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ON VENTCEL’S TYPE BOUNDARY CONDITION FOR LAPLACE
OPERATOR IN A SECTOR

PETAR POPIVANOV AND ANGELA SLAVOVA

Communicated by Vasil V. Tsanov

Abstract. This paper deals with classical solutions of the Dirichlet-Ventcel bound-

ary value problem (BVP) for the Laplace operator in bounded sector in the plane

having opening of the corresponding angle ϕ0 > 0. Ventcel BVP is given by second

order differential operator on the boundary satisfying Lopatinksii condition there.

As the boundary is non smooth, two different cases appear: π

ϕ0

is irrational and π

ϕ0

is

an integer. At first we prove uniqueness result via the maximum principle and then

existence of the classical solution. To do this we apply two different approaches:

the machinery of the small denominators and the concept of Green function.

1. Introduction

This paper deals with existence and uniqueness of the classical solution for the

Laplace operator equipped with Ventcel’s type boundary condition in a bounded

sector in the plane. Ventcel boundary conditions are second order differential con-

ditions appearing in asymptotic models proposed by Feller and Ventcel [4], [7, 8]

(interpreted as a surface diffusion). The opening of the angle ϕ0 > 0 with vertex

at the origin is such that π/ϕ0 /∈ Q or π
ϕ0

∈ N, Q being the set of rational num-

bers and N standing for the set of positive integers. At first we state the problem

and prove uniqueness result (comparison principle) via the maximum principle for

elliptic equations. Our second step is to prove existence result for classical solu-

tions. To do this we apply the machinery of small denominators. Another approach

is from the theory of ordinary differential equations (see Section 3 of the paper).

Under different conditions imposed on ϕ0 we prove existence of a C2 solution

in the bounded domain as well regularity results, including C∞ solutions. The

solution is found in the form of convergent series in rm sin(nπϕϕ0
), m,n ∈ N. As

Laplace operator is C∞ and even analytic hypoelliptic, the main difficulties are in

proving regularity up to the boundary. Laplace-Dirichlet-Ventcel problem in a disc,

in a ring and in a bounded smooth domain were studied via pseudo-differential

operators approach in [2].
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To be more precise, we shall mention that in 1951 M. Vishik studied in a bounded

smooth domain Ω the following BVP

Δu = F in Ω, −Δ′u+
∂u

∂n
= f on ∂Ω (1)

where Δ′ is the Laplace-Beltrami operator on ∂Ω and n is the unit outer normal

to ∂Ω. He proved that (1) is a Fredholm BVP of index 0, i.e., it possesses finite-

dimensional kernel and co-kernel of the same dimension. Difficulties appear when

∂Ω has singular points (corner ponts in the plane, dihedral angles, conical points

in the multidimensional case). There are a lot of investigations on the subject by V.

Kondratiev, P. Grisvard, B.-W. Schulze and his collaborators and many others. We

concentrate in our paper to the Dirichlet-Ventcel problem in R
2 in a sector (corner

domain).

2. Formulation and Proof of the Main Results

2.1. Comparison Principle

In this Subsection we shall formulate Ventcel’s BVP and we shall prove a Compar-

ison principle which guarantees the uniqueness of the solution.

The Ventcel’s boundary value problem in the sector

SR = {(r, ϕ) ; 0 < r < R, 0 < ϕ < ϕ0} ∈ R
2

for Laplace operator is given by

Δu = f ∈ C0(S̄R),

(
−∂2u

∂ϕ2
+ α

∂u

∂n
+ βu

)∣∣∣∣
r=R

= 0, u|ϕ=0 = u|ϕ=ϕ0
= 0. (2)

In polar coordinates

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

where the solution u ∈ C2(S̄R), the constants α > 0, β > 0 and ∂
∂n = ∂

∂r is the

unit outer normal to the arc ϕ ∈ (0, ϕ0), r = R of the boundary of SR.

We propose below several useful results to be used further on.

1. Let α ≥ 0, β �= 0 and u = rα sin(βϕ). Then Δu = (α2−β2)rα−2 sin(βϕ).
Therefore, α = β ⇒ Δu = 0, α = 1 ⇒ Δu = (1− β2) sin(βϕ) r−1.

2. Let α ≥ 2. Then Δ(rαlog r sin(αϕ)) = 2αrα−2 sin(αϕ).
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3. sin(βϕ) = 0 ⇐⇒ β = kπ
ϕ0

, k = ±1,±2, . . ..

To simplify the things we assume α = β = 1.

Proposition 1 (Comparison principle) Suppose that Δu ≥ 0 in S̄R, u ∈ C2(S̄R),
u|ϕ=0 ≤ 0, u|ϕ=ϕ0

≤ 0 and − ∂2u
∂ϕ2 +

∂u
∂r +u ≤ 0 on r = R. Then u does not attain

positive maximum in S̄R.

Proof: Put maxS̄R
u = u(P0) = M . If P0 ∈ SR then u ≡ const and therefore

M ≤ 0. Assume now P0 ∈ ∂SR. If P0 ∈ {ϕ = 0} ∪ {ϕ = ϕ0} ⇒ u(P0) = M

≤ 0, while P0 ∈ {r = R, 0 < ϕ < ϕ0} implies − ∂2u
∂ϕ2 (P0) ≥ 0 (maximum at-

tained in an interior point of the arc, ∂
∂ϕ being tangential to the arc) and ∂ϕ

∂n (P0) > 0

(Hopf maximum principle [5]). Thus

−∂2u

∂ϕ2
(P0) +

∂ϕ

∂n
(P0) + u(P0) > 0

which leads to contradiction. So u(P ) ≤ 0 in S̄R. �

Corollary 2. The solution of (2) is uniquely determined in C2(S̄R).

In fact, −u verifies too the conditions of Proposition 1.

Proposition 3. Consider Ventcel’s boundary value problem (2) with

f = rk+1A(r, ϕ) A ∈ C2(S̄R) A(r, 0) = A(r, ϕ0) = 0, k ∈ N

and assume that the solution u is such that

u = r2D(r, ϕ), D ∈ C2(S̄R), D(r, 0) = D(r, ϕ0) = 0

π

ϕ0
= k + 2 + λ, 0 < λ < 1.

Then there exists a constant A > 0 such that for each ε > 0

|u| ≤ A

ε
r

π
ϕ0

−ε
sin(

πϕ

ϕ0
), 0 ≤ r ≤ R, 0 ≤ ϕ ≤ ϕ0.

Certainly, we can write C(ε) = A/ε.

Proof: Having in mind that sin(πϕϕ0
) > 0 for ϕ ∈ (0, ϕ0), A(r, 0) = A(r, ϕ0) = 0

and l’Hospital rule we can write

f = rk+1B(r, ϕ) sin(
πϕ

ϕ0
), B(r, ϕ) ∈ C0(S̄R)
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respectively u = r2E(r, ϕ) sin
(
πϕ
ϕ0

)
, E(r, ϕ) ∈ C0(S̄R). Define now the auxil-

iary function

u1(r, ϕ) = C(ε)r
π
ϕ0

−ε
sin(

πϕ

ϕ0
)= C(ε)rk+2+λ−ε sin(

πϕ

ϕ0
), 0 < ε < λ < 1

where the constant C(ε) > 0 will be found further on. Then

Δu1 = −εC

(
2π

ϕ0
− ε

)
r

π
ϕ0

−ε−2
sin(

πϕ

ϕ0
)

and

Δ(u− u1) =

[
εC

(
2π

ϕ0
− ε

)
rk+λ−ε + rk+1B(r, ϕ)

]
sin(

πϕ

ϕ0
)

= sin(
πϕ

ϕ0
)rk+λ−ε

[
εC(

2π

ϕ0
− ε) + r1+ε−λB(r, ϕ)

]
.

Having in mind that

r1+ε−λ|B(r, ϕ)| ≤ R1+ε−λC1, C1 = max
S̄R

|u|

for 0 ≤ r ≤ R, 0 ≤ ϕ ≤ ϕ0, 0 < 1 + ε− λ < 1 we get that Δ(u− u1) ≥ 0 if

C(ε) ≥ C1R
1+ε−λ

ε
(
2π
ϕ0

− ε
) , C1 = const > 0. (3)

On the other hand, u1|ϕ=0,ϕ=ϕ0
= u|ϕ=0,ϕ=ϕ0

= 0 and on {r = R}

u− u1 ≤ R2
(
C2 − C(ε)Rk+λ−ε

)
sin(

πϕ

ϕ0
), C2 = max

S̄R

|E| > 0.

Therefore,

u− u1 ≤ 0 on ∂SR if C(ε) ≥ C2

Rk+λ−ε
· (4)

Combining (3), (4) and the comparison principle to the Dirichlet problem for Δ
operator in SR we get u ≤ u1 in S̄R. Similar considerations for −u leads to

−u ≤ u1 ⇒ |u| ≤ u1 in S̄R. In other words, if f vanishes of order k + 1 with

respect to r and u vanishes of order 2 with respect to r, then u vanishes of order

k + 2 in r. Moreover, ∂k+2
r u ∈ Cλ−ε(S̄R), C

λ−ε, ε > 0 being the corresponding

Hölder class (see also [6]). �
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2.2. Existence of Solution via Small Denominators

This Subsection deals with the existence of a classical solution of the BVP (2) via

the method of the small denominators. The angle ϕ0 is such that π
ϕ0

> 2 is an

irrational number.

We assume that 0 < ϕ0 < π
2 as then r

π
ϕ0 ∈ C2[0, R], while ϕ0 > π

2 ⇒ r
π
ϕ0 /∈

C2[0, R]. We remind that each real x = [x] + {x}, [x] being the integer part of x,

0 ≤ {x} < 1. We shall find a solution of (2) for right-hand side

f(r, ϕ) =
∞∑

m≥2

∞∑
n=1

Bmnr
m−2 sin(

nπϕ

ϕ0
). (5)

To do this we suppose that Bmn = O( 1
(m2+n2)s

) and apply Cauchy integral test to

the double series (5) with R ≤ 1. Then (5) is absolutely and uniformly convergent

if ∫ ∫
x2+y2≥1/4

dx dy

(x2 + y2)s
< ∞ ⇐⇒ s > 1.

Thus f ∈ C0(S̄R). Moreover, f ∈ C1(S̄R) for s > 3
2 etc.

We split the proof of the solvability of (2) into two parts: u = u1 + u2, where

Δu2 = f in SR, u2|ϕ=0 = u2|ϕ=ϕ0
= 0 (6)

Δu1 = 0 in SR, u1|ϕ=0 = u1|ϕ=ϕ0
= 0. (7)

Evidently Lu1 = −Lu2 for r = R, where

L = − ∂2

∂ϕ2
+

∂

∂r
+ 1

is the boundary operator in (2).

We look for the non unique solution of (6) in the form

u2(r, ϕ) =
∑
m≥2

∞∑
n=1

Amnr
m sin(

nπϕ

ϕ0
) (8)

i.e., if
π

ϕ0
/∈ Q,

π

ϕ0
> 2 (9)

then m �= n π
ϕ0

/∈ Q, for all m,n ∈ N and therefore

Δu2 =
∑
m≥2

∞∑
n=1

Amn

(
m2 − n2π2

ϕ2
0

)
rm−2 sin(

nπϕ

ϕ0
) ≡ f.
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Consequently, Amn(m
2 − n2π2

ϕ2

0

) = Bmn, i.e.,

u2(r, ϕ) =
∑
m≥2

∑
n≥1

Bmn

m2 − n2π2

ϕ2

0

rm sin(
nπϕ

ϕ0
). (10)

As what concerns (7) we take

u1(r, ϕ) =
∞∑
n=1

Anr
nπ
ϕ0 sin(

nπϕ

ϕ0
) (11)

beacause Δu1 = 0. Here An are unknown coefficients and one can easily see that

for r = R

Lu1 =
∞∑
n=1

An

(
n2π2

ϕ2
0

+
nπ

ϕ0
R−1 + 1

)
R

nπ
ϕ0 sin(

nπϕ

ϕ0
)

= −
∑
m≥2

∑
n≥1

Bmn

m2 − n2π2

ϕ2

0

(
n2π2

ϕ2
0

+mR−1 + 1

)
Rm sin(

nπϕ

ϕ0
)

i.e.,

An = −
∞∑

m=2

Bmn

m2 − n2π2

ϕ2

0

(
n2π2

ϕ2
0

+mR−1 + 1

)
R

m−nπ
ϕ0

n2π2

ϕ2

0

+ nπ
ϕ0

R−1 + 1
· (12)

To simplify the things let R ≤ 1. Then with C = const > 0

|An| ≤ C
∞∑

m=2

1

(m2 + n2)s−1/2|(m− nπ
ϕ0

)|n2R
nπ
ϕ0

and

|u1(r, ϕ)| ≤ C
∞∑

m=2

∞∑
n=1

( r
R)

nπ
ϕ0

n2(m2 + n2)s−1/2|(m− nπ
ϕ0

)| ,
r

R
≤ 1, n ≥ 1. (13)

Now we shall use the approach of the small denominators having many appli-

cations in the celestial mechanics (see for example [1]). There it is proved the

following result.

Lemma 4 ([1], Chapter 3, §12) Let σ > 0. Then for almost each real μ there
exists a constant K(σ, μ) > 0 such that∣∣∣∣μ− p

q

∣∣∣∣ ≥ K

|q|2+σ
, for all p, q �= 0, p, q ∈ Z. (14)
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Evidently, μ /∈ Q.

A result similar to (14) was proved by Liouville in 1844 for each algebraic num-

ber (non-rational). Actually A. Thue improved the theorem of Liouville in 1908,

while in 1921 C. Siegel and in 1955 K. Roth obtained the optimal in some sense

results on the subject. Moreover, Liouville found effective examples of transcen-

dental numbers, known as Liouville transcendental numbers [3]. Unfortunately,

algebraic numbers form a countable set, i.e., they have zero Lebesgue measure.

The real numbers μ verifying (14) have a full Lebesgue measure and almost each

transcendental number is a solution of (14). Liouville numbers do not satisfy (14).

We shall suppose that π
ϕ0

is a solution of (14), i.e.,∣∣∣∣mn − π

ϕ0

∣∣∣∣ ≥ K

n2+σ
, for all m,n ∈ N. ⇐⇒

∣∣∣∣m− nπ

ϕ0

∣∣∣∣ ≥ K

n1+σ
· (15)

According to (13), (15)

|u1(r, ϕ)| ≤
C

K

∞∑
m=2

∞∑
n=1

n1+σ

(m2 + n2)s−1/2
, n1+σ ≤ C0(n

2 +m2)
1+σ
2 . (16)

The double series in the right hand side of (15) is convergent if s > 2 + σ
2 , σ > 0

and u1 ∈ C0(S̄R). The differentiability of u1, u2 is shown similarly.

This way we come to

Theorem 5. Consider the Ventcel boundary value problem (2) with right-hand
side f satisfying (5), π

ϕ0
verifying (9), (15). Then for each sufficiently large s � σ

2

there exists a unique C2(S̄R) solution of (2) that can be written in the form u =
u1 + u2 and u1, u2 satisfies (6), respectively (7).

Remark 6. The solution u is given by

u(r, ϕ) =
∑
m≥2

∞∑
n=1

Bmn

m2 − n2 π2

ϕ2

0

rm sin(
nπϕ

ϕ0
) +

∞∑
n=1

Anr
nπ
ϕ0 sin(

nπϕ

ϕ0
).

Evidently, u1 ∈ C∞(S̄R) ⇐⇒ An = 0, n ∈ N. The condition (9) implies that

if A1 = . . . = Ak−1 = 0, then u1 ∈ C
[ kπ
ϕ0

]
, kπ

ϕ0
> 2k. As Δ is hypoelliptic,

f ∈ C∞(SR) ⇒ u ∈ C∞(SR). In general, f ∈ C∞(S̄R) �⇒ u ∈ C∞(S̄R).

2.3. Existence of Solution for ϕ0 = π

We shall discuss here the existence of a classical solution of (2) in the case π
ϕ0

∈ N

and more specifically, π = ϕ0.
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As we mentioned before, another case to be investigated is π
ϕ0

∈ N. Let π
ϕ0

= 1,

i.e., ϕ0 = π. Again we look for u = ũ1 + ũ2

ũ1 =
∞∑
n=1

Anr
n sin(nϕ).

Evidently, Δũ1 = 0. For appropriate An the harmonic function ũ1 ∈ C∞(S̄R).
We know from the beginning of the paper that

ũ2 =
∑

n�=m≥2

∞∑
n=1

Amnr
m sin(nϕ) +

∞∑
n=m=2

Annr
nlog r sin(nϕ) ≡ u3 + u4

implying

Δũ2 =
∑

n�=m≥2

∞∑
n=1

Amn(m
2 − n2)rm−2 sin(nϕ) +

∞∑
n=m=2

Ann2n.r
n−2 sin(nϕ)

= f ≡
∑
m≥2

∞∑
n=1

Bmnr
m−2 sin(nϕ)

i.e.,

Amn =
Bmn

m2 − n2
for m �= n, Ann =

Bnn

2n
·

Consequently

|Amn| ≤
const

(m2 + n2)s+1/2
, for m �= n, |Ann| ≤

const

n2s+1
·

If Amn are rapidly decreasing faster than any polynomial of (m2 + n2)s, s ∈ N,

s-arbitrary, we have that u3 ∈ C∞(S̄R). The function rnlog r /∈ C∞([0, R]) and

u4 ∈ C∞(S̄R) iff Ann = 0 for each n ≥ 2, i.e., if Bnn = 0 for n ≥ 2. We

conclude that C∞(S̄R) solution u of (2) eventually exists in the case π = ϕ0 if

the right-hand side f ∈ C∞(S̄R) satisfies infinitely many compatibility conditions

Bnn = 0, n ≥ 2. Due to the small denominators we have the effect of loss of

regularity of the corresponding solution u of (2).

3. Some Generalizations of the Previous Results

Consider in TR1R2
= SR2

\S̄R1
, R2 > R1 > 0 the following BVP

Δu = f, −∂2u

∂ϕ2
+

∂u

∂n
+ u|SR1

∪SR2
= 0

u|ϕ=0 = u|ϕ=ϕ0
= 0,

π

ϕ0
/∈ Q.

(17)
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Then
∂

∂n

∣∣∣∣
SR2

=
∂

∂r
,

∂

∂n

∣∣∣∣
SR1

= − ∂

∂r
·

Repeating the proof of Proposition 1 we conclude that (17) with f = 0 possesses

the unique solution u ≡ 0 in C2(T̄R1R2
). As above, we are looking for f, u in the

form (22). Thus

u
′′

n +
1

r
u

′

n − n2π2

ϕ2
0r

2
un = fn(r), R1 < r < R2

M1(u)|r=R1
= −u

′

n(R1) +

(
1 +

n2π2

ϕ2
0

)
un(R1) = 0

M2(u)|r=R2
= u

′

n(R2) +

(
1 +

n2π2

ϕ2
0

)
un(R2) = 0.

(18)

The boundary value problem (18) is simpler to deal with as

r
π
ϕ0 ∈ C

[ π
ϕ0

]
([0, R]) \ C [ π

ϕ0
]+1

([0, R])

r
− π

ϕ0 is unbounded near 0, while r
± π

ϕ0 ∈ C∞([R1, R2]). Certainly, the general

solution of (18) is given by (we drop the subindex n and put ω = nπ
ϕ0

)

u = C1r
ω + C2r

−ω + ū (19)

C1, C2 being arbitrary constants and ū is some solution of the nonhomogeneous

equation (18). Therefore

C1M1(r
ω) + C2M1(r

−ω)|r=R1
= −M1(ū)|r=R1

C2M2(r
ω) + C2M2(r

−ω)|r=R2
= −M2(ū)|r=R2

.
(20)

The determinant δ of the linear with respect to C1, C2 system is

δ = (R1R2)
−1

(
R2

R1

)ω
[(

R1

R2

)2ω (1 + ω2)R2 − ω

(1 + ω2)R2 + ω
.
(1 + ω2)R1 − ω

(1 + ω2)R1 + ω
− 1

]
× ((1 + ω2)R2 + ω)((1 + ω2)R1 + ω) �= 0 (21)

for ω > 0, 0 < R1

R2
< 1.

If we write again the subindex n we easily see that

δn ∼ −ω4
n

(
R2

R1

)ωn

for ωn =
nπ

ϕ0
→ ∞.

Again we omit the details.
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4. Concluding Remarks

We can generalize the existence result to the boundary value problem (2) looking

for f , respectively u in the following form

f(r, ϕ) =
∞∑
n=1

fn(r) sin
nπ

ϕ0
ϕ u(r, ϕ) =

∞∑
n=1

un(r) sin(
nπϕ

ϕ0
) (22)

and supposing that f, u belong to some Hölder classes. Having in mind that

fn(r) =
2

ϕ0

∫ ϕ0

0
f(r,Θ) sin(

nπΘ

ϕ0
)dΘ

we see that if f ∈ Ck,α(S̄R) then fn ∈ Ck,α([0, R]), 0 < α < 1. Putting (22) in

(2) we get that un(r) should satisfy

u
′′

n +
1

r
u

′

n − n2π2

r2ϕ2
0

un = fn in SR

(23)

Mun ≡ u
′

n(R) +

(
1 +

n2π2

ϕ2
0

)
un(R) = 0.

For the sake of simplicity denote ω = nπ
ϕ0

> 0 and drop the indexes n in (23). Let

0 < R ≤ 1. The standard Euler substitution r = et ⇐⇒ −∞ < t ≤ t0 =
ln R ≤ 0 transforms the equation (23) into

d2u

dt2
− ω2u = e2tf1(t), f1(t) ≡ f(et), −∞ < t ≤ t0 (24)

having the bounded solution for t → −∞

u = C1e
ωt + ū(t), C1 = const (25)

and ū being some bounded solution of (24). Thus, u = C1r
ω + ū(ln r).

The change t− t0 = z ≤ 0 ⇒ z = ln r
R transforms (24) into

d2ū

dz2
− ω2ū = e2t0e2zf1(t0 + z) ≡ f2(z), z ≥ 0. (26)

The function U(z) = sinh(ωz)/ω satisfies the Cauchy problem U
′′ − ω2U = 0,

in which z ≤ 0, U(0) = 0, U
′

(0) = 1. Consequently

ū(z) =

∫ z

0

sinh(ω(z − ξ))

ω
f2(ξ)dξ.
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The change ξ = ln λ
R , z = ln r

R in the previous integral leads to

ū
(
ln

r

R

)
=

1

ω

∫ r

R
sinh

(
ω ln

r

λ

)
f(λ)λdλ

=
1

2ω

[
rω
∫ r

R
λ−ω+1f(λ)dλ− r−ω

∫ r

R
λω+1f(λ)dλ

]
.

(27)

The kernel of (23) contains r−ω
∫ 0
R λω+1f(λ)dλ and we conclude that we can take

ū =
1

2ω

[
rω
∫ r

R
λ−ω+1f(λ)dλ− r−ω

∫ r

0
λω+1f(λ)dλ

]
. (28)

Evidently

r−ω

∣∣∣∣∫ r

0
λω+1f(λ)dλ

∣∣∣∣ ≤ const · r2

while there are the possibilities 0 < ω < 2, ω ≥ 2, for the first integral in the

right-hand side of (27), guaranteeing its convergence, respectively divergence for

r → 0. Supposing ω ≥ 2 (divergence to ∞) we can apply l’Hospital rule to obtain

lim
r→0

rω
∫ r

R
λ−ω+1f(λ)dλ = 0.

More precise results concerning the behavior of ū for r → 0 that take into account

f ∈ Ck,α([0, R]) and eventual vanishing of f at 0 can be obtained by using Taylor

formula in Hölder classes

f(r) = f(0) +
r

1!
f

′

(0) + . . .+
rk

k!
f (k)(0) +O(rk+α), r → 0. (29)

Going back to (23) we have that

C1M(rω)|r=R = −M(ū)|r=R

i.e., the constant C1 from (25) is uniquely determined by the equality

C1 =
−M(ū)|r=R

Rω(1 + ω2 + ωR−1)
· (30)

We do not use in this approach series, small denominators etc., but we do not dis-

cuss the problem of the convergence of the series (22). The restriction in working

in Hölder classes in r are weaker than the restrictions imposed on the power series

in r. We do not enter into technical details here.
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