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Abstract. In this paper we examine the evolution of solutions, of a recently-

derived system of cross-coupled Camassa-Holm equations, that initially have com-

pact support. The analytical methods which we employ provide a full picture for

the persistence of compact support for the momenta. For the solutions of the system

itself, the answer is more convoluted, and we determine when the compactness of

the support is lost, replaced instead by an exponential decay rate.

1. Introduction

This paper is concerned with the persistence of compact support in solutions to

a recently derived cross-coupled Camassa-Holm (CCCH) equation [7], which is

given by

mt + 2vxm+ vmx = 0, nt + 2uxn+ unx = 0 (1)

where m = u − uxx and n = v − vxx. This system generalises the celebrated

Camassa-Holm (CH) equation [1], since for u = v the system (1) reduces to two

copies of the CH equation

mt + 2uxm+ umx = 0.

The CH equation models a variety of phenomena, including the propagation of uni-

directional shallow water waves over a flat bed [1, 8, 12, 16, 17]. The CH equation

possesses a very rich structure, being an integrable infinite-dimensional Hamilto-

nian system with a bi-Hamiltonian structure and an infinitely many conservation

laws [1, 4, 15]. It also has a geometric interpretation as a re-expression of the

geodesic flow on the diffeomorphism group of the circle [14]. One of the most

interesting features of the CH equation, perhaps, is the rich variety of solutions it

admits. Some solutions exist globally, whereas others exist only for a finite length

of time, modelling wave breaking [3, 6].
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The CCCH equation can be derived from a variational principle as an Euler-Lagrange

system of equations for the Lagrangian

l(u, v) =

∫
R

(uv + uxvx) dx.

Alternatively it can be formulated as a two-component system of Euler-Poincaré

(EP) equations in one dimension on R as follows

∂tm = −ad∗δh/δmm = − (vm)x −mvx with v :=
δh

δm
= K ∗ n

∂tn = −ad∗δh/δnn = − (un)x − nux with u :=
δh

δn
= K ∗m

with K(x, y) = 1
2e

−|x−y| being the Green function of the Helmholtz operator, and

h being the Hamiltonian defined via the convolution in the spatial variable

h(n,m) =

∫
R

nK ∗mdx =

∫
R

mK ∗ n dx.

This Hamiltonian system has two-component singular momentum map [13]

m(x, t) =
M∑
a=1

ma(t) δ(x− qa(t)), n(x, t) =
N∑
b=1

nb(t) δ(x− rb(t)).

The M = N = 1 case is very simple for analysis [7]. If the initial conditions

are m1(0) > 0 and n1(0) > 0 then one observes the so-called waltzing motion.

It could be noted that for half of the waltzing period (half cycle) the two types of

peakons exchange momentum amplitudes - see Fig. 1. The explicit solutions as

well as other examples with waltzing peakons and compactons are given in [7].

The aim of this study is to analyse the persistence of compact support for solutions

of the system (1). In particular, we will examine whether the solution m,n, and in

turn u, v, of (1), which initially have compact support, will continue to have that

property as they evolve. Solutions of the system which have compact support can

be viewed as localized disturbances, and whether a “disturbance” which is initially

localized propagates with a finite, or infinite speed, is a matter of great interest. We

will see that some solutions will remain compactly supported at all future times of

their existence, while others solution display an infinite speed of propagation and

instantly lose their compact support. These results have analogues in the case of

CH equation [2, 9, 11].
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Figure 1. Plot showing velocity fields of a peakon-peakon pair with

m1(0) = 10, n1(0) = 1 (solid lines). The dotted path indicates the sub-

sequent path of the two peaks in the frame travelling at the particles mean

velocity. For these initial conditions the total period for one orbit of the cycle

is T = 3.6. Also shown is the form of the two peakons at subsequent times

t = 0.45 + 1.8n, n ∈ Z.

2. Preliminaries

We may express equation (1) in terms of u and v as follows

ut − uxxt + 2vxu− 2vxuxx + vux − vuxxx = 0

vt − vxxt + 2uxv − 2uxvxx + uvx − uvxxx = 0.
(2)

From this form of the equations one observes that there are no terms with self-

interaction (e.g. uux, uxuxx, uuxxx etc.) which justifies the name ‘cross-coupled’.

If p(x) = 1
2e

−|x|, x ∈ R, then (1 − ∂2
x)

−1f = p ∗ f for all f ∈ L2(R) and so

p ∗m = u, p ∗ n = v. Indeed,

u(x) =
1

2
e−x

∫ x

−∞
eym(y) dy +

1

2
ex

∫ ∞

x
e−ym(y) dy (3)

ux(x) = −
1

2
e−x

∫ x

−∞
eym(y) dy +

1

2
ex

∫ ∞

x
e−ym(y) dy. (4)

In other words, if we denote by I1(x) and I2(x) the integrals appearing in the first

and the second term of (3), we have
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u = I1 + I2, ux = −I1 + I2. (5)

Applying the convolution operator to equation (1) we can cast it in the form of a

conservation law

(u+ v)t + ∂x (uv + p ∗ (2uv + uxvx)) = 0, x ∈ R, t ≥ 0. (6)

Thus L = u + v is a density of the conserved momentum
∫
(m + n)dx. The

representation (6) agrees with the CH reduction when u = v, cf. [9].

The Hamiltonian

H =

∫
(uv + uxvx)dx

(in terms of u and v) is of course another conserved quantity, the ‘energy’ of the

system, see more details in [7].

One can directly observe that (1) can be complexified in a natural way if the vari-

ables u, v are assumed complex, while the independent variables x, t are still real.

Such a complexified system is remarkable with the fact that it admits the obvious

reduction u = v̄ which leads to a single scalar complex equation

ut − uxxt + 2ūxu− 2ūxuxx + ūux − ūuxxx = 0. (7)

This is a geodesic equation for a complex H1 metric, given by the Hamiltonian

H = 1
2

∫
(|u|2 + |ux|

2)dx.

Of course, if one reverts to real dependent variables by putting u = r+ is then (7)

leads to the coupled system

rt − rxxt + 2(rrx + ssx)− 2(rxrxx + sxsxx)− (rrxxx + ssxxx) = 0

st − sxxt + rxs− rsx − 2(rxsxx − sxrxx)− (rsxxx − srxxx) = 0.
(8)

Unless it is explicitly specified that the variables (u, v) are complex, we assume

that they are real.

3. Results

In the following we let T = T (u0, v0) > 0 to denote the maximal existence time

of the solutions u(x, t), v(x, t) to the system (1) with the given initial data u0(x)
and v0(x).
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3.1. Persistence of Compact Support for the Momenta

For the following, the flow prescribed by the system (1) is given by the two families

of diffeomorphisms {ϕ(·, t)}t∈[0,T ), {ξ(·, t)}t∈[0,T ) as follows

ϕt(x, t) = v(ϕ(x, t), t), ϕ(x, 0) =x

ξt(x, t) =u(ξ(x, t), t), ξ(x, 0) =x.
(9)

Solving (9), we get

ϕx(x, t) = e
∫
t

0
vx(ϕ(x,s),s)ds and ξx(x, t) = e

∫
t

0
ux(ξ(x,s),s)ds > 0 (10)

hence ϕ(·, t) and ξ(·, t) are increasing functions.

Lemma 1. Assume that u0 and v0 are such that m0 = u0 − u0,xx and n0 =
v0 − v0,xx are nonnegative (nonpositive) for x ∈ R. Then m(x, t) and n(x, t)
remain nonnegative (nonpositive) for all t ∈ [0, T ).

Proof: It follows from (1) that

d

dt
m(ϕ(x, t), t)ϕ2

x(x, t) = mtϕ
2
x +mxϕtϕ

2
x + 2mϕxϕxt

= (mt + 2vxm+ vmx)ϕ
2
x = 0

and

d

dt
n(ξ(x, t), t)ξ2x(x, t) = ntξ

2
x + nxξtξ

2
x + 2mξxξxt

= (nt + 2uxn+ unx)ξ
2
x = 0.

Therefore

m(ϕ(x, t), t)ϕ2
x(x, t) = m0(x), n(ξ(x, t), t)ξ2x(x, t) = n0(x). (11)

Now, since m0(x), n0(x) are nonnegative (nonpositive) then m(x, t) and n(x, t)
remain nonnegative (nonpositive) for all t ∈ [0, T ). �

Lemma 2. Assume that u0 is such that m0 = u0 − u0,xx has compact support,
say contained in the interval [αm0

, βm0
], then for any t ∈ [0, T ), the function

x �→ m(x, t) has compact support contained in the interval [ϕ(αm0
, t), ϕ(βm0

, t)]
for all t ∈ [0, T ). Similarly, if n0 = v0 − v0,xx has compact support, then the
function x �→ n(x, t) is compactly supported for all t ∈ [0, T ).
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Proof: From (11) and from the assumption that m0(x) is supported in the compact

interval [αm0
, βm0

], it follows directly that m(·, t) are compactly supported, with

support contained in the interval [ϕ(αm0
, t), ϕ(βm0

, t)], for all t ∈ [0, T ). Similar

reasoning applies to n0. �

Relation (11) represents the conservation of momentum in the physical variables

cf. discussion in [7].

3.2. On the Evolution of (u, v)

In this subsection we are going to examine the general behaviour of the solution

(u, v) of (1) which is initially compactly supported. The following theorem pro-

vides us with some information about the asymptotic behavior of the solution as it

evolves over time – in general, the solution has an exponential decay as |x| → ∞
for all future times t ∈ [0, T ).

Theorem 3. Let (u, v) be a nontrivial solution of (1), with maximal time of ex-
istence T > 0, and which is initially compactly supported on an interval I0 =
[αu0

, βu0
]× [αv0 , βv0 ]. Then we have

u(x, t) =

{
1
2E

u
+(t)e

−x for x > ξ(βu0
, t)

1
2E

u
−(t)e

x for x < ξ(αu0
, t)

(12)

v(x, t) =

{
1
2E

v
+(t)e

−x for x > ϕ(βv0 , t)
1
2E

v
−(t)e

x for x < ϕ(αv0, t)
(13)

where α, β are defined in (14) below, and Eu
−, E

u
+, E

v
−, E

v
+ are continuous func-

tions, with Eu
+(0) = Ev

+(0) = Eu
−(0) = Ev

−(0) = 0.

Proof: Firstly, if (u0, v0) is initially supported on the compact interval I0 =
[αu0

, βu0
] × [αv0 , βv0 ] then so is m0 too, and from the proof Lemma 2 it fol-

lows that (m(·, t), n(·, t)) is compactly supported, with its support contained in

the interval It = [ξ(α, t), ξ(β, t)]× [ϕ(α, t), ϕ(β, t)] for fixed t ∈ [0, T ). Here

α = min{αu0
, αv0}, β = max{βu0

, βv0}. (14)

We use the relation u = p ∗m to write

u(x) =
1

2
e−x

∫ x

−∞
eym(y) dy +

1

2
ex

∫ ∞

x
e−ym(y) dy

and then we define

Eu
+(t) =

∫ ξ(β,t)

ξ(α,t)
eym(y, t) dy and Eu

−(t) =

∫ ξ(β,t)

ξ(α,t)
e−ym(y, t)dy. (15)
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We have

u(x, t) =
1

2
e−xEu

+(t), x > ξ(β, t)

u(x, t) =
1

2
exEu

−(t), x < ξ(α, t)

(16)

and therefore from differentiating (16) we get directly

1

2
e−xEu

+(t) =u(x, t) = −ux(x, t) = uxx(x, t), x > ξ(β, t)

1

2
exEu

−(t) =u(x, t) = ux(x, t) = uxx(x, t), x < ξ(α, t).

Since u(·, 0) is supported in the interval [α, β], we have Eu
+(0) = Eu

−(0) = 0, as

we can see by taking integration by parts and taking into account that the boundary

terms vanish. �

Corollary 4. If in addition m0(x) and n0(x) are everywhere nonnegative (non-
positive), then the solution (u, v) (if nontrivial) loses its compactness immediately.

Proof: Indeed, in order for a nontrivial solution to remain with compact support

one needs that Eu
±(t)≡ 0, Ev

±(t) ≡ 0 for all t ∈ [0, T ]. However from Lemma 1 it

follows that m(x, t) and n(x, t) remain everywhere nonnegative (nonpositive) and

thus the quantities Eu
±(t), E

v
±(t) defined e.g. in (15) are positive (negative) for all

t ∈ (0, T ] in the case we have nontrivial solution. �

From (6) we know that L = u+ v is a density of a conserved quantity and as such

it deserves a special attention. From Theorem 3 one can find the asymptotics of L

as x → ±∞ as

L →
1

2
E±(t)e

−|x|

where E± ≡ Eu
± + Ev

±. Since the nature of the solution that we expect is several

coupled ‘waltzing’ waves, i.e., the maximum elevations of u(x, t) and v(x, t) in-

crease and decrease with time in the waltzing process. In other words the functions

Eu
±(t) and Ev

±(t) are in general non-monotonic functions of t. However in some

cases a monotonic property holds for the conserved density L.

Theorem 5. If (u, v) is an initially compactly supported solution and in addition
m0(x) and n0(x) are everywhere nonnegative (nonpositive), then the quantity
E+(t) is a monotonically increasing function and E−(t) is a monotonically de-
creasing function.
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Proof: Indeed, from Lemma 1 it follows that the functions m(x, t) and n(x, t)
remain everywhere nonnegative (nonpositive) and from the explicit form of the in-

verse Helmholtz operator u(x, t) and v(x, t) remain everywhere nonnegative (non-

positive). Since m(·, t) is supported in the interval [ξ(α, t), ξ(β, t)], for each fixed

t, the derivative is given by

dEu
+(t)

dt
=

∫ ξ(β,t)

ξ(α,t)
eymt(y, t)dy =

∫ ∞

−∞
eymt(y, t)dy.

Similarly, if we define

Ev
+(t) =

∫ ϕ(β,t)

ϕ(α,t)
eym(y, t) dy and Ev

−(t) =

∫ ϕ(β,t)

ϕ(α,t)
e−ym(y, t)dy

then Ev
+(0) = Ev

−(0) = 0 and

dEv
+(t)

dt
=

∫ ∞

−∞
eynt(y, t)dy.

From (2) and integration by parts we have

dE+(t)

dt
=

∫ ∞

−∞
ey(mt(y, t) + nt(y, t)) dx = −

∫
R

ex [2vx(u− uxx)

+v(u− uxx)x + 2ux(v − vxx) + u(v − vxx)x] dx

=

∫ ∞

−∞
ey (2uv + uxvx) dy, t ∈ [0, T )

where all boundary terms after integration by parts vanish, since the functions

m(·, t), n(·, t) have compact support and u(·, t), v(·, t) decay exponentially at

±∞, for all t ∈ [0, T ). Using (5) for u = Iu1 + Iu2 , ux = −Iu1 + Iu2 , v = Iv1 + Iv2 ,

vx = −Iv1 + Iv2 , and noticing that all integrals I
u,v
1,2 are all nonnegative (nonposi-

tive), we have that

2uv + uxvx = 3Iu1 I
v
1 + Iu2 I

v
1 + Iu1 I

v
2 + 3Iu2 I

v
2

and thus
dE+(t)

dt
> 0. (17)

Similarly, we have

dE−(t)

dt
=

∫ ∞

−∞
e−y(mt(y, t) + nt(y, t)) dx

= −

∫ ∞

−∞
e−y (2uv + uxvx) dy < 0, t ∈ [0, T ) (18)

for analogous reasons as before. �
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3.3. Evolution in the Case u = v̄ when Initially Functions are Compactly
Supported

Some analytical results can be established in the case u = v̄, for example one can

prove immediately the analogue of Theorem 5.

Theorem 6. If u = v̄ is initially compactly supported, then E− = (Eu
−+Ev

−)(t) is
a decreasing function, with E−(0) = 0, and E+(t) is increasing, with E+(0) = 0.

Proof: Follows the lines of the proof of Theorem 5. In our case 2uv + uxvx =
2|u|2 + |ux|

2 ≥ 0 and for nontrivial solutions this expresion is positive at some

point. �

The following Lemma is proved by making extensive use of relation (3).

Lemma 7 ([9]). Let (u, v) be a solution of system (1), and suppose u is such that
m = u − uxx has compact support. Then, for each fixed time 0 < t < T , u has
compact support if and only if∫

R

exm(x) dx =

∫
R

e−xm(x) dx = 0. (19)

The equivalent relation holds for the functions v and n.

We now establish a relation which is satisfied by solutions of (1) whose support

remains compact throughout their evolution. This relation will have profound im-

plications for solutions (u, v) of (1) which have a direct relation to each other, as

we shall see in Corollary (9).

Theorem 8. Let us assume that the functions u0, v0 have compact support, and
let T > 0 be the maximal existence time of the solutions u(x, t), v(x, t) which
are generated by this initial data. If, for every t ∈ [0, T ), the function x �→
(u(x, t), v(x, t)) has compact support, then∫

R

ex (2uv + uxvx) dx =

∫
R

e−x (2uv + uxvx) dx = 0 for t ∈ [0, T ). (20)

Proof: By the assumptions of this theorem, Lemma 7 applies. Using (1) and

differentiating the left hand side of (19) with respect to t we get

d

dt

∫
R

ex (m+ n) dx = −

∫
R

ex (2vxm+ vmx + 2uxn+ unx) dx

=

∫
R

ex (2uv + uxvx) dx = 0
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similarly to the proof of Theorem 5. The final equality follows from the fact that

identity (19) holds for all t ∈ [0, T ), according to Lemma 7.

Similarly, we get

d

dt

∫
R

e−x (m+ n) dx = −

∫
R

e−x (2uv + uxvx) dx = 0. (21)

Therefore,∫
R

ex (2uv + uxvx) dx =

∫
R

e−x (2uv + uxvx) dx = 0, t ∈ [0, T ). (22)

The expression under the integral on the right hand side of this relation must be

identically zero by (19). This completes the proof. �

Corollary 9. Let us suppose that u(x, t) = v̄(x, t). Then the only solution (u, v)
of (1), i.e., (7) is compactly supported over a positive time interval is the trivial
solution u ≡ v ≡ 0. That is to say, any non-trivial solution (u, v) of (7) which
is initially compactly supported instantaneously loses this property, and so has an
infinite propagation speed.

Proof: The statement follows directly from the relations in (22). �

3.4. Global Solutions for Nonnegative m0, n0

From (3) and (4) it follows that

u(x, t) + ux(x, t) = ex
∫ ∞

x
e−ym(y, t) dy. (23)

Thus the nonnegativity of m(x, t), n(x, t) are ensures ux(x, t) ≥ −u(x, t) and

similarly vx(x, t) ≥ −v(x, t), preventing blowup in finite time, because the solu-

tion (u, v) is uniformly bounded as long as it exists.

Blowup however might be possible if m(x, 0), n(x, 0) take both positive and neg-

ative values.

4. Conclusions

In the presented study we analysed the behavior of the solutions of the CCCH sys-

tem when m,n are initially compactly supported and (i) initially u, v everywhere

nonpositive/nonnegative (ii) u = v̄. In both cases the result is that the compactness
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property is lost immediately, i.e., for any time t > 0. Asymptotically the solutions

decay exponentially to zero, such that u + v decays to zero monotonically. The

exponential decay is already observed in the case of the peakon solutions, where

m,n are supported only at finite number of points.
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