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Abstract. The curved Josephson junction is described. In the framework of

the Maxwell equations the equation that describes the influence of the curvature

on the fluxion motion was obtained. The method of geometrical reduction of the

sine-Gordon model from three to lower dimensional manifold was applied to the

long Josephson junction. It was argued that the geometrical reduction describes the

junctions with slowly varying curvatures.

1. Introduction

Two superconducting electrodes separated by a thin layer of a dielectric material

form the Josephson Junction. The quantum state of each electrode of this system is

described by a macroscopic wave function. The modules of these functions mea-

sure the square root of the density of Cooper pairs in the superconductors. In a

bulk of each electrode, the density of Cooper pairs is almost constant and there-

fore the bulk the dominating dynamical degrees of freedom are phases of these

wave functions. If the central dielectric layer, which separates the electrodes, is

sufficiently narrow (typically several of Å), then the phases are correlated and the

number of independent degrees of freedom is reduced to only one scalar function

φ. This function describes a gauge invariant phase difference between supercon-

ducting electrodes. The physical effect of this correlation is a flow of Cooper pairs

through the dielectric barrier. This effect has been predicted by Josephson [16] and

then confirmed experimentally by Anderson and Rowell [2].

Depending on the dimensions of the Josephson device it can be considered as a two,

one and even zero dimensional system. In particular, if the transverse dimension of

the junction is smaller than the Josephson length, then the system can be considered

as the one dimensional system called the long Josephson junction. The behavior

of the dynamical variable φ that describes this system is determined by the sine-

Gordon model [6]. This model describes the dynamics of many other systems [5].

Solutions of this model are extensively studied for years [1], [12]. The most known

solution of this model is a kink which interpolates between different ground states
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of the potential. In the context of the long Josephson junction the kink represents

a quanta of the magnetic flux called the fluxion.

Technological progress in recent years has enabled the fabrication of arbitrarily

curved junctions. On the other hand, there are also theoretical attempts to study

the influence of nontrivial geometry on the fluxion motion in such systems. For

example, in [14] the authors concentrated on influence of the curved boundaries

on the kink motion. The junction, in their example, is located on the plane and

it has the form of two rectangles connected by the ring. The curved region of

this junction corresponds to the existence of a nontrivial potential that affects the

kink motion. Moreover, the influence of the external magnetic field on the an-

nular junction was studied theoretically and experimentally in [15], [23]. In the

distant perspective, these studies are motivated by the possibility of construction

of quantum computers. The Josephson junctions can be used in these devices as

their basic elements, i.e., qubits [11, 13, 18, 19, 24]. The other possible deforma-

tions of the Josephson junction may also correspond to bending of the dielectric

layer in an arbitrary way. From geometric point of view, such a curved junction

can be represented by a curve or a curved surface nontrivially embedded in a three

dimensional space, i.e., its external curvatures are not trivial. On the other hand,

the sine-Gordon model that describes the dynamics of the gauge invariant phase

difference can be relatively easy projected onto an arbitrary curved manifold. In

this situation, the simplest method of construction of the effective model that de-

scribes the kink motion in a curved junction is connected with geometric reduction

of the sine-Gordon model to lower dimensional curved subspace [9].

In the present work we recognize the limitations of the geometrical reduction

method in the context of the Josephson junction.

The paper is organized as follows. In the next Section, we introduce the curved co-

ordinates on the basis of the junction and fix our notation. We also recollect some

elements of the method on the example of a plane curve. Section 3 is devoted to

construction of the curved field equations on the basis of physical considerations.

In the same section we recognize also the regime of applicability of the geomet-

rical reduction method. The last Section contains remarks concerning possible

applications of the curved junctions.

2. Geometrical Reduction of the Sine-Gordon Model

We first recollect basic facts concerning geometrical reduction of the sine-Gordon

model to lower dimensional manifold. In this article, the model is reduced to plane

curve located in the center of the insulator layer. The physical context of this
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Figure 1. The connection between the Frenet frame {�t,�b, �n} on the cen-

tral curve of the insulator layer and Cartesian coordinates. The s coordinate

parameterizes the central curve.

choice is the propagation of the electromagnetic waves in a long and quasi-one

dimensional Josephson junction. To consider the model defined by the Lagrangian

density

L =
1

2
(∂tφ)

2 − 1

2
η
ij
E (∂iφ)(∂jφ)− V (φ) (1)

where V (φ) = 1 − cosφ is the sine-Gordon potential and η
ij
E is the Euclidean

metric in the Cartesian coordinates (xi) = (x1, x2, x3) = (x, y, z). For the sake

of simplicity, coordinates used in this Section are dimensionless, i.e., xi → xi/λJ

and t → ωP t, where λJ is the Josephson length and ωP is the plasma frequency.

We also use suitable curved coordinates. The first coordinate s parameterizes the

central line of the junction, the second ρ parameterizes the normal (to orientation

of s variable) direction of the junction and the third u is normal to the junction.

In Fig. 1, the first variable corresponds to the direction of the tangent vector t, the

direction of the second coordinate ρ is indicated by the binormal vector b, and the

last variable is connected with direction of the normal vector n.

The Lagrangian density in these coordinates is the following

L =
1

2
(∂tφ)

2 − 1

2
Gαβ(∂αφ)(∂βφ)− V (φ) (2)

where we use the notation (ξα) = (ξ1, ξ2, ξ3) = (s, ρ1, ρ2) = (s, ρ, u) and also

(ρI) = (ρ1, ρ2) = (ρ, u). We identify the junction with a curve located in the

center of the insulator layer and therefore we identify its points by the vector field
X(s). In the present article we presume that the junction is flat in the direction of

the ρ variable. In the neighborhood of the central line, there exists a connection of
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curved coordinates with coordinates of the Cartesian reference frame

x = X(s) + ρInI(s) (3)

where n2 ≡ n is the normal vector to the central curve and n1 ≡ b is the binormal

vector. We also denote the tangent vector to the central line as follows ∂s X ≡
X,s ≡ t. Moreover, the vectors nI are normalized to unity and are orthogonal each

other and to the tangent vector X,s = t to the central line as well

nI · nJ = δIJ , nJ · X,s = 0 (4)

where the scalar products are calculated with respect to the Euclidean metric in

Cartesian coordinates. The similar curved coordinates are also used in other physi-

cal contexts [4,8,20]. In general, an embedding of the line in 3D space is described

by the extrinsic curvature K and the torsion coefficient ω. On the other hand, here

we assume that the curve is plane and therefore ω = 0. In the calculus we shall

need the metric in the curved coordinates (ξα) = (s, ρI)

Gαβ =
∂ξα

∂xi
∂ξβ

∂xj
η
ij
E · (5)

The components of this metric are the following

GIJ = δIJ , GIs = 0, Gss =
1

G
· (6)

The determinant of the metric Gαβ in curved coordinates has the form

G = G2 = (1− uK(s))2.

On the intermediate step of the reduction procedure we obtain the Lagrangian den-

sity

L =
1

2
(∂tφ)

2 − 1

2G
(∂sφ)

2 − V (φ) (7)

where we removed derivatives with respect to normal variables ∂ρφ = 0 and

∂uφ = 0. The effective Lagrangian density which describes the motion of the kink

along the junction can be obtained by integration the Lagrangian density (7) with

respect to normal variables (see [9])

L =

∫
ds

∫ +w/2

−w/2
dρ

∫ +a/2

−a/2
du

√
GL =

∫
dsLeff (8)

where a is thickness and w is width of the isolator layer. After integration we

obtain

Leff =
1

2
(∂tφ)

2 − 1

2
F(∂sφ)

2 − V (φ) (9)
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where we omitted the multiplicative constant aw and introduced a function of cur-

vature as follows

F =
1

aK(s)
ln

(
2 + aK(s)

2− aK(s)

)
. (10)

The equation of motion connected with the effective Lagrangian density has the

form

∂2
t φ− ∂s (F ∂sφ) + sinφ = 0. (11)

3. Physical Explanation of the Influence of Curvature on the
Fluxion Dynamics

In this Section we shall obtain the equations that describe the propagation and gen-

eration of electromagnetic waves in the long Josephson junction [22], [6]. The

junction, depicted in Fig. 2, consists of two superconducting electrodes separated

by the dielectric layer of thickness a. In this layer we choose the surface Σ, pre-

sented in Fig. 1, that divides the insulator on two parts and is equally separated

from the superconducting electrodes by the distance a/2. On this surface, we chose

plane curve parameterized by the s coordinate. This curve is located in the center

of the surface Σ, i.e., is equally separated from the boundaries of the junction by

the distance w/2 (w is a width of the junction). This curve represents geometry

of the long Josephson junction. We presume that the surface Σ is flat in the di-

rection of the ρ coordinate and also that physical settings exclude any dynamics

in this direction. These assumptions allow to apply the obtained results to some

class of the two dimensional Josephson junctions, i.e., the quasi-one dimensional

large area Josephson junctions. In Fig. 2, one can see, that both superconducting

electrodes are penetrated by the electromagnetic field up to the distance of London

penetration depths (λT and λB). The doted areas represent parts of the electrodes

penetrated by the magnetic field.

In the presence of the vector potential A the Landau-Ginzburg electric current den-

sity can be written in the form

J =
e∗

m∗

[
1

2
i � (ψ∇ψ∗ − ψ∗∇ψ)− e∗

c
Aψψ∗

]
(12)

where ψ is the macroscopic wave function. The effective charge and mass param-

eters, in the framework of the BCS theory can be interpreted as a charge and the

mass of the Cooper pairs and therefore are equated to double the electron charge

e∗ = 2e and mass m∗ = 2m. The density of Cooper pairs in the macroscopic state

(described by the modulus of the wave function) is almost constant in the bulk of
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Figure 2. The Josephson junction consists of two superconductors. Each

of the superconducting electrodes is penetrated by the magnetic field. The

penetration area is represented by doted part of the figure (the penetration

depths in top and bottom electrodes are λT and λB). The thickness of the

insulator layer is denoted by a. The s coordinate parameterizes the points of

the central line of the junction. The u variable indicates the normal direction

to the junction.

the superconducting material. The formula (12) can be simplified to the form

J = |ψ|2 e

m

[
�∇ϕ− 2e

c
A

]
(13)

where ϕ is a phase of the macroscopic wave function ψ = |ψ| eiϕ. From this

equation one can calculate the gradient of the phase factor

∇ϕ =
2e

�c

[
mc

2|ψ|2e2
J + A

]
. (14)

We consider the curved junction and therefore we use the local curved coordinates

(s, ρ, u) defined in the vicinity of the central surface of the insulator layer. An

arbitrary vector in these coordinates decomposes as follows

A = As
t+Aρ

b+Au n. (15)

In order to guarantee one dimensionality, we assume that the magnetic field has

nonzero component only in the direction of the ρ variable. Moreover, we presume

that the fields are homogenous in the direction of the ρ coordinate (i.e., they do not

depend on ρ). In these circumstances we can choose gauge so as the only nonzero

component of the gauge potential is As. In these conditions waves propagate in the

direction of the s coordinate. In the curved coordinates (s, ρ, u), the gradient of a

scalar field takes the form

∇V =
1

G ∂sV t+ ∂ρV b+ ∂uV n (16)
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and the curl of a vector field is the following

rot A = [∂ρAu − ∂uAρ] t+
1

G [∂u(GAs)− ∂sAu] b+
1

G [∂sAρ − ∂ρ(GAs)] n.

(17)

Our purpose is the calculation of the gauge invariant phase difference between

bottom and top electrodes of the junction in infinitesimally separated points s and

s+ ds. We recollect the s component of the gradient (16)

(gradϕ)s =
1

G ∂sϕ (18)

and then use relation (14) in order to calculate the phase differences in top

ϕT (s)

G(s) − ϕT (s+ ds)

G(s+ ds)
=

2e

�c

∫
CT

dl

[
mc

2|ψ|2e2
J + A

]
=

2e

�c

∫
CT

dl A (19)

and bottom electrodes

ϕB(s+ ds)

G(s+ ds)
− ϕB(s)

G(s) =
2e

�c

∫
CB

dl

[
mc

2|ψ|2e2
J + A

]
=

2e

�c

∫
CB

dl A. (20)

The contours of integration CT and CB (see Fig. 2) are chosen deep inside the

superconducting electrodes where the shielding current density is equal to zero.

Moreover the parts of the contours CT and CB in the area penetrated by the mag-

netic field (of the size of London penetration depths) are perpendicular to the cur-

rent J .

Let us also notice that in the considered situation the electromagnetic field has

zero Au component and therefore the gauge invariant difference of the phases can

be expressed simply as a difference of the phases in the bottom and top electrodes

φ(s, t) ≡ ϕB(s, t)− ϕT (s, t) +
2e

�c

∫ a/2

−a/2
duAu = ϕB(s, t)− ϕT (s, t). (21)

If we add formulas (19), (20) and use the definition (21), then we obtain

φ(s+ ds)

G(s+ ds)
− φ(s)

G(s) =
2e

�c

∮
dl A (22)

where we additionally neglected the thickness of the barrier. From the Stokes

theorem, the contour integral can be expressed as a surface integral over the surface

spanned by the union of both contours

φ(s+ ds)

G(s+ ds)
− φ(s)

G(s) =
2e

�c

∫
S

∫
dS H =

2e

�c
λ dsHρ (23)



20 Tomasz Dobrowolski

where λ describes the thickness of the region penetrated by the magnetic field

(λ = a+ λT + λB , here a is a width of the isolator layer and λT , λB are London

penetration depths of the top and bottom superconductors). In the zero ds limit we

obtain

∂s

(
1

G φ

)
=

2e

�c
λHρ . (24)

The last equation connects the magnetic field with the gauge invariant phase dif-

ference.

On the other hand, we use Maxwell equations written in terms of free charges and

currents. In Gaussian units, Ampere’s circuital law with Maxwell’s correction has

the form

rot H =
4π

c
J +

1

c
∂t D. (25)

The third component of this equation depends on first Hs and second Hρ compo-

nents of the magnetic field

1

G [∂sHρ − ∂ρ(GHs)] =
4π

c
Ju +

1

c
∂tDu . (26)

In the described experimental settings the first component of the magnetic field is

absent. Moreover, we fixed gauge in such a way that the third component of the

vector potential is equal to zero and therefore the electric induction only depends

only on the electric potential

Du = εEu = ε(−∂uV − 1

c
∂tAu) = −ε∂uV (27)

where ε is relative dielectric constant. Next, we integrate the last formula with

respect to the normal variable∫ a/2

−a/2
duDu = −ε

∫ a/2

−a/2
du ∂uV = ε(−V (a/2) + V (−a/2)) = ε(VB − VT ).

(28)

As a result, we connect the normal component of the electric induction with the

potential difference between superconducting electrodes Du = 1
a
εΔV , where

ΔV ≡ (VB − VT ). Thus we can write the equation (26) as follows

1

G ∂sHρ =
4π

c
Ju +

ε

ac
∂t(ΔV ). (29)

If we combine the Maxwell equation (29) with the second Josephson relation

∂tφ =
2e

�
ΔV (30)
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and formula (24), we obtain the equation

�c

2eλ
∂2
s

(
1

G φ

)
= G 4π

c
Ju + G ε

ac

�

2e
∂2
t φ. (31)

Next we average this formula with respect to the normal variable of the junction

( 1
a

∫ +a/2
−a/2 duf )

�c

2eλ
∂2
s (F φ) =

4π

c
Ju +

ε

ac

�

2e
∂2
t φ. (32)

In the next step, we use the first Josephson relation Ju = JJ sinφ and obtain the

following equation

�c2

8πeλ
∂2
s (F φ) = JJ sinφ+ C

�

2e
∂2
t φ. (33)

Here C = ε
4πa is the junction capacitance per unit area and a is the width of the

dielectric layer. Finally, the equation of motion for gauge invariant phase difference

has the form
1

c̄2
∂2
t φ− ∂2

s (F φ) +
1

λ2
J

sinφ = 0 (34)

where the Josephson length is defined as λJ =
√

�c2

8πeλJJ
and the Swihart velocity

is c̄ = c
√
4πλC

. In dimensionless units (s → 1
λJ

s and t → c̄
λJ

t = ωP t), this

equation can be simplified in the form

∂2
t φ− ∂2

s (F φ) + sinφ = 0. (35)

Let us notice that equation (35) coincides with the equation (11) of the previous

Section in the case of constant curvature. For non-constant curvature, this corre-

spondence is approximate provided that the curvature changes sufficiently slowly

i.e., R′(s) << R(s) and R′′(s) << R(s), where R(s) is radius of curvature and

the prime denotes derivative with respect to s variable. For example, the first con-

dition means that the change of the curvature radius ΔR on the distance Δs is

much smaller than the product RΔs.

The more general form of the equation of motion can be obtained if we take into

account the more general form of the first Josephson relation [17], [3]

Ju = JJ sinφ+ σ0V + σ1V cosφ (36)

where σ0 and σ1 are appropriate conductivities of the junction. The first term repre-

sents tunneling of the Cooper pairs. The second term of this relation describes the

quasiparticle tunneling current and the third a quasiparticle pairs interface current.
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Actually, the last term describes a concomitant destruction and creation of pairs on

different sides of the junction. This relation imposed in equation (32) leads to the

field equation

1

c̄2
∂2
t φ+

γ

c̄
∂tφ+

β

c̄
cosφ ∂tφ− ∂2

s (F φ) +
1

λ2
J

sinφ = 0 (37)

where β = σ1

c̄ C
and γ = σ0

c̄ C
. As parameters σ0 and σ1 are usually really small

then the new terms are neglected or in other cases can be treated on the ground of

a perturbational scheme.

Finally, let us recall that gauge invariant phase difference between superconduct-

ing electrodes φ has a direct physical meaning, i.e., it is interpreted as a normalized

measure of the magnetic flux. This interpretation follows from the second Joseph-

son relation that leads to proportionality of the gauge invariant phase difference φ

to the magnetic flux Φ.

4. Remarks

In the present article, we have discussed the geometrical reduction method that

was used in order to describe the motion of the kink in the arbitrary deformed

Josephson junction. The outcome of this method is the collective coordinate ef-

fective Lagrangian that describes the dynamics of the adiabatic variable indicating

position of the kink.

In the present work, we concentrated on the long Josephson junction represented

by a plane curve. The junction of this type, due to small width, is treated as one

dimensional system. Moreover, if the magnetic field is chosen in an appropriate

way, then the same considerations apply to the large area Josephson junction (that

is two dimensional system). In the second case, one have to use the junction with

one flat direction.

First, we performed geometrical reduction of the sine-Gordon model to the sub-

space that has the form of a plane curve. Next, we calculated the effects of curva-

ture on the physical background. Let us notice that even this method has one draw-

back, i.e., it neglects the magnetic flux located in the dielectric layer. In order to

shorten calculus, we compared both results on the level of the field equation which

is intermediate step on the way to the collective coordinate effective Lagrangian.

As a result we have obtained precise agreement of two results for junctions with

constant curvature. Moreover, the same result was obtained on a more fundamen-

tal level [7]. On the other hand, if the curvature is a slowly varying function of

the variable s then both results agree approximately. On the physical background,
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we have obtained also equations that take into account two other physical effects.

The first is the existence of the quasiparticle tunneling current in the system which

introduces the damping term to the equation of motion. The second is a quasipar-

ticle pairs interface current which modifies the sine-Gordon equation by the cosine

term. This term is usually very small and therefore can be treated in the frame-

work of suitable constructed perturbational scheme. The approach presented here

is based on the macroscopic wave function that is outcome of the BCS theory in

the mean-field approximation. The equation obtained in Section 4 has direct ap-

plication to the description of the transmission lines. In the case of the Josephson

junctions with slowly varying curvatures, the description of the system is given by

the Lagrangian (9).

The description of curved junctions with slowly varying curvatures have two posi-

tive features, which are connected with the existence of a Lagrangian and moreover

Hamiltonian formulation of the effective model in this regime. The first feature is

existence of the kink solutions, that follows directly from Bogomolny analysis.

The second is the possibility to go beyond the mean field approximation. This last

feature is based on the collective coordinate approach and could be particularly

useful in construction of the qubit. The natural candidate for a collective coordi-

nate is the position of the fluxion identified with the position of zero of the kink

ansatz [21]

φK = 4arctan
[
es−S(t)

]
. (38)

The effective Lagrangian for this variable

L = T − U. (39)

contains the kinetic

T = 2abJ(S)Ṡ2 ≈ 4abṠ2 (40)

and the potential energy that, for example, for small curvatures is closely related

with curvature itself

U(S) ≈ 8ab+
ba3

6

∫ l

0
ds

K(s)2

cosh2(s− S)
≡ 8ab+ΔU. (41)

In this sense the curvature corresponds to the potential barrier and the hole in the

system. For example, if the Josephson junction consists of two straight segments

K(s) = 0 for s ∈ [0, s1] ∪ [s2, l] connected by the arc of the circle of radius R

(i.e., K(s) = 1/R = const for s ∈ [s1, s2]), then the potential energy has a form

of the barrier (see Fig. 3). Similarly, if two arc of the circle are separated by the

straight segment, then we have a potential hole.
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2

4

6

8

�U(S)

Ss1 s2

segment
of the
straight
line

arc of the
circle

segment
of the
straight
line

Figure 3. The potential barrier formed in the region of constant curvature

(i.e., K(s) = 1/R for s ∈ [s1, s2]). This picture is valid whenever 0 <
s1 < s2 < l. The parameters in the plot are the following a = 20, R = 200,
b = 100, l = 1000, s2 = 700, s1 = 400.

The equations (35), (37) describe the dynamics of the gauge invariant phase dif-

ference in the mean field approximation of the BCS model. The description of

a quantum excitations of the system that goes beyond this approximation needs

quantization of the collective variable S. The quantization of the system can be

performed by imposing the canonical commutation relations between the position

and conjugate momentum:
[
Ŝ, P̂

]
= i�. The description of the system is now

given by a quantum Hamiltonian

Ĥ =
1

16ab
P̂ 2 + U(Ŝ) (42)

where in position representation Ŝ → S and P̂ → −i� ∂
∂S

. The two lowest energy

eigenstates ψλ(S)

Ĥψλ(S) = Eλψλ(S) (43)

of the Hamiltonian (42) can be used in order to construct the quantum bit. Let us

notice that during the production process of the junction and due to the relation (41)

the form of the potential can be chosen in such a way that the two lowest energy

states can be well separated from the rest of the eigenvalues of the Hamiltonian

(42). Moreover, the equation (41) can help to choose the most suitable form of the

potential U(Ŝ) by the proper choice of the shape of the Josephson junction. For

example, if for a given form of the potential the solution of the eigenvalue problem

(43) is known, then (instead of searching for solutions of the eigenvalue problem)

we can concentrate on finding appropriate curvature of the junction.



The Fluxion in a Curved Josephson Junction 25

Acknowledgements

This work was supported in part by NCN Grant 2011/03/B/ST3/00448.

References

[1] Ablowitz M. and Clarkson P., Solitons, Nonlinear Evolution equations and
Inverse Scattering, Cambridge Univ. Press, Cambridge 1999.

[2] Anderson P. and Rowell J., Probable Observation of the Josephson Super-
conducting Tunnelling Effect, Phys. Rev. Lett. 10 (1963) 230–232.

[3] Arnold G., Theory of Tunneling in Superconductors, Phys. Rev. B 17 (1978)

3576–3588.
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