It is a

mistake! The matrix γ0 represents a linear operator in the internal bispinor space

C
4, whereas the matrix G represents a sesquilinear Hermitian form. The mapping

Ψ → Ψ̃ is antilinear. The numerical identification of γ0 and G is simply the

peculiarity of the commonly used representations.

The fact that G and its signature are fixed, focuses our attention on the group

of pseudounitary transformations U(4, G) � U(2, 2). Its semisimple subgroup
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SU(4, G) � SU(2, 2) is the covering group of CO(1, 3), the Lorentz-conformal

group in R
4.

The Lagrangian of the bispinor field is given by

Lm =
i

2
eμAγ

Ar
s

(
Ψ̃rDμΨ

s −
(
DμΨ̃r

)
Ψs
)√

|g| −mΨ̃rΨ
r
√
|g| (24)

where, obviously, Dμ is the symbol of the spinorial covariant derivative

DμΨ
r = ∂μΨ

r + ωr
sμΨ

s. (25)

And similarly for all other tensor objects in C
4. Let us stress that the standard Dirac

theory for spinor fields in a Riemannian manifold is based on the invariance under

the group SL(2,C), the universal covering group of SO↑(1, 3). Let the covering

projection of SL(2,C) onto SO↑(1, 3) be denoted by P : SL(2,C) → SO↑(1, 3).
The group SL(2,C) acts in a natural way on the capital indices in (24). Bispinors

are then affected by the group injection U : SL(2,C) → U(4, G) � U(2, 2). It is

chosen in such a way that

U(A)γKU(A)−1 = γL P (A)LK . (26)

The resulting homomorphisms of Lie algebras will be denoted by u : sl(2,C) →
u(4, G) � u(2, 2). Then (26) is represented by

[u(a), γK ] = γLp(a)
L
K . (27)

One can show that

P (A)KL =
1

4
Tr
(
γKU(A)γLU(A)−1

)
(28)

p(a)KL =
1

2
Tr
(
γKu(a)γL

)
(29)

u(a) =
1

2
p(a)ABΣA

B. (30)

One can show that in the sense of this action of SL(2,C), the Lagrangian (24) is

invariant. It is also real-valued, therefore, it is really good Lagrange function.

Obviously, the connection forms transform under this action in an inhomogeneous

way, namely, the tetrad transformation by A ∈ SL(2,C)

[eμA] →
[
eμBA

B
A

]
(31)

resulting in

[ωr
sμ] →

[
U(A)rz ω

z
wμ U(A)−1w

s −
∂U(A)rz

∂xμ
U(A)−1z

s

]
(32)

[
ΓA

Bμ

]
→

[
P (A)AC ΓC

Dμ P (A)−1D
B −

∂P (A)AC

∂xμ
P (A)−1C

B

]
. (33)
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The particular structure of U(A), u(a) etc. depends on the used representation.

For example, if we use the Weyl-Van der Warden representation

[Gr̄s] =

[
0 I2
I2 0

]
(34)

then using the usual matrix symbols we have

U(A) =

[
A 0
0 A−1+

]
, u(a) =

[
a 0
0 −a+

]
. (35)

And when the Dirac representation is used and

[Gr̄s] =

[
I2 0
0 −I2

]
(36)

then in the analytic matrix form we have

U(A) =
1

2

[
A+A−1+ A−A−1+

A−A−1+ A+A−1+

]
, u(a) =

[
a− a+ a+ a+

a+ a+ a− a+

]
. (37)

Let us mention that (34) and (35) is more convincing if one begins the analysis

from the two-component Weyl spinors and the Ur-philosophy of Weizsa̋cker. And

(36), (37) is more natural from the point of view of the theory of Pauli description.

The Lagrangian (24) is quite similar to the scalar field Lagrangian L′
m (11). This

just motivates the question whether Lm (24) is not just a slowly-valued approxi-

mation to some second-order Lagrangian structurally similar to (1) (3). The more

so, just like L′
m it is a contraction of the quantity which looks as a bosonic current

given by the tensorial expression

Jr
s
μ :=

(
Ψ̃rDμΨ

s −
(
DμΨ̃

)
r
Ψs
)√

|g| (38)

a contraction which seems to play a role similar to the gauge field Eμ in (3), (7)

and (8). Everything, including the tensor structure of Jr
s
μ seems to suggest that

(38) is the SU(2, 2)-ruled bosonic current.

The co-tetrad eAμ is interpreted as a kind of gauge field in our SL(2,C)-based

theory. But in all real gauge theories the field of frames does not occur explicitly in

Lagrangian. Unlike this, in the tetrad model (24) the cotetrad/tetrad field eAμ/e
μ
A

occurs explicitly and plays on essential role. And all models of reinterpreting it as

a kind of “external friction” are strange and get us far outside the usual framework

of gauge theories. It seems natural to replace the Poincare gauge theory by the

semisimple over-group CO(1, 3) of conformal-Minkowskian mappings, or rather,

for quantum purposes, by its universal covering SU(4, G) � SU(2, 2). The point
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is only that just as SL(2,C) as the spinorial gauge group, this SU(2, 2) is to be a

group of purely internal symmetries, acting only on internal degrees of freedom,

but not on the space-time variables xμ. Though in a general manifold, there is no

place for Lorentz- and Lorentz-conformal mappings as space-time transformations.

They act on parameters of internal degrees of freedom. On the wave fields they act

simply as

(AΨ)r(x) = Ar
sΨ

s(x) (39)

but x itself being non-affected. It would be funny to expect the action like

(W (A)Ψ)r (x) = Ar
sΨ

s
(
p
(
A−1(x)

))
(40)

with p : SU(4, G) � SU(2, 2) → C(1, 3) as a projection, because in a manifold

there is nothing like C(1, 3). The only possibility is that the action (39) is accom-

panied with some action on the appropriate internal degrees of freedom. Just like in

SL(2,C)-ruled theory, it is accompanied with the action on tetrad variables which

seem to be a counterpart of space-time points.

The above remarks concerned the material sector of the theory. But obviously, the

dynamics of the gravitational sector is essential, because the total Lagrangian is

given by

L [Ψ, e, ω] = Lm [Ψ, e, ω] + Lgr [Ψ, e, ω] (41)

and in the SL(2,C)-ruled theory the choice of Lgr [e, ω], the gravitational La-

grangian, is a challenge. Namely, there are a few a priori possible terms suggested

by the SL(2,C)-gauge philosophy

1. First of all, according to the general gauge paradigm, we expect the Yang-

Mills Lagrangian quadratic in the curvature tensor built of Γ

LYM(e, ω) =
1

	
R(Γ)κμαβR(Γ)μκγδ g

αγgβδ
√
|g|

(42)

=
1

	
RA

BαβR
B
Aγδ g

αγgβδ
√
|g|

This term is expected to describe the microscopic gravitation. Obviously,

R(Γ) is the curvature tensor of g[e].

2. To give an account of the macroscopic and cosmic scales of gravitation, it is

suggested to admit a kind of the Palatini-Einstein-Cartan expression

LPEC(e, ω) =
1

k
g[e]μνR(Γ)κμκν

√
|g|. (43)
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3. Three terms which are quadratic in torsion and are linear in Weitzenböck

invariants quadratic in torsion

J1(e, ω) = a gμα g
νβgκγSμ

νκ Sα
βγ

√
|g| (44)

J2(e, ω) = b gμνSκ
αμ S

α
κν

√
|g| (45)

J3(e, ω) = c gμνSκ
κμ S

λ
λν

√
|g|. (46)

4. A possible cosmological term

Lcosm(e, ω) = Λ
√
|g| (47)

where Λ is a constant.

5. Perhaps some more complicated terms, like, e.g., ones quadratic in the scalar

curvature

L(2)(e, ω) =
1

k′
gμνgκλR(Γ)αμανR(Γ)βκβλ

√
|g|. (48)

It is clear that all the above terms contribute the geometric Lagrangian Lgr with

their own constant coefficients. This is a not quite advantageous consequence of

the non semisimplicity of the Poincare group.

Let us now try to follow the above-suggested idea of the SU(4, G) � SU(2, 2)
gauge invariance, or more generally, of the U(4, G) � U(2, 2) gauge invariance.

By definition, elements of this group are linear mappings of C4 into itself, preserv-

ing the Hermitian sesquilinear form G

Gr̄s = Gz̄t U
z̄
r̄ U

t
s = Gz̄t U z

r U
t
s. (49)

The group SU(2, 2) consists of such linear mapping U which in addition to (49)

have also a determinant equal to 1. General elements of U(2, 2) have determinant

of the absolute value 1, so that

detU = exp(iϕ), ϕ ∈ R. (50)

It is clear that for any A ∈ SL(2,C), the mappings U(A) in (26) are pseudounitary.

However, they are special cases acting separately in two C
2-subspaces of C4, as

explicitly shown in (35). But even in the usual spinor theory this is insufficient

when admitting the spatial mirror reflections. Then one must use two copies of

C
2 as linear subspaces of C4 and define mirror reflections as some transformations

interchanging the two C
2-copies among themselves. They belong to SU(2, 2), but
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do not have the form U(A) for some A ∈ SL(2,C). But if so, this is an additional

argument for the SU(2, 2) conformal symmetry.

The Lie algebra of SU(2, 2) consists of linear mappings u of C4 into itself which

are anti-Hermitian with respect to the G-scalar product, i.e., satisfy

Gr̄z u
z
s +Gs̄z uzr = 0. (51)

Therefore, there is a canonical isomorphism of su(2, 2) onto iHerm(4, G), where

Herm(4, G) denotes the linear space of G-Hermitian linear mappings of C4 into

itself.

It is clear what a nonsense is the idea of external space-time gauge transforma-

tions. Even in the case of the Lorentz group (or rather its covering SL(2,C)) they

are redefined as internal transformations of the matrix group (just numerical ma-

trices, not space-time Lorentz mappings) acting on the tetrads, not separately on

the tetrad legs. The formally mentioned problems with external translations were,

rather unfortunately, tried to be solved by using affine tangent spaces instead of

the linear spaces. But in the case of the conformal group the situation becomes

completely hopeless because of the singularity of Minkowskian conformal boosts.

Let us remind that the standard conformal boosts with respect to the null element

of R4 are given by b0

x′μ = xμ ‖x‖−2 , ‖x‖2 = gαβ x
αxβ . (52)

The total four-dimensional group of boosts is obtained from b0 by moving the null

element to all possible positions by the group of space-time translations

b0 → tv ◦ b0 ◦ t−v (53)

v denoting the translation vector. This is quite meaningless, because the gauge

transformations must be smooth in space-time manifold. But it is clear that (52)

is badly singular on the light cone. The only possibility to avoid this and be com-

patible with the spinor concept is to use the covering group SU(2, 2) from the very

beginning as really internal gauge symmetry. It is to act on some tetrad-like inter-

nal object, separately at every space-time point and without any interference with

the space-time transformations.

There are again two ways to achieve this, namely in terms of first-order or second-

order matter equations. We feel emotionally attached to the second-order possibil-

ity, nevertheless, we quote here the both of them.

In both cases, the matter field is analytically represented by the wave field Ψ :
M → C

4. The U(4, G) � U(2, 2)-gauge field is analytically given by the SU(4, G)
� SU(2, 2)-valued differential one-form

M � x → ϑx ∈ L(TxM, u(4, G)) (54)
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with values in the Lie algebra su(4, G), or, for simplicity, as denoted above - with

values in the total Lie algebra u(4, G). Analytically, we use the symbols Ψr, ϑr
sμ

- components of those objects. Let us remind that the range of indices is μ =
0, 1, 2, 3, r = 1, 2, 3, 4. We repeat once again that those objects are ruled by

the pseudounitary group U(4, G) � U(2, 2), no longer by SL(2,C). The group

SL(2,C) injected into U(4, G) � U(2, 2) reappears again as an injection (26) U
of SL(2,C) into the pseudo-unitary group, when we consider the usual spinorial

asymptotics. The local action of U(4, G) � U(2, 2), local in the sense of xμ -

dependent action

U : M → U(4, G) � U(2, 2)

on quantities Ψ and Θ is in both versions of the theory given by

(UΨ)(x) = U(x)Ψ(x), (Uϑ)x = U(x)ϑxU(x)−1 − dUx U(x)−1. (55)

Analytically it is represented by

(UΨ)r(x) = U r
s(x)Ψ

s(x)
(56)

(Uϑ)rs(x) = U r
z(x)ϑ

z
tμ(x)U

−1t
s(x)−

∂U r
z(x)

∂xμ
U−1z

s(x).

As usual, the action on the connection form is inhomogeneous. Obviously, the

metric field is invariant under this action

Ug = g. (57)

The covariant differentiation of wave functions Ψ is defined by the following equa-

tion:

∇μΨ = ∂μΨ+ g

(
ϑμ −

1

4
TrϑμI

)
Ψ+

q

4
TrϑμΨ

(58)

= ∂μΨ+ g ϑμΨ+
q − g

4
TrϑμΨ.

In this case of the SU(2, 2)-subgroup obviously only the two first terms survive,

and

∇μΨ = ∂μΨ+ g ϑμΨ (59)

where ϑμ is an su(2, 2) - valued differential form. But it is clear that the exterior

covariant differential of ϑ, F = Dϑ “does not feel” the g-term,

Fμν = Dϑμν = dϑμν + g [ϑμ, ϑν ] = ∂μϑν − ∂νϑμ + g [ϑμ, ϑν ] . (60)
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When dealing with the first-order version of the theory, we shall also use the

H(4, G) � iu(2, 2)-valued differential form of generalized “conformal tetrad”

M � x → Ex ∈ L(TxM,H(4, G)) (61)

which transforms under U in a homogeneous way

Ex → U(x)Ex U(x)−1 (62)

similarly to the SL(2,C)-transformation of the usual tetrad. Because of this, the

covariant exterior differential G = DE is analytically given by

Gμν = ∂μEν − ∂νEμ + g [ϑμ, Eν ]− g [ϑν , Eμ] . (63)

It is clear that it is just the object E which, just like Ψ, is a proper carrier of the

internal gauge action of SU(2, 2), the universal covering group of CO(1, 3). In

analogy to (23), it is convenient to introduce the ϑ- and E-objects with the G-

lowered contravariant index

ϑ̃r̄sμ = Gr̄z ϑ
z
sμ, Ẽr̄sμ = Gr̄z E

z
sμ. (64)

Following (16), we could suggested to put the metric tensor in a first-order theory

as

gμν =
1

4
Tr (EμEν) =

1

4
Gsz̄Gwr̄Ẽr̄sμẼz̄wν . (65)

But this metric tensor is incompatible with the Clifford condition, namely

EμEν + EνEμ �= 2 gμνI4. (66)

And any additional extra condition which replaces this by equality, may be inter-

preted as an unjustified action at a distance introduction. Let me also mention

about the project by Lämmerzahl [6] of experimental deviations from the Clifford

paradigm.

4. Second-Order SU(2, 2) Gauge Theory

Let us now discuss the second-order differential model suggested by our primary

analogy, based on equations (1)÷(12).

The matter Lagrangian is assumed to be, accord with our mentioned above philos-

ophy, given by

Lm(Ψ;Θ, g) =
b

2
gμν∇μΨ̃∇νΨ

√
|g| −

c

2
Ψ̃Ψ

√
|g|

(67)

=
b

2
gμν∇μΨ

r̄
∇νΨ

sGr̄s

√
|g| −

c

2
Gr̄sΨ

r̄
Ψs
√
|g|.
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The usual Yang-Mills Lagrangian for the gauge field Θ is as always

LYM(Θ, g) =
A

4
F r

sμνF
s
rκλ g

μκgνλ
√
|g|

(68)

=
A′

2
F r

rμνF
s
sκλ g

μκgνλ +
√
|g|.

Of course, in the case of the simple subgroup SU(2, 2), the second term does not

occur. The above Lagrangian (68) gives rise to the following Yang-Mills field

momentum

X r
s
μν =

∂LYM

∂ϑs
rμ,ν

= −AΦr
sκλ g

κμgλν −A′ δrsΦ
z
zκλ g

κμgλν
√
|g|. (69)

The U(2, 2)-gauge invariant matter current based on Lm is given by (38) or in the

contravariant form by

Jr
s
μ =

((
DνΨ̃s

)
Ψr − Ψ̃s (DνΨ

r)
)
gνμ
√
|g|. (70)

Performing the variation of action corresponding to (67), (68), one obtains the

following field equations

gμν
g

∇μ

g

∇ν +
c

b
Ψ = 0 (71)

g

∇ν X μν = gJμ +
q − g

4
TrJμI4. (72)

where
g

∇μ denotes the total covariant differentiation which unifies the action of the

g-Levi-Civita connection on spatio-temporal indices and the Yang-Mills covariant

differentiation in the sense of internal indices.

It is clear that (72) may be transformed to the following form

χμν
; ν + g [ϑν , χ

μν ] = gJμ +
q − g

4
TrJμI4. (73)

This is because

g

∇μ χμν = ∂νχ
μν + g [ϑν , χ

μν ] = χμν
; ν + g [ϑν , χ

μν ] . (74)

The semicolon symbol denotes the covariant differentiation in the g-Levi-Civita

sense. Let us observe that the usual divergence of χμν equals to the Levi-Civita

or any other divergence based on the symmetric covariant differentiation. The

covariant divergence of skew-symmetric χ with respect to the symmetric affine

connection is identical with the usual divergence.



64 Ewa Eliza Rożko and Jan Jerzy Sławianowski

The total Lagrangian is the sum of (67), (68) and some Lagrangian for the met-

ric field gμν . And here we are faced with some problem. Very naively, one can

try to postulate for g the usual Hilbert-Einstein model, or rather its modification

controlled by two arbitrary constants d, l

LHE(g) = −dR(g)
√

|g|+ l
√
|g| (75)

where R(g) denotes the scalar curvature of g, d is related to the inverse gravi-

tational constant and l has to do with the cosmological constant. The resulting

Euler-Lagrange equation would be of course

d

(
R(g)μν −

1

2
R(g)gμν

)
=

l

2
gμν +

1

2
Tμν (76)

where R(g)μν is the Ricci tensor and T μν is the total energy - metric tensor of

(Ψ, ϑ)
Tμν = Tμν

m + Tμν
YM (77)

where the material and Yang-Mills contributions are respectively given by

Tμν
m = −

2√
|g|

(
∂Lm

∂gμν
−

(
∂Lm

∂gμν,κ

)
,κ

)
(78)

Tμν
YM = −

2√
|g|

(
∂LYM

∂gμν
−

(
∂LYM

∂gμν,κ

)
,κ

)
. (79)

Nevertheless, the procedure with the metric tensor looks rather naive, even if we

put the Palatini values

d = 0, l = 0. (80)

It seems that it would be much more reasonable to follow the SL(2,C)-procedure

with the metric tensor being a byproduct of something else. Of course, the hypoth-

esis:

gμν : = αϑr
sμϑ

s
rν + β ϑr

rμϑ
s
sν (81)

is to be rejected, because it is only globally, but not locally U(2, 2)-invariant.

Let us quote some possibilities which are free of this drawback.

1. The complex cotetrad field, i.e., a mapping

M � x → Wx ∈ L(TxM,C4). (82)

It is analytically represented by the matrix field W r
μ, but with the homoge-

neous transformation rule under U(2), just like the usual co-tetrad

′W r
μ(x) = U r

s(x)W
s
μ(x). (83)
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The following twice covariant tensor field on the manifold M

g(W )μν := �
(
W̃rμW

r
ν

)
= �

(
Gs̄rW

s̄
μW

r
ν

)
. (84)

This object is a locally U(2, 2)-invariant metric-like tensor on M . And we

just identify this byproduct of W with the metric tensor. The homogeneous

rule (83) implies that the exterior differential of W is given by

∇Wμν = dWμν + g (ϑμWν − ϑνWμ)
(85)

+
q′ − g

4
(TrϑμWν − TrϑνWμ) .

Here the coupling constant q′ is in a sense, the electric charge of W . Let

us mention that when the SL(2,C)-reduction is performed, W represents a

particle of spin 3
2 . The analogy to the supersymmetric idea of gravitino is

readable. The corresponding g-Lagrangian of W is given by

L(W,ϑ) = α∇W̃μν∇Wκλ g
μκgνλ

√
|g|+ β

√
|g|. (86)

2. There is also another approach to the problem, namely that the geometric

sector is also described by the another u(2, 2)-valued differential form, M �
x → Wx ∈ L(TxM, u(2, 2)). In analytic terms, it is described by the system

of quantities W r
sμ. However, it is assumed to be ruled by the following

homogeneous transformation under the pseudo-unitary group

′W r
sμ(x) = U r

z W
z
tμ U

−1t
s. (87)

The metric field induced by the object W has the form

g(W )μν = αTr (WμWν) + β Tr (Wμ) Tr (Wν) . (88)

The exterior covariant differential of the field W has the form

∇Wμν = dWμν + g [ϑμ,Wν ]− g [Wν , ϑμ] . (89)

Obviously, Wμ in (88) and later on is an abbreviation for W r
sμ.

The Maxwell-Yang-Mills Lagrangian for the field W has the form

L(W,ϑ) = αTr (∇Wμν∇Wκλ) g
μκgνλ

√
|g|

(90)
+βTr (∇Wμν) Tr (∇Wκλ) g

μκgνλ
√
|g|+ γ

√
|g|

where α, β, γ are constants.
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3. But one can also think about another metric model which is insensitive with

respect to anything like the a priori metric tensor g or with respect to any

auxiliary quantities like W used above. Namely, one can try to substitute for

g the following quantities

g(Ψ, ϑ)μν = a�
(
∇μΨ̃∇νΨ

)
= a�

(
Gr̄s∇μΨ

r̄
∇νΨ

s
)
. (91)

The typical Born-Infeld scheme for the system of (Ψ, ϑ)-fields has the fol-

lowing form

L(Ψ, ϑ) =

√∣∣∣∣det [ b2 gμν +
a

4
Tr (FμκFνλ) gκλ +

a′

4
TrFμκ TrFνλ gκλ

]∣∣∣∣
(92)

where a, a′, b are constants.

5. The SL(2, C)- Correspondence in the Second-Order
SU(2, 2) Theory

To discuss solutions of our field equations and their relationships with the usual

SL(2,C)-ruled spinor theory we introduce an adapted basis of the Lie algebra

u(2, 2)), or, equivalently, of Herm(4,C). This basis is induced by the choice of

Dirac γ-matrices, i.e., representations of γA. Namely we put

ΣAB =
1

4

[
γA, γB

]
=

1

4

(
γAγB − γBγA

)
γ5 = −γ5 = −γ0γ1γ2γ3 (93)

Aγ = iγAγ5 = −iγ5γA.

It is clear that the left-indexed Dirac matrices Aγ obey the Clifford anticommuta-

tion rules with the reversed signature{
Aγ,Bγ

}
= AγBγ + BγAγ = −2 ηABI4. (94)

The corresponding basis of the Lie algebra u(2, 2)) = u(4, G)) is spanned on the

set of matrices

iγA, iAγ, ΣAB, iγ5, iI4. (95)

It is convenient to distinguish the following combinations of γ-matrices

τA :=
1

2
(γA + Aγ) , χA =

(
γA − Aγ

)
. (96)
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It is clear that they span two four-dimensional commutative Lie algebras

[τA, τB] = 0,
[
χA, χB

]
= 0. (97)

These algebra generate two four-dimensional Abelian groups. Using the language

taken from twistor theory we would say that τA generate the group of space-time

translation, and χA - the group of proper conformal transformations (53), i.e.,

boosts (accelerations).

Expanding the connection form with respect to the basis (95), we introduce the

system of gauge potentials

ϑμ =
1

2
Ω̌AB

μΣAB +Bμ
1

i
γ5 +Aμ iI + eAμ iτA + fAμ iχ

A. (98)

Sometimes one introduces alternative objects

ΩA
Bμ = Ω̆A

Bμ +Bμ δ
A
B (99)

Bμ =
1

8
ΩA

Aμ, Ω̆A
Bμ = ΩA

Bμ −
1

4
ΩC

Cμδ
A
B. (100)

So, roughly speaking Ω̆A
Bμ and Bμ are related to the skew-symmetric and trace-

like parts of ΩA
Bμ. It is clear that ϑμ may then be rewritten in the form

ϑμ =
1

2
ΩA

Bμ

(
ΣAB +

1

4
ηAB

1

i
γ5

)
+ eAμ iτA + fAμ iχ

A +Aμ iI (101)

or equivalently

ϑμ =
1

2g
Γ̆AB

μΣAB +
1

4g
Qμ

1

i
γ5 +

1

g
εAμ iτA +

1

g
ϕAμ iχ

A +Aμ iI (102)

or in the form similar to (101)

ϑμ =
1

2g
ΓAB

μ

(
ΣAB +

1

4
ηAB

1

i
γ5

)
+

1

g
εAμ iτA+

1

g
ϕAμ iχ

A+Aμ iI. (103)

The meaning of the symbols used here is as follows

ΓA
Bμ = gΩA

Bμ, Γ̆A
Bμ = ΓA

Bμ −
1

4
ΓC

Cμδ
A
B

Qμ =
1

2
ΓA

Aμ =
g

2
ΩA

Aμ = 4gBμ (104)

εAμ = g eAμ, ϕAμ = gfAμ.
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Let us stress that the action of U(A), A ∈ SL(2,C) on
[
eB
]
, [fB] becomes homo-

geneous, although the action of unrestricted U ∈ U(2, 2) on ϑμ and its system of

coefficients is inhomogeneous. So, roughly speaking
[
eB
]
, [fB] are two versions

of the gravitational co-tetrad, just like in our earlier papers [1–5], [7–24]. And

obviously, the action of GL(2,C) is such that Qμ is the Weyl covector

∇λ gμν = −Qλ gμν . (105)

This explains in a very beautiful way the gauge geometric role of cotetrads. They

are parts of the U(2, 2) or SU(2, 2) connection form.

The curvature two-form Φ may be also expressed in terms of the gauge potentials

and their exterior differentials, namely

Φ = T (e)A iτA + T (f)A iχA +
1

2
R̃ABΣAB +G

1

i
γ5 + F iI (106)

with the following meaning of coefficients

T (e)A = deA + gΩA
B ∧ eB = deA + ΓA

B ∧ eB

T (f)A = dfA + gfB ∧ ΩB
A = dfA + fB ∧ ΓB

A

R̃A
B = R(Ω)AB −

1

4
R(Ω)CC δAB − 2g eA ∧ fB + 2g ηACηBD eD ∧ fC

(107)

=
1

g

(
R(Γ)AB −

1

4
R(Γ)CC δAB − 2g2 eA ∧ fB + 2g2 ηACηBD eD∧fC

)
G =

1

4g
dQ− g eA ∧ fA =

1

g

(
1

8
R(Γ)AA − g2 eA ∧ fA

)
F = dA.

In these equations, R(Γ), R(Ω) are symbols for the usual curvature two-form

R(Γ)AB = dΓA
B + ΓA

C ∧ ΓC
B

(108)
R(Ω)AB = dΩA

B + gΩA
C ∧ ΩC

B.

All those objects give rise to some space-time objects like connections, curvature

and torsions. They are analytically described by the following expressions

Affine connections

Γ(e)kij = ekA ΓA
Bj e

B
i + ekA eAi,j

(109)
Γ(f)kij = −fAi Γ

A
Bj f

kB + fkA fAi,j .
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The torsion tensors

S(e)kij = Γ(e)k [ij] = −1
2 e

k
A T (e)Aij

(110)
S(f)kij = Γ(f)k [ij] = −1

2 f
kA T (f)Aij .

The curvature tensors

R(e)mkij = emAe
B
kR

A
Bij

(111)
R(f)mkij = −fAkf

mBRA
Bij .

We do not dare to solve the system of equations (71), (72) and (76) (or instead (76)

the system following from (86), (90) and (92)). But instead, we shall try to solve

the simplified empty-space solutions with the non-excited matter, Ψ = 0 and with

the formally substituted Einstein-Dirac metric tensors

h(e, η)μν = ηAB eAμe
B
ν , h(f, η)μν = ηABfAμfBν . (112)

Therefore, to the mentioned field equations we substitute the following equations

Ψ = 0, fAμ = k ηAB eBμ, gμν = ph(e, η)μν
(113)

Qμ = 0, Aμ = 0, S(e)λμν = S(f)λμν = 0.

One can show that after the very complicated discussion, the total system of field

equations reduces to

Rμν −
1

2
Rgμν = −12

g2k

p
gμν . (114)

Substituting here the very natural values k = 1, p = 1, we obtain the following

system of field equations

Rμν −
1

2
Rgμν = −12 g2gμν (115)

As mentioned, the values k = 1, p = 1 are very natural. If for the metric field gμν
we substitute the Hilbert-Einstein dynamics, then we obtain the equation

Tμν = 0 (116)

where Tμν denotes the symmetric “energy-momentum tensor” for our fields. But

this is quite compatible with (114) (115). Namely, there exist solutions character-

izing the space of the constant space-time curvature where

Rαβμν =
4g2k

p
(gαμgβν − gανgβμ) (117)



70 Ewa Eliza Rożko and Jan Jerzy Sławianowski

i.e., simply

Rαβμν = 4g2 (gαμgβν − gανgβμ) (118)

if we continue our sticking to the values k = 1, p = 1.

It is very interesting that the invariance of the theory under the covering group of

the conformal group implies the conformal flatness of the space-time manifold ex-

pressed by (118). It is much more important and interesting that the global confor-

mal flatness of the space-time manifold is expressed by the microscopic parameter

g of the U(2, 2)-gauge invariance. The existence of the above solutions to our field

equations looks like a miracle!

In the material sector, it seems that there is no discrepancy between our primary

second-order differential equation and the first-order Dirac differential equation.

So, when we substitute to the equation of matter the above-mentioned choice with

p = 1, k = 1, and assume the space-time background as fixed, then for the material

Dirac-Klein-Gordon equation we obtain

eμAiγ
A (∇μ + Sν

νμI4)Ψ−
4bg2 − c

2bg
Ψ+

1

2g

g

∇μ

g

∇ν Ψ = 0. (119)

In this equation ∇μ denotes the SL(2,C)-contribution to the covariant differentia-

tion in the gauge sense of U(2, 2). The symbol
g

∇μ unifies the ∇μ-differentiation

with the ΓA
B-covariant differentiation of tensorial objects with the capital indices

and with the usual covariant differentiation in the Levi-Civita sense. The first two

terms in (119) correspond with the Dirac theory in the space-time of Einstein-

Cartan type. But it is well-known that the structure of the general solution of

differential equations depends critically on the highest-order differential term. The

question appears if the Klein-Gordon term in (119) does not destroy the similarity

of the first two terms to the Dirac equation. To discuss this let us consider the

specially-relativistic approximation when eAμ = δAμ, ΓA
Bμ = 0, gμν = δμν . In

this approximation, (119) becomes

iγμ∂μ −
4bg2 − c

2bg
Ψ+

1

2g
ημν∂μ∂νΨ = 0. (120)

It is clear that its general solution is a linear combination of two Dirac wave am-

plitudes with two masses m± given by

m2
± =

c

b
− 2g2

(
1±

√
c

bg2
− 3

)
. (121)

The range of Dirac-like behavior is given by c/b > 3g2. For the critical value

c/b = 3g2, there is no splitting of mass and m = |g|. This is the rigorous Dirac
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dynamics with one mass. If c/b = 4g2, then one of the masses does vanish, namely

m− = 0, and then m+ = 2 |g|. In general the natural question appears concerning

the experimental verification of the two possible mass states. Do they appear in

reality or not? And why? There are three a priori possible explanations

1. Perhaps the mass gap m+ −m− is too large and the creation of the higher

mass state is exceeds the experimental abilities.

2. Perhaps conversely, |g| is so small that the mass gap m+ − m− is also too

small to be experimentally observed.

3. The last possibility, in which we believe is that the doubling of mass states

not only exists but is also observed in experiments. And one can suspect this

to explain the mysterious pairing of fundamental quarks and leptons in the

standard model of electroweak interactions. By this we mean their occur-

rence in pairs like (νe, e), (νμ, μ), (ντ , τ) and (u, d), (c, s), (t, b), respec-

tively for fermions and quarks. In particular, the situation c/b = 4g2 might

seem to be a kind of “explanation” of the pairing between heavy leptons and

their neutrinos.

6. First-Order SU(2, 2) Field Theory

Let us now go back to our model of first-order differential theory gauge-invariant

under U(2, 2). As we remember, it has the following basic variables: matter field

Ψ, connection ϑ and “multitetrad” E. The metric field is defined by (65) as a by-

product of E. The covariant exterior differentials F = Dϑ, G = DE are given by

(60) and (63).

These objects give rise to the pair of affine connections in M . Namely, the metric

tensor g gives rise to the Levi-Civita connection g

{
α
μν

}
based on g. Another

one, Γ(E, ϑ) is given by

Γλ
μν :=

1

4
Tr
(
Eλ (Eμ,ν + g [ϑν , Eμ])

)
. (122)

Here Eλ with the upper-case index is obviously given by

Eλ := gλμEμ. (123)

The definition of Γ(E, ϑ) is based on the assumption that E is parallel under the

covariant differentiation based on ϑ (bispinor indices) and Γ (space-time indices)

ϑ,Γ

∇ μ Er
sν = Er

sν,μ + g ϑr
zμE

z
sν − gEr

zνϑ
z
sμ − Er

sλΓ
λ
νμ = 0. (124)
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One can check that Γ(E, ϑ) is an Einstein-Cartan connection

∇g = 0 (125)

and its torsion is given by

Sλ
μν = Γλ

[μν] = −
1

8
Tr
(
EλGμν

)
. (126)

In analogy to the SL(2,C)-invariant Dirac theory, we have the following form of

the matter Lagrangian

Lm(Ψ;E, ϑ) =
i

2
gμνEr

sμ

(
Ψ̃r∇νΨ

s −
(
∇νΨ̃r

)
Ψs
)√

|g| −m Ψ̃rΨ
r
√
|g|

=
i

2
gμνEr̄sμ

(
Ψ

r̄
∇νΨ

s −
(
∇νΨ

r̄
)
Ψs
)√

|g| −mGr̄sΨ
r̄
Ψs
√
|g|. (127)

The wave equation following from Lm is given by

iEr
s
μ (∇s

zμ + Sν
νμδ

s
z)Ψ

z = mΨr. (128)

This form is quite analogous to the usual Dirac equation. The Yang-Mills La-

grangian for the ϑ-field has the usual structure

LYM(ϑ;E) =
A

4
F r

sμνF
s
rκλ g

μκgνλ
√

|g|
(129)

+
A′

4
F r

rμνF
s
sκλ g

μκgνλ
√
|g|.

As in all such expressions A, A′ are constants. The same terms appears in the

Yang-Mills Lagrangian for E

LE(E;ϑ) =
B

4
Gr

sμνG
s
rκλ g

μκgνλ
√
|g|

(130)

+
B′

4
Gr

rμνG
s
sκλ g

μκgνλ
√
|g|+ C

√
|g|

where again B, B′, C are constants.

This is the main term, however let us notice that in principle one can also add here

some other contributions like, e.g., a linear combination of three basic Weitzenböck

terms quadratic in S

Ltorsion(E;ϑ) = D1 gαβg
μκgνλ Sα

μνS
β
κλ

√
|g|

(131)
+D2 g

μν Sα
βμS

β
αν

√
|g|+D3 g

μν Sα
αμS

β
βν

√
|g|.
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One can also think about admitting the Einstein-Cartan expression

LEC(E;ϑ) :=
1

k
gμνR(Γ)αμαν

√
|g|. (132)

However, below we restrict ourselves to the cosmologically modified Yang-Mills

term (130). The resulting field equations have the form

AFμν
;ν +A′TrFμν

;νI4 −Ag [F μν , ϑν ]−Bg [Gμν , Eν ] + θμ = 0
(133)

BGμν
;ν +B′TrGμν

;νI4 −Bg [Gμν , ϑν ] + τ(Ψ)μ + τ(E)μ =
1

4
T (ϑ)μνEν .

The semicolon denotes the Levi-Civita covariant derivative. The source terms in

these field equations are shown to be

θμ := g
i

2

{
ΨΨ̃, Eμ

}
+

q − g

4
iΨ̃EμΨI4

τ(Ψ)μ :=
(
(∇μΨ) Ψ̃−Ψ

(
∇μΨ̃

))
−

1

2
t(Ψ)(μκ)Eκ

t(Ψ)μν :=
i

2

(
Ψ̃Eν (∇μΨ)−

(
∇μΨ̃

)
EνΨ

)
.

τ(E)μ :=
B

2

(
Tr (Gμ

κG
κν)−

1

4
Tr
(
GλκGκλ

)
gμν
)
Eν

+
B′

4

(
TrGμ

κTrG
κν −

1

4
TrGλκTrGκλ

)
Eν +

C

4
Eν

T (ϑ)μν = −A

(
Tr
(
Fμ

λF
λν
)
−

1

4
Tr
(
Fα

βF
β
α

)
gμν
)
Eν

+A′

(
TrFμ

λTrF
λν −

1

4
TrFα

βTrF
β
αg

μν

)
.

Obviously

T (ϑ)μν = −
2√
|g|

δLϑ

δgμν
, τ(E)μ = −

1

4
T (E)μνEν

and T (E) is constructed of E just like T (ϑ) of ϑ.

One can notice that θμ has the structure similar to that of the Noether current for

the Dirac field. The tensor t(Ψ)μν is similar to the canonical energy-momentum

tensor of this field.

We have formally derived the above equations but as yet we were unable to find

any their solutions, and the more to interpret them. Because of this it seems that

our second-order field equations and their interpretation in terms of pairing be-

tween fundamental particles seem to be a good way, certainly more promising than

the explicitly first-order equations. The more that surprisingly enough, the Dirac

correspondence seems to be inherently contained in them.
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E.E., Quasiclassical and quantum Systems of Angular Momentum, Part I.
Group Algebras as a Framework for Quantum-Mechanical Models with Sym-
metries, J. Geom. Symmetry Phys. 21 (2011) 61-94.
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