
JGSP 33 (2014) 91–107

LOCALITY OF THE CONSERVATION LAWS FOR THE SOLITON
EQUATIONS RELATED TO CAUDREY-BEALS-COIFMAN SYSTEM

ALEXANDAR YANOVSKI

Communicated by Metin Gürses

Abstract. We consider the hierarchies of Nonlinear Evolution Equations related

to auxiliary problem of Caudrey-Beals-Coifman type. We give a proof that the

conservation laws for these equations have local densities based on the theory of

the generating operators related to the Caudrey-Beals-Coifman linear problem.
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1. Introduction

This article is about the theory of the so-called soliton equations (completely in-

tegrable equations). Their characteristic property is that they can be cast into the

so called Lax form, or zero curvature form, that is, as compatibility condition (Lax
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representation) [L,A] = 0 for two linear systems

Lψ = (i∂x − U(q, qx, . . . , λ))ψ = 0

Aψ = (i∂t − V (q, qx, . . . , λ))ψ = 0.
(1)

Here U, V are matrix functions, depending on the spectral parameter λ and on a set

of ‘potential functions’ q(x, t) ≡ (q1(x, t), q2(x, t), . . . , qN (x, t)) and their spatial

derivatives qx, qxx, . . . and t is the time. The equation [L,A] = 0 is equivalent to

an equation (system) of the type qt = f(q, qx, . . .) which is the soliton equation

itself, [7,9,20]. Usually the first of the equations in (1), that is Lψ = 0, is fixed and

called auxiliary linear problem. Changing the second one we obtain hierarchies of

nonlinear evolution equations (NLEEs) related to the linear problem Lψ = 0. Each

hierarchy is usually named by some of the equations belonging to it.

Since the Lax representation is written as a commutator the theory of the NLEEs

having Lax representation naturally uses classical theory of Lie algebras and in

particular the semisimple Lie algebras theory. We shall suppose that the reader

is familiar with it so we shall just introduce the notation we use, the one that is

classical, see for example [13], we shall assume clear. For the semisimple Lie

algebra g over C we shall denote its Killing form by 〈 , 〉: 〈X,Y 〉 = tr(adX , adY ),
X,Y ∈ g where adX(Y ) ≡ [X,Y ].

We shall consider a fixed Cartan subalgebra h ⊂ g and shall assume that the rank

of g is r, that is dim h = r. The algebra is split into the following sum of subspaces

mutually orthogonal with respect to the Killing form

g = h⊕ g, g ≡ ⊕α∈ΔCEα. (2)

The vectors Eα are the so-called root vectors, they are labeled by α ∈ Δ where

Δ (the set of roots) is a subset of h∗ – the dual of h. If we have some ordering on

Δ it is possible to split Δ into the set of positive Δ+ and negative Δ− roots Δ =
Δ+ ∪Δ−. Later we shall introduce orderings that are relevant for our tasks, now

we only note that when some ordering is fixed one can introduce the set of simple

roots π = {αj , 1 ≤ j ≤ r}, that is the positive roots that cannot be written as a

sum of two positive roots. The vectors {Eα, α ∈ Δ ; Hi ≡ [Eαi
, E−αi

], αi ∈ π}
form a basis in g called the Cartan-Weyl basis.

Let us return now to the Lax representations. Classical examples of auxiliary sys-

tems L are the so called Zakharov-Shabat (ZS) system and its generalizations. The

ZS system is of course the simplest one, since it is realized on 2 × 2 matrices. Its

generalizations are quite natural from Lie algebra view point. We must take L to

be

Lψ = (i∂x + q(x)− λJ)ψ = 0. (3)
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Here both J and q(x) belong to some fixed semisimple Lie algebra g in some

fixed faithful representation. The element J is constant and regular so it defines

a Cartan subalgeba h = keradJ . We shall consider it fixed. The ‘potential’ q(x)
is smooth ḡ-valued function. We obtain the ZS system for g = sl(2,C) in the

simplest representation and J = diag (1,−1).

The generalization of the Zakharov-Shabat system is evident from Lie algebra view

point but it is not so easy to perform the generalization of the analytical results

related to it. Those results are fundamental for the inverse scattering theory and it

took several years to do it. From the beginning Zakharov and Shabat investigated

the case g = sl(n,C) in the simplest representation for real J , [16, 19, 20] and

later it was considered the case of arbitrary algebra in arbitrary finite dimensional

faithful representation for real J , [8]. In case J is real we shall call the system (3)

the generalized Zakharov-Shabat (GZS) system.

Soon it became evident that the case when J is complex is also quite interesting.

One of the motivations to consider complex J is that if one wants to apply the

Mikhailov’s reduction theory [15] to the system L the element J must obey some

restrictions showing that J cannot be always real. However, the case when J is

not real turned out to be more complicated. For g = sl(n,C) in the simplest rep-

resentation it was considered by Caudrey, Beals and Coifman [2–5]. The reason

complex J case is more involved is that the spectrum of the corresponding linear

problem is quite different from the real J case. We call the linear system with com-

plex J the Caudrey-Beals-Coifman (CBC) system. We considered this system for

arbitrary simple Lie algebra g in arbitrary finite dimensional faithful representation

in [11] and concentrated on the adjoint representation. The point is that this repre-

sentation is essential in the so-called Λ-operator approach (or generating operator

approach) to the soliton equations related to L.

The generating operator approach to the NLEEs related to L originates from the

paper of Ablowitz, Kaup, Newell and Segur [1] which treats the ZS system. It has

been generalized for the case of arbitrary semisimple algebra and real J in [8]. The

method could also be generalized for another systems, see [9] and the references

therein , and the calculation of the Generating Operators becomes an important

issue, see [14] about this issue. The presence of Mikhailov-type reductions [15]

changes significantly the theory of the recursion operators, both regarding their

spectral properties [17] and their geometric properties, [18]. Thus it becomes im-

portant to go carefully through the proofs and formulae in order to understand what

should be changed in the general theory. Somewhat surprisingly we discovered that

in the generating operator approach there are some points regarding the conserva-

tion laws that remained in shadow when the generalization from the the ZS system
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to GZS system and next to CBC system was made and and of course they should

be clarified. This is what we intend to do in the present article.

2. Fundamental Solutions to the CBC System

In order to introduce the generating operator theory we need some of the spectral

properties of the CBC system so we first discuss shortly the fundamental solutions

of Lψ = 0. The missing details can be found in [11].

It turns out that it is convenient to study not the equation Lψ = 0, see (3), but the

equation satisfied by the function m(x, λ) = ψ(x, λ) exp iλJx. Assume that in

the space V we have fixed finite-dimensional irreducible representation of the sim-

ple Lie algebra g with root system Δ. This equation together with an asymptotic

condition for m has the form

i∂xm+ q(x)m− λJm+ λmJ = 0, lim
x→−∞

m = 1V . (4)

We are looking for bounded solutions and in that case one can prove that if λ does

not belong to the bunch of straight lines

Σ = {λ ; Im(λα(J)) = 0, α ∈ Δ} (5)

the solution m(x, λ) (if it exists) is unique.

Now we outline the construction of the fundamental analytic solutions to (4),

see [11]. Suppose we denote by Greek letters α, β, γ... the weights of the rep-

resentation of g in V and the set of all weights by Γ. For α, β ∈ Γ, consider the

lines Σα,β = {λ ; Imλ(α − β)(J) = 0}, (α − β)(J) �= 0. It can be shown

that Σ =
⋃

α,β∈ΓΣα,β where Σ is as in (5). Then the connected components of

C\Σ in typical representation are sectors in the λ-plain. In every such sector either

Im[λ(α−β)(J)] is identically zero (if α = β) or it does not change sign. We shall

denote these sectors by Ων ordering them anti-clockwise. Clearly ν takes values

from 1 to some even number 2M and it is natural to understand ν modulo 2M . We

have C\Σ =
⋃2M

ν=1Ων , Ων
⋂

Ωμ = ∅ if ν �= μ. In the ν-th sector we introduce the

ordering: α ≥ν β iff Imλ(α − β)(J) ≥ 0 and α >ν β iff Imλ(α − β)(J) > 0.

Then it can be shown that using the ordering in Ων , ν = 1, 2, . . . , 2M one can

introduce in each Ων a system of integral equations equivalent to (4). Its analy-

sis permits to establish that under quite general assumptions for the potential q(x)
(for the details see [11]) in each Ων exists unique solution mν which is analytic in

λ ∈ Ων (except some poles) and allowing extension by continuity to the boundary

of Ων , that is to the rays Lν and Lν+1, see [20] for the GZS system case, [2, 5] for

the sl(n) case and [11] for the general case. The continuous spectrum of the prob-

lem lies on the rays Lν and the poles we mentioned define the discrete spectrum.
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In particular, for potentials with small L1 norm we do not have discrete spectrum.

In the present work however we shall not write the discrete spectrum contributions

and then one might say that we limit ourselves to the case of small potentials.

Knowing the solutionsmν(x, λ) one can construct the fundamental solutions (FAS)

χν(x, λ) of the CBC system setting χν(x, λ) = mν(x, λ)e
iJxλ and using them to

build the spectral theory of the operator L in any faithful representation of g. Since

the Lax reprsentation in fact uses the adjoint representation it is of particular inter-

est to us.

3. Generating Operator Approach to the Soliton Equations Associated
with the CBC System

3.1. Expansions Over the Adjoint Solutions for the CBC System

We need to fix first some notation. First, because of the superscripts we must use

the formulae that become cumbersome when we need to write an inverse element

so in the future we shall use ‘hat’ in order to denote the inverse. Further, if we

have a function f(λ) that is section analytic on the sectors Ων and in each sector

Ων it allows extension by continuity to the boundary of the sector, then for λ on

the ray Lν we shall denote the restriction of f in the sector Ων by fν(λ), and for

λ belonging to the ray Lν the limit from Ων by f+ν (λ) and from Ων−1 by f−ν (λ).
Next, let us define

δ±ν = Δ±
ν ∩ δν , δν = {α ∈ Δ ; Im(λα(J)) = 0 for λ ∈ Lν}

gν– the semisimple algebra with root system δν (6)

πν– the system of simple roots for gν .

Now we are ready to describe the jumps of the solutions m(x, λ) on the rays Lν .

For λ ∈ Lν they are given by

m+
ν (x, λ) = m−

ν (x, λ)e
−iJλxgν(λ)e

iJλx (7)

gν(λ) = Ŝ−
ν (λ)S

+
ν (λ) = D̂−

ν (λ)T̂
+
ν (λ)T−

ν (λ)D+
ν (λ). (8)

Here S±
ν (λ), T

±
ν (λ), D±

ν (λ) have the form

S±
ν (λ) = exp

∑
α∈δ+ν

s±ν,α(λ)E±α, T±
ν (λ) = exp

∑
α∈δ+ν

t±ν,α(λ)E±α (9)

D±
ν,α(λ) = exp

∑
α∈πν

d±ν,α(λ)Hα (10)
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so that S±
ν , T

±
ν , D

±
ν belong to the subgroup Gν with Lie algebra gν . They are

defined by the behaviour of m±
ν (x, λ) when x→ ±∞, see [11], Theorem 3.3

S±
ν (λ) = lim

x→−∞
eiJλxχ±

ν (x, λ), T∓
ν (λ)D±

ν (λ) = lim
x→+∞

eiJλxχ±
ν (x, λ). (11)

Define in each Ων the functions

eνα(x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)), λ ∈ Ων . (12)

According to our previous agreement for λ ∈ Lν we write m+
ν (x, λ) and χ+

ν (x, λ)
if the solution is extended from the sector Ων and m−

ν (x, λ) (χ−
ν (x, λ)) if it is

extended from Ων−1. Analogously, we write e
(−;ν)
α (x, λ) if the solution is extended

from the sector Ων−1 and e
(+;ν)
α (x, λ) if the solution is extended from the sector

Ων . Both the sets

Eρ =
2M⋃
ν=1

{e(+;ν)
α (x, λ), e

(−;ν)
−α (x, λ) ; α ∈ δ+ν , λ ∈ Lν}

Eσ =
2M⋃
ν=1

{e(+;ν)
−α (x, λ), e

(−;ν)
α (x, λ) ; α ∈ δ+ν , λ ∈ Lν}

are complete in the space of L1-integrable function h : R �→ ḡ in the same sense as

the exponents are. (For the form of the completeness relations see [11] or for the

form that we shall use see [17].) The above functions are called adjoint solutions

or Generalized Exponents. Using Theorem 3.2 from [11] one can prove that

(Λ− − λ)e(+;ν)
α = 0, (Λ− − λ)e

(−;ν)
−α = 0, α ∈ δ+ν (13)

(Λ+ − λ)e
(+;ν)
−α = 0, (Λ+ − λ)e(−;ν)

α = 0, α ∈ δ+ν (14)

where the operators Λ± are given by

Λ±(X(x)) = ad−1
J

⎛⎝i∂xX + π0[q,X] + iadq

x∫
±∞

(id − π0)[q(y), X(y)]dy

⎞⎠. (15)

The above operators are the famous generating, recursion or Λ-operators related

to the CBC system, see [9, 11]. To see their role consider the expansions over

the Generalized Exponents of the potential q(x) and its variation δq(x). More

specifically, let B is constant element from h. Then for the expansions over Eρ

(there are analogous expansions over Eσ but we do not write them) we have

ad−1
J [B, q](x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
ρ+ν;B,−αe

(+;ν)
α − ρ−ν;B,αe

(−;ν)
−α

)
dλ (16)
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where

ρ±ν;B,∓α ≡ i

+∞∫
−∞

〈[q,B], e
(±;ν)
∓α 〉dx = 〈Ŝ±

ν BS
±
ν , E∓α〉. (17)

The expansions for ad−1
J δq run as follows

ad−1
J δq(x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
δρ+ν;−αe

(+;ν)
α − δρ−ν;αe

(−;ν)
−α

)
dλ (18)

where

δρ±ν;∓α(λ) ≡ −i

+∞∫
−∞

〈δq, e(±;ν)
∓α 〉dx = 〈Ŝ±

ν δS
±
ν , E∓α〉(λ). (19)

Let us introduce now a set of scattering data

Tρ,B =
2M⋃
ν=1

{ρ+ν;B,−α(λ), ρ
−
ν;B,α(λ) ; α ∈ Δ+

ν , λ ∈ Lν}. (20)

The formulae (16) and (18) show that the mapping from the potential function

q(x) to the scattering data Tρ can be regarded as generalized Fourier transform.

Then indeed (17) play the role of the inverse Fourier transform formulae. The

Generalized exponents play the same role as the usual exponents in the Fourier

transform and the operators Λ± play the role the operator i∂x plays for the usual

Fourier transform.

4. The NLEEs Related to the CBC System

4.1. General Description

The NLEEs associated with the linear problem L (and integrable through some

kind of inverse scattering technique for L) are most easily found if we adopt the

approach based on the expansions (16), (19). Indeed, consider the equations having

the form
r∑

k=1

fk(Λ±)ad
−1
J [Hk, q] + iad−1

J qt = 0 (21)

where f(λ) =
∑r

k=1 fk(λ)Hk. Here {Hk}rk=1 is the part of the Cartan-Weil basis

giving a basis in h and fk(λ) are polynomials in λ and λ−1. f(λ) is known as the
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dispersion law of the corresponding NLEE. Expanding through the Generalized

Exponents it could be written also in the following equivalent form

i
dρ±ν;∓α

dt
+

r∑
k=1

fk(λ)ρ
±
ν;Hk,∓α(λ, t) = 0, 1 ≤ ν ≤ 2M (22)

where of course for the functions with index ν the argument λ belongs to Lν .

Naturally, this is in accordance with the fact that the equations we are speaking

about have a Lax representation of the type [L,A] = 0. In terms of the scattering

data factors S±
ν , T

±
ν , D

±
ν the equation (21) is written as

i
dS±

ν

dt
+ [f(λ), S±

ν ] = 0, i
dT±

ν

dt
+ [f(λ), T±

ν ] = 0, i
dD±

ν

dt
= 0. (23)

This shows that D±
ν are not changed by the evolution and then naturally they are

related to the conservation laws for (21). In fact some functions obtained through

them, see (10) below, are generating functions for the conservation laws.

4.2. Conservation Laws

It is well known, see for example [6], that the evolution equations (21) have r =
rankg series of conservation laws. Below we present the formulae for the conser-

vation laws obtained through the theory of recursion operators. Their advantage

is that they give a formula for the conservation laws while the conservation laws

obtained via another approaches are constructed by recurrent procedures. Having

a formula is an advantage, it gives us the possibility to describe which of them

trivialize if we have reductions, see [12].

We introduce first some properties of the functions hν,H(x, λ) = χνHχ̂ν(x, λ),
H ∈ h, x ∈ R, λ ∈ Ων and more precisely of their projections haν,H(x, λ) =

π0hν,H(x, λ) as well as for the corresponding extensions h±ν,H(x, λ), h±a
ν,H(x, λ)

of these functions to the rays Lν . Here of course χν(x, λ) is a FAS to the CBC

system analytic in the sector Ων .

4.2.1. Properties of the Adjoint Solutions hν,H

It is not hard to prove the following results which are important ingredients for our

construction.

Proposition 1. Let H ∈ h be an arbitrary element from the Cartan subalgebra.
Let us consider hν,H(x, λ) = χν(x, λ)Hχ

−1
ν (x, λ). Suppose the derivatives of the
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potential q(x) up to the order N belong to the class L1(R). Suppose also that Sν

is proper open sub-sector of Ων . Then for λ tending to infinity but remaining in Sν

we have the following asymptotic formulae which hold uniformly in x

hν,H = H +
N∑
k=1

λ−k(Λk−1
− qH + iI−(Λ

k−1
− )qH) + o(λ−N ) (24)

where we have used the notation

qH ≡ ad−1
J [q,H], I±f ≡

x∫
±∞

(id − π0)adq(y)f(y)dy. (25)

In the above f(x) is differentiable, absolutely integrable on the line, taking values

in ḡ and Λ− is the operator we introduced in (15). In what follows up to the end of

this subsection we shall assume that the potential q(x) is a Schwartz-type function.

Then the asymptotic formula can be written for arbitrary N and all the expressions

we write make sense.

Proposition 2. The following integral representations hold

1. For λ ∈ Ων we have

haν,H(x, λ) =
i

2π

2M∑
η=1

∫
Lη

h−a
η,H(x, μ)− h+a

η,H(x, μ)

μ− λ
dμ. (26)

2. For λ on the ray Lν and λ �= 0 we have

1

2
(h−a

ν,H(x, λ)− h+a
ν,H(x, λ)) =

i

2π

2M∑
η=1

p.v.

∫
Lη

h−a
η,H(x, μ)− h+a

η,H(x, μ)

μ− λ
dμ.

(27)

Of course the principle value is necessary to be taken only on the ray Lν but in the

way the things are now written (27) becomes more symmetric.

The functions haν,H are closely related to the expansions of the potential q(x).

Indeed, if we recall the definition of the coefficients ρ±H,α introduced earlier, see

(17), then we easily have

h−a
ν,H − h+a

ν,H =
∑
α∈δ+ν

(
ρ+ν;H,−α(λ)e

(+;ν)
α − ρ−ν;H,α(λ)e

(−;ν)
−α

)
. (28)
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Using the expansion (16) and the above expressions we get

i

2π

2M∑
ν=1

∫
Lν

(
h−a
ν,H(x, λ)− h+a

ν,H(x, λ)
)
dλ = ad−1

J [H, q](x) (29)

and then for N = 1, 2, . . .

ΛN
± (h−a

ν,H(x, λ)− h+a
ν,H(x, λ)) = λN (h−a

ν,H(x, λ)− h+a
ν,H(x, λ)). (30)

Combining the integral representations (26) with (29) from here we obtain that for

λ ∈ Ων

haν,H = (Λ± − λ)−1ad−1
J [H, q]. (31)

This of course is in accordance with the fact the asymptotic expansion (24).

4.2.2. Conservation Laws. The Generating Functions

The series of conservation laws for the NLEEs related to CBC system can be found

in complete analogy to the case when J is real. Roughly speaking, the functions

D±
ν (λ) (or their ‘logarithms’) are generating functions for the conservation laws of

the above NLEEs. More precisely, see [11], we have the following situation. For

λ ∈ Ων define

Dν,j(λ) = lim
x→+∞

〈ων,j |eiλJxmν(λ, x)e
−iλJx|ων,j〉 = lim

x→+∞
〈ων,j |mν(λ.x)|ων,j〉

(32)
j = 1, 2, . . . r = rankg, ν = 1, 2, . . . 2M.

These functions can be extended to the boundaries of the sectors and for λ ∈ Lν we

have Dν+1,j(λ) = D+
ν,j(λ), Dν,j(λ) = D−

ν,j(λ). In addition, limλ→∞Dν,j = 1.

For j = 1, 2, . . . r = rankg, ν = 1, 2, . . . 2M define

dν,j(λ) = logDν,j(λ). (33)

The functions dν,j(λ) are analytic in Ων and limλ→∞ dν,j(λ) = 0. If one considers

them in any sub-sector Sν of Ων one has the asymptotic expansions

dν,j(λ) =
∞∑
s=1

dν,j,sλ
−s, λ ∈ Sν , |λ| >> 1 (34)

and dν,j,s are then the required conservation laws. It turns out that it is easier to

work with some linear combinations of the functions dν,j(λ). Namely, for H ∈ h
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define dν,H(λ) =
∑

α∈πν

dν,α(λ)〈Hα, H〉. In any sub-sector Sν of Ων we have the

asymptotic

dν,H(λ) =
∞∑
k=1

dH,kλ
−k, |λ| >> 1. (35)

One can prove that actually the coefficients in the asymptotic expansion do not

depend on the sector so in the right hand side we are not writing the index ν. The

usual way to obtain the coefficients dH,k is to use some Wronskian-type relations

which we introduce below in (37) and (44). To this end, denote the λ-derivative of

χ±
ν by χ̇±

ν where χ±
ν are the FAS of the CBC system we introduced earlier.. Then

one easily checks that

dχ̇±
ν

dx
(x, λ) = (λJ − q(x))χ̇±

ν + Jχ±
ν (36)

as the λ-derivative of χν(x, λ) allows extensions to Lν−1 and Lν). As a result we

have the following Wronskian-type relation(
iχ̂±

ν

dχ±
ν

dλ
(x, λ)− Jx

)∣∣∣∣+∞

−∞

=

+∞∫
−∞

(
χ̂±
ν Jχ

±
ν (x, λ)− J

)
dx, λ ∈ Lν . (37)

Now, for the inner product of the left hand side of (37) with H ∈ h we get

i〈D̂±
ν Ḋ

±
ν , H〉 = i

∑
α∈πν

ḋ±ν,α〈Hα, H〉 ≡ iḋ±ν,H (38)

where as usual with superscripts ± are denoted the extensions on Lν from the left

and the right. In the sectors we have

i〈D̂νḊν , H〉 = i
∑
α∈πν

ḋν,α〈Hα, H〉 ≡ iḋν,H . (39)

Next, taking inner product of the right side of (37) with H ∈ h, we obtain

+∞∫
−∞

〈χ̂±
ν Jχ

±
ν − J,H〉dx = −i

+∞∫
−∞

x∫
−∞

〈H, i ∂
∂y
χ̂±
ν Jχ

±
ν (y, λ)〉dydx. (40)

The integrand in the left hand side of the above equation tends fast enough to zero

so the integral exists.) It is easy to see that this equals

i

+∞∫
−∞

x∫
−∞

〈H, χ̂±
ν [J, q]χ

±
ν (y, λ)〉dydx = i

+∞∫
−∞

x∫
−∞

〈ha±ν,H(y, λ), [J, q](y)〉dydx (41)
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where ha±ν,H(y, λ) = π0χ
±
ν (y, λ)Hχ̂

±
ν , H ∈ h. Thus in Ων we obtain

ḋν,H(λ) =

+∞∫
−∞

x∫
−∞

〈haν,H , [J, q]〉(y, λ)dydx. (42)

Now taking into account the asymptotic expansion for haν,H we get

dH,s =
1

s

+∞∫
−∞

x∫
−∞

〈[J, q],Λs
±ad

−1
J [H, q]〉dydx, s = 1, 2, . . . . (43)

In a similar way, using the Wronskian type relation

i〈χ̂±
ν δχ

±
ν , H〉

∣∣+∞

−∞
= −

+∞∫
−∞

〈χ̂±
ν δχ

±
ν , H〉dx (44)

for H ∈ h, we get

δdH,s = −i

+∞∫
−∞

〈δq,Λs−1
± ad−1

J [H, q]〉dx, s = 1, 2, . . . . (45)

The above relation permits to find another, frequently more convenient expression,

for the conservation laws, see [12]

dH,s = −i

+∞∫
−∞

1∫
0

〈q,Λs−1
± |(ζq)ad−1

J [H, ζq]〉dζdx. (46)

5. Locality of the Hierarchy of NLEEs Related to the CBC System and
Their Conservation Laws

In this section we treat the questions of the locality of the NLEEs related to the

CBC system and their conservation laws, proving also that the conservation laws

are in involution with respect to the hierarchy of symplectic structures. The idea of

the proof we present has been used in [10] for the case of the classical ZS system

but because the Cartan subalgebra for the classical ZS system is one-dimensional

the proof is much simpler, in fact it requires only the identity in Lemma 5 below.

Proposition 3. If for arbitrary H,W ∈ h the expression 〈J, [qH ,ΛN
− qW ]〉 is x-

derivative of local function on q, qx, . . . then the expression ΛN+1
− qF for every

F ∈ h is also a local function.
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Proof: Indeed

Λ−Λ
N
− qF = iad−1

J ∂xΛ
N
− qF + ad−1

J [q, π0Λ
N
− qF ] + iad−1

J adqI−Λ
N
− qF .

The expression in the integrand of I−Λ
N
− qF can be cast into the following form

(id − π0)[q,Λ
N
− qF ] =

r∑
s=1

Hs〈Hs, [q,ΛN
− qF ]〉

where {Hs}rs=1, {Hs}rs=1 are two bi-orthogonal bases of h. By assumption I−Λ
N
− qF

is local so the expression ΛN+1
− qF is also local. �

Corollary 4. In all the above formulae one can put Λ+, I+ instead of Λ−, I−.

Proof: Indeed, for any N = 1, 2, . . . we have
+∞∫

−∞

(id −π0)Λ
N
− qFdx = 0 so since I−Λ

N
− qF = I+Λ

N
− qF +

+∞∫
−∞

(id −π0)Λ
N
− qFdx

so we get I−Λ
N
− qF = I+Λ

N
− qF for arbitrary natural N . Hence N ΛN

− qF = ΛN
+ qF .

�

Thus we need to prove that 〈J, [qH ,ΛN
− qW ]〉 is a total derivative of a local function

on q, qx, . . .. For this we need some relations and identities that we introduce in

the next lemmas.

Lemma 5. For H,W ∈ h and integer N

〈J, [qH ,ΛN
− qW ]〉 − 〈J, [ΛN

− qH , qW ]〉 = i∂xF1(H,W ;N − 1) (47)

where F1(H,W ;N−1) is a polynomial with constant coefficients on the quantities
〈I−Λk

−qH , I−Λ
s
−qW 〉 and 〈Λk

−qH ,Λ
s
−qW 〉, 0 ≤ s, k ≤ N − 1.

Proof: From the differential equation for hν,H it is readily seen that forH,W ∈ h,

λ ∈ Ων , μ ∈ Ωη we have the following relations

i∂x〈hν,H(x, λ), hW,η(x, μ)〉 = (λ− μ)〈J, [hH,ν(x, λ), hW,η(x, μ)]〉. (48)

For big λ, μ we can insert the asymptotic formulae we obtained in Proposition 1

and as the asymptotic are uniform in x we can differentiate. Comparing then the

coefficients of the power series we obtain the following identities

〈J, [Λk−1
− qH ,Λ

s
−qW ]〉 − 〈J, [Λk

−qH ,Λ
s−1
− qW ]〉

= i∂x

(
〈I−Λk−1

− qH , I−Λ
s−1
− qW 〉 − 〈Λk−1

− qH ,Λ
s−1
− qW 〉

)
. (49)
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Using them one easily gets

〈J, [qH ,ΛN
− qW ]〉 − 〈J, [ΛN

− qH , qW ]〉

= i∂x

{
N−1∑
k=0

(
〈I−Λk

−qH , I−Λ
N−k−1
− qW 〉 − 〈Λk

−qH ,Λ
N−k−1
− qW 〉

)}
. (50)

The Lemma is proved. �

Now we need another identity. It is easy to see that for λ ∈ Ων , H,W ∈ h one

has 〈J, [hν,H(λ), hν,W (λ)]〉 = 0. Inserting into it the asymptotic expressions from

Proposition 1 and equating to zero the coefficients in front of λ−N we get

N∑
k=0

〈J, [ΛN−k
− qH ,Λ

k
−qW ]〉 = 0. (51)

In the left hand side of this expression we can use the identities of the type (49) for

all the terms except the first and the last one in order the obtain terms in which Λ−

acts only on qH . Thus we obtain

Lemma 6. For N ≥ 0, H,W ∈ h

N〈J, [qH ,ΛN
− qW ]〉+ 〈J, [ΛN

− qH , qW ]〉 = i∂xF2(H,W ;N − 1) (52)

where F2(H,W ;N − 1) is a polynomial with constant coefficients depending on
〈I−Λk

−qH , I−Λ
s
−qW 〉 and 〈Λk

−qH ,Λ
s
−qW 〉, 0 ≤ s, k ≤ N − 1.

Finally, combining the two lemmas we get

Proposition 7. For N ≥ 0, H,W ∈ h

〈J, [qH ,ΛN
− qW ]〉 = i∂xF3(H,W ;N − 1) (53)

where F3(H,W ;N − 1) is a polynomial wiith constant coefficients on
〈I−Λk

−qH , I−Λ
s
−qW 〉 and 〈Λk

−qH ,Λ
s
−qW 〉, 0 ≤ s, k ≤ N − 1.

Now we have

Theorem 8. For arbitrary H,W ∈ h and arbitrary natural N the expressions
〈J, [qH ,ΛN

± qW ]〉 are x-derivatives of local functions on q, qx, . . ..

Proof: We shall prove the theorem for 〈J, [qH ,ΛN
− qW ]〉, as we have seen then it

will follow for 〈J, [qH ,ΛN
+ qW ]〉. We shall use induction.

I. N = 1. We have that

Λ−qH = iad−1
J ∂xqH + ad−1

J π0[q, qH ] + iad−1
J adqI−qH .
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It can be verified that (id − π0)adqad
−1
J adq(id − π0) = 0. As a consequence,

Λ−qH = iad−1
J ∂xqH + ad−1

J π0[q, qH ] and

〈J, [qW ,Λ−qH ]〉 = 〈[W, q], iad−1
J ∂xqH + ad−1

J π0[q, qH ]〉.

But due to the identity (id − π0)adqad
−1
J adqad

−1
J adq(id − π0) = 0 we have

〈[W, q], ad−1
J π0[q, qH ]〉 = −〈ad−1

J [W, q], π0[q, qH ]〉 = 〈qW , [q, qH ]〉
= −〈W, adqad−1

J adqad
−1
J adqH〉 = 0

and finally we obtain

〈J, [qW ,Λ−qH ]〉 = 〈[W, q], iad−1
J ∂xqH〉 = − i

2
∂x〈qW , qH〉.

Thus for N = 1 the statement is true.

II. The inductive step N − 1 → N is easily obtained using Proposition 7. The

Theorem is proved. �

Corollary 9. For every H ∈ h and N = 0, 1, 2, . . . the expressions ΛN
± qH are

local function on q, qx, . . . and thus all the equations: ad−1
J ∂tq = ΛN

± qH are local.

Proposition 10. The conservation laws dH,s, H ∈ h, see (43), have local densi-
ties.

Finally, as it can be readily verified, arguments of the type we have used already

show that the expressions of the type 〈J, [Λk
−qH ,Λ

s
−qW ]〉 are x-derivatives of local

functions. Then we have another important result

Proposition 11. The conservation laws dW,s are in involution with respect to a
hierarchy of symplectic forms.

Indeed, as it is well-known the NLEEs related to L are Hamiltonian with respect

to the following hierarchy of symplectic forms, see [9]

ωm(X,Y ) =

+∞∫
−∞

〈X,Λm
±ad−1

J (Y )〉dx, m = 0, 1, 2 . . . . (54)

Taking into account the form of ωm the result easily follows. Our final remark is

that in all the proof of this subsection we used some identities that we derived from

the asymptotic properties of the functions hν,H and thus they do not depend on the

spectrum of the linear problem for concrete q and are not limited say to the case of

small potential.
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