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Abstract. We derive a model suitable for computer simulations of a weak ion beam

with solitons of the Korteweg-de Vries (KdV) equation. This type of interactions

arise in experiments on soliton generation in double plasma devices and include

soliton growth, damping, or decay. Our simplified model aims at capturing only the

essential physics of these interactions. The model is formulated in the context of

plasma physics in the electrostatic approximation. The bulk plasma is described by

cold fluid ions and warm, massless electrons. The ion beam is included as a sepa-

rate plasma species and is coupled to the bulk plasma through Poisson’s equation.

The derivation uses the Lagrangian of the system of plasma and beam and an ex-

pansion in small amplitude perturbations around an equilibrium. The Korteweg-de

Vries equation arises from this expansion naturally. The model is thus applicable

to general weakly non-linear ion-acoustic plasma waves, of which solitons are a

particular case. A novel feature of our method is that it includes both the evolution

of the wave and the perturbation while in previous analyses the perturbation is kept

fixed. The computational advantages of such description other approaches, such as

fluid description of both plasma and beam or all kinetic description, are that in the

former case particle trapping cannot be fully simulated while in the latter case the

computational time is much longer and the numerical noise is higher than in our

hybrid approach.

1. Introduction

The Korteweg-de Vries (KdV) equation has been derived in multiple areas of

physics [19], including plasma physics [4, 9, 23] (see also the review article [20],

and references therein). Ion-acoustic solitons were first observed by Ikezi et al.
[13] and subsequently confirmed by other experimental groups [2, 18]. In plasma

physics experiments it is rare that when plasmas are excited only the phenomenon

under investigation develops. As a rule, a variety of phenomena occur simulta-

neously and often their interaction affects, or even obscures, the targeted physics.

For example, in double plasma experiment machines [2, 13, 18], the excitation of
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a soliton is accompanied by a burst of ions [1] and the two co-propagate and in-

teract with each other [2, 18]. This interaction may lead to modifications of the

soliton such as growth, damping, or decay. It is, therefore, of interest to investigate

the more complex, simultaneous development of interacting waves (solitons) and

beam particles.

The study of solitons and co-propagating (resonant) particles has been done the-

oretically [14, 16, 22] as well as numerically [2, 16, 17]. Theoretical studies are

useful since explicit expressions for the damping rates may be obtained. However,

a drawback is their restriction to either the linear stage or only the initial stages of

the non-linear regime of interaction. Only exceptional cases of perturbative anal-

ysis of solitons yield themselves to non-linear treatment, one example being given

by the case of soliton-soliton interactions [10, 11, 15]. A further drawback is that

the time evolution of the perturbation itself is not taken into account. In contrast,

numerical studies permit a more general investigation. One of the most prevalent

and important non-linear kinetic effects is wave particle trapping, which necessar-

ily includes the time evolution of the perturbation beam particles. While this effect

is particularly difficult to tackle analytically, it is readily accessible from a numeri-

cal viewpoint. Yet, it is our opinion that this phenomenon has not been the subject

of a comprehensive and systematical numerical study. It is the purpose of this pa-

per to derive a model suitable for the numerical investigation of weakly non-linear

ion-acoustic waves (e.g., solitons) and particle interaction in electrostatic plasmas.

A novel and necessary feature in this model is the inclusion of the time evolution

of both the wave and the perturbation (beam particles).

The two most common techniques of plasma simulations are fluid and kinetic

[5, 12, 21]. Kinetic methods have the most general validity, i.e., comprehensive

physics, but also the disadvantages of long computational times and high numerical

noise; the latter may sometimes obscure importantly physics. In comparison, fluid

simulations have fast computational times and very low numerical noise but have a

limited validity, i.e., miss some relevant physics. For example, in the fluid picture

the plasma is assumed to be in a local thermal equilibrium while this may be a good

approximation for the bulk plasma, it is not necessarily true for the beam particles

of interest here. Therefore, the most advantageous approach to the simulation of

a beam-soliton system is the hybrid fluid-kinetic, where the soliton is described

by a fluid while the ion beam is described by a collection of particles. Such ap-

proach combines the advantages of fluid simulations–fast computational time and

low noise–and those of kinetic models with the more comprehensive modeling of

kinetic effects.
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2. Background

Taniuti and Washimi [23] looked for weakly non-linear solutions of the following

system of equations

∂tn+ ∂x(nu) = 0, ∂tu+ u∂xu = E, ∂xne = −neE, ∂xE = n−ne. (1)

In (1), n denotes the ion fluid density, u is the ion fluid velocity, ne is the electron

density, and E is the electric field. The system of equations (1) describes plasma

in the electrostatic approximation. The first equation is the continuity equation for

ions in the cold fluid approximation, the second is the momentum equation for the

ions, the third equation is the momentum equation for the electron species of the

plasma, assumed massless and in local thermal equilibrium (reduced to just the

force balance condition), and the fourth equation in (1) is Poisson’s equation. All

variables are dimensionless, where the density is given in units of some character-

istic density n0, velocity is in units of
√
κTe/M (ion-acoustic sound speed), with

Boltzmann constant κ and constant electron temperature Te, dimensions of length

are in units of Debye length,
√
κTe/4πe2n0, and electric potential is measured in

units of κTe/e. Here M and e denote the ion mass and ion charge. The boundary

condition is taken at x → ∞

n = ne = 1, u = 0. (2)

The dispersion relation following from the linearized system (1) is k2 = ω2/(1 −
ω2), where k is the wave number and ω is the wave frequency. This dispersion

relation may be expanded for small ω as k ≈ ω
(
1 + 1

2ω
2
)
. The wave phase may

be written as

kx− ωt = (x− t)ω +
1

2
ω3.

Defining μ as ω2 = εμ2, with a small parameter ε, we can write

kx− ωt = μ

[
ε1/2(x− t) +

1

2
μ2ε3/2x

]
(3)

which suggests the coordinate transformation

ξ = ε1/2(x− t), η = ε3/2x. (4)

After making this coordinate change in equations (1) and considering the first two

orders in the expansion in ε, the KdV equation results [23].
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3. Coupled System of Ion Beam and Plasma in the Weakly Non-linear
Approximation

We now derive the main result of this paper, a model for a small ion beam in-

teracting with weakly non-linear plasma waves. Our derivation proceeds from a

variational principle. (A Hamiltonian perturbative derivation of KdV was given

in [6]. We consider our method more general and more suitable as a computational

starting point.) First, we note that the boundary condition (2) must be modified to

include the ion beam; at x → ±∞ we have

n = 1 (5)

ne = 1 + nb (6)

u = 0 (7)

where nb is a specified, constant equilibrium ion beam density. Next we note

that in the electrostatic approximation the electric field E may be derived from an

electric potential, E = −∂xφ. Then the third equation in (1) may be solved and

the boundary condition (6) used to yield the electron density

ne(x) = (1 + nb) e
φ(x). (8)

Define a velocity potential Υ as

u = ∂xΥ. (9)

We may write the following Lagrangian for the cold ion fluid, ion beam, and warm

electrons

L = −
∫
dx n(x)

[
1

2
(∂xΥ)2 + ∂tΥ

]
+

1

2

∫
dx (∂xφ)

2

(10)

−
∫
dxnφ+

∫
dx (1 + nb)e

φ(x) +

Np∑
j=1

wj

Ẋ2
j

2
−

Np∑
j=1

wjφ(Xj)

with particle coordinates and velocities given by Xj and Ẋj , respectively. The

particle weight is defined as wj = nb/Np. In fact, these computational particles

may represent thousands of physical ions.
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We write out the full set of equations following from the Lagrangian (10)

δL
δΥ

−→ ∂x (n∂xΥ) + ∂tn = 0 (continuity fluid equation) (11)

δL
δn

−→ −1

2
(∂xΥ)2 − Υ̇− φ(x) = 0 (momentum fluid equation) (12)

δL
δφ

−→ −∂xxφ− n(x)−
Np∑
j=1

wjδ(x−Xj) + (1 + nb)e
φ = 0

(Poisson’s equation) (13)

δL
δXj

−→ −Ẍj − ∂Xj
φ(Xj) = 0. (Newton’s second law). (14)

The system (11)–(14) is a coupled system of a fluid and kinetic plasma disturbances

represented by the fluid quantities n and Υ, and Np the number of particles at lo-

cations Xj . The fluid and particles interact with each other through electric field,

which is found self-consistently (i.e., electric field time evolution is determined

by all charges in the system, whose time evolution, in turn, is determined by the

electric field) from equation (13). (Strictly speaking, the charge neutrality condi-

tion for the ion beam in equilibrium is not satisfied by a finite number of particles,

Np. This deficiency is removed when a computational grid is introduced; then,

the computational particles are endowed with spatial extent and the charge neutral-

ity condition may be satisfied exactly by a finite number of particles. For further

details, please refer to [5, 8, 12] and the discussion in Section 4.) Such system is

still very general in that the fluid and particle disturbances may be of very general

form. We are interested only in small amplitude fluid perturbations and weak ion

beams. Therefore, we will derive a system that captures these features explicitly.

For this purpose, we first perform the change of variables (4) (which defines scaled

time and space variables and a change to a moving reference frame, see equation

(3)) and then expand the Lagrangian (10) around the equilibrium (uniform plasma

density, zero fluid ion velocity, constant beam velocity, and zero electric potential)

in the small parameter ε. Using the following relations

∂

∂x
−→ ε3/2

∂

∂η
+ ε1/2

∂

∂ξ

∂

∂t
−→ −ε1/2

∂

∂t
(15)

dx −→ ε−3/2dη
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the Lagrangian, after the change of variables and factoring out ε−3/2, takes the

form

L = −
∫
dη n

⎛
⎝1

2
ε2

(
∂Υ̃

∂η

)2

+ ε
∂Υ̃

∂η

∂Υ̃

∂ξ
+

(
∂Υ̃

∂ξ

)2

− ∂Υ̃

∂ξ

⎞
⎠

+
1

2

∫
dη

(
ε3
(
∂φ

∂η

)2

+ ε2
∂φ

∂η

∂φ

∂ξ
+ ε

(
∂φ

∂ξ

)2
)

(16)

−
∫
dη nφ+

∫
dη (1 + ε2ñb)e

φ +

Np∑
j=1

w̃j

(
1

2

(
dΞj

dξ

)2

− ε2φ(Ξj)

)
.

In deriving (16) we have assumed that the ion beam density is of order nb = ε2ñb

and we have used the scaled velocity potential Υ̃ = ε1/2Υ. In addition, because

of the stretching coordinate transformation, the particle weight scales as ε−3/2,

which has been factored out from the full Lagrangian and the new particle weights

become w̃j = ñb/Np.

We expand all variables as

n ≈ 1 + ε n(1) + ε2n(2) (17)

Υ̃ ≈ ≈ εΥ(1) + ε2Υ(2) (18)

φ ≈ ε φ(1) + ε2φ(2) (19)

Ξ̇j ≈ 1 + ε3/2Ξ̇
(1)
j . (20)

The dot in equation (20) is a differentiation with respect to the scaled time ξ. Note

that the ordering of the velocity in equation (20) matches the order of the scaled

velocity potential, Υ̃. After substitution of (17)–(20) into (16), we collect the terms

of order ε2 and ε3. The result is

L(2) = −
∫
dη

⎛
⎝1

2

(
∂Υ(1)

∂ξ

)2

− n(1)∂Υ
(1)

∂ξ

⎞
⎠−

∫
dη n(1)φ(1)+

1

2

∫
dη
(
φ(1)

)2
(21)
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and

L(3) = −
∫
dη

⎧⎨
⎩∂Υ(1)

∂η

∂Υ(1)

∂ξ
+

∂Υ(1)

∂ξ

∂Υ(2)

∂ξ
+ n(1)

⎛
⎝1

2

(
∂Υ(1)

∂ξ

)2

− ∂Υ(2)

∂ξ

⎞
⎠

−n(2)∂Υ
(1)

∂ξ
+

1

2

(
∂φ(1)

∂ξ

)2

−
(
n(1)φ(2) + n(2)φ(1)

)
+ φ(1)φ(2) (22)

+
1

6

(
φ(1)

)3}
+

Np∑
j=1

w̃j

(
1

2

(
Ξ̇
(1)
j

)2
−
∫
dη φ(1)(η)δ(η − Ξj)

)
.

The beam of ions only contributes to L(3), as desired by the assumed ordering. The

last term in (22) was written explicitly identifying the particle as a delta function

with support at Ξj and in Section 4 we indicate how to relax this assumption.

Next we derive the equations of motion. First, variation of L(2) gives

δL(2)

δΥ(1)
−→ ∂2Υ(1)

∂ξ2
− ∂n(1)

∂ξ
= 0 (23)

δL(2)

δn(1)
−→ ∂Υ(1)

∂ξ
− φ(1) = 0 (24)

δL(2)

δφ(1)
−→ −n(1) + φ(1) = 0. (25)

From the three equations (23)–(25) we deduce

n(1) = φ(1),
∂Υ(1)

∂ξ
= n(1). (26)

The second of the relations (26) was obtained by integrating (23) once in ξ and

using the boundary conditions for the fluid velocity and density of the bulk plasma

ions. Next, we vary the Lagrangian L(3). Variation with respect to Υ(1) gives

δL(3)

δΥ(1)
−→ 2

∂2Υ(1)

∂ξ∂η
+

∂2Υ(2)

∂ξ2
+

∂

∂ξ

(
n(1)∂Υ

(1)

∂ξ

)
− ∂n(2)

∂ξ
= 0

from which by an additional integration in ξ and using the boundary conditions we

obtain

2
∂Υ(1)

∂η
+

∂Υ(2)

∂ξ
+ n(1)∂Υ

(1)

∂ξ
− n(2) = 0. (27)

Variation with respect to n(1) gives

δL(3)

δn(1)
−→ ∂Υ(2)

∂ξ
− 1

2

(
∂Υ(1)

∂ξ

)2

− φ(2) = 0. (28)
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Variation with respect to φ(1) yields

δL(3)

δφ(1)
−→ −∂2φ(1)

∂ξ2
− n(2) + φ(2) +

1

2

(
φ(1)

)2
−

Np∑
j=1

w̃j δ(η − Ξj) = 0. (29)

Finally, after a variation with respect to the particle coordinate Ξj , we have

Ξ̈j +
∂φ(1)

∂η
(Ξj) = 0. (30)

From equations (27)–(29) we can exclude all second order quantities. Adding

equations (28) and (29) yields

∂Υ(2)

∂ξ
−n(2)− 1

2

(
∂Υ(1)

∂ξ

)2

− ∂2φ(1)

∂ξ2
+
1

2

(
φ(1)

)2
−

Np∑
j=1

w̃j δ(η−Ξj) = 0. (31)

We see that from equations (27) and (31) we can solve for the second order quantity
∂Υ(2)

∂ξ
−n(2) while the two right-hand sides must be equal (compatibility condition)

1

2

(
∂Υ(1)

∂ξ

)2

+
∂2φ(1)

∂ξ2
− 1

2

(
φ(1)

)2
+

Np∑
j=1

w̃j δ(η−Ξj) = −2
∂Υ(1)

∂η
−n(1)∂Υ

(1)

∂ξ
·

(32)

Using relations (26), we can express all fluid quantities in equation (32) in terms

of velocity potential

∂Υ(1)

∂η
+

1

2

(
∂Υ(1)

∂ξ

)2

+
1

2

∂3Υ(1)

∂ξ3
= −

Np∑
j=1

w̃j

2
δ(η − Ξj) (33)

which is the KdV equation with a perturbation of a beam of ions (given by the

right-hand side). The beam particles evolve according to

Ξ̈j = −∂2Υ(1)

∂ξ∂η
(Ξj) (34)

where relations (26) were used again. The coupled equations (33) and (34) repre-

sent the desired beam-plasma model. By using relations (26) we can rewrite the

Lagrangian (22) to eliminate all but the velocity potential Υ(1) and the particle

coordinates Ξj

L(3) = −
∫
dη

⎡
⎣∂Υ(1)

∂ξ

∂Υ(1)

∂η
+

1

3

(
∂Υ(1)

∂ξ

)3

− 1

2

(
∂2Υ(1)

∂ξ2

)2
⎤
⎦

(35)

+

Np∑
j=1

w̃j

[
1

2

(
Ξ̇
(1)
j

)2
−
∫
dη

∂Υ(1)

∂ξ
δ(η − Ξj)

]
.
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Variation of (35) yields KdV equation for the velocity [with u(1) = ∂ξΥ
(1)]

∂u(1)

∂η
+ u(1)

∂u(1)

∂ξ
+

1

2

∂3u(1)

∂ξ3
= −

Np∑
j=1

w̃j

2

∂ δ(η − Ξj)

∂ξ
(36)

which is just the ∂ξ derivative of (33). The ξ dependence on the right-hand side

of equation (36) is through Ξj . The other two fluid quantities, density and electric

potential, satisfy the same equation (36).

We would like to stress the generality of the coupled equations (33) and (34). Pre-

vious authors have derived equations similar to (36) [16, 17] but their further an-

alytical development required particular choices for the distribution function of

the beam particles, which is a limitation of their approach. In addition, a fixed

choice of the ion beam distribution function does not take into account its temporal

modification due to the beam-wave interaction, which is a further limitation. In

comparison, our model evolves the non-linear (soliton) as well as the beam par-

ticles. Since the ion beam distribution is simulated kinetically (with particles), it

captures the correct evolution of the beam distribution function too.

4. Discussion and Conclusions

The model presented by Lagrangian (35) is the most convenient form for further

reduction and computer simulations. We briefly outline the steps necessary to pro-

ceed, referencing the reader to the more detailed discussions in [5, 8, 12]. As it

stands, the model is still an infinite degree-of-freedom (DOF) system and thus

unsuitable yet for computer simulations. Two steps are necessary to reduce (35)

to a finite DOF system: spatial discretization and time discretization. The two

steps may either be performed simultaneously (however, the action then need be

considered) or separately. The simpler approach is to consider the two steps sepa-

rately. The variational principle allows for two general numerical approaches: use

of finite differences to approximate the spatial derivatives of Υ(1) in conjunction

with an integration rule or the use of a truncated basis expansion. Either of these

approaches reduces integrals of field quantities in (35) to finite sums. After the spa-

tial discretization is performed, one varies the Lagrangian with respect to the field

coefficients and particle positions to derive the equations of motion. Then time

discretization must be done. The only restriction on a choice of a time integrating

method is the possibility of encountering a numerical instability or high numerical

dissipation. In our experience, second or fourth order accurate explicit Runge-

Kutta methods perform satisfactory in wave-particle interaction simulations [7].
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We note that as an alternative way to the spatial discretization of the Lagrangian

described above, one could first obtain the continuous Euler-Lagrange equations

and then perform the spatial discretization. However, such procedure may intro-

duce undesirable numerical errors (of the order of the accuracy of discretization);

it is known that such errors may lead to loss of conservation properties of the

original (continuous) system. In comparison, the approach described above al-

lows to more fully utilize the relation between symmetries of the Lagrangian and

conserved quantities in the discretized system. An illustration is provided by our

continuous field Lagrangian (35): it does not contain explicit time dependence,

hence, this system conserves total energy. Explicit time dependence is not intro-

duced by the spatial discretization and therefore the resulting discrete system (time

kept continuous) is guaranteed to also conserve energy.

A more subtle question we alluded to previously is our choice of a delta-function

particle shape, which helped simplify the presentation. In kinetic simulations of

plasmas via the so-called Particle-In-Cell (PIC) method [5, 12], particles are en-

dowed with a spatial extent. Important advantages of using finite-size particles

are the much lower numerical noise and the lack of certain numerical instabilities

present in simulations with delta-function particles. In a recent publication [8], the

author has revisited the concept of particle shapes. In particular, the connection of

the particle shape and the numerical accuracy of the force on a particle is exhibited.

The essence of the relevant results is the following. Take the case of a reduction of

the continuous fields by a finite element basis. Finite elements [3] offer a consis-

tent way of spatial discretization with increasing accuracy. Continuous quantities

are solved for (and known) on a computational grid and a rule (e.g., polynomials)

is given for finding the values of the solution between grid points. Therefore, if

one represents the solution as sum over finite elements Ψk(η)

Υ(1)(ξ, η) =

Ng∑
k=1

Uk(ξ)Ψk(η) (37)

the last term in equation (35) reduces to

Np∑
j=1

Ng∑
k=1

U̇k

∫
dη Ψk(η)S(η − Ξj) (38)

where we have replaced the delta function with a more general (shape) function S.

One can verify that for the simple choices of a top-hat function for S and linear

finite elements, each particle contributes a certain amount of charge (in the PIC ter-

minology, this is called the charge deposition rule) to not one but three grid points.
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Therefore, a particle is not a point in space but a “blob” of charge described by its

centroid and velocity Ξj and Ξ̇j , respectively. By the use of such extended par-

ticles the quasi-neutrality condition of the plasma in equilibrium may be satisfied

exactly. We conclude this discussion by noting that Lagrangian finite elements of-

fer a consistent way of interpolating the force (with a desired accuracy) from the

grid to the particle location and for constructing charge deposition rules [8].

A natural further simplification of our model would be the special case of an ion

beam interacting with a weakly coupled train of solitons, in a manner similar to that

in [10, 11]. Of course, we no longer expect a nice reduction to another integrable

system since the original system of beam and solitons is not integrable. However,

such reduction should provide a much faster numerical solution since each soliton

would now be described by only two parameters, a position and an amplitude. In

addition, the numerical noise in such reduced system will be even lower than that

of our hybrid model.

In conclusion, we have derived a model of a weak ion beam interacting with weakly

non-linear solutions of the Korteweg-de Vries equation in the context of plasma

physics in the electrostatic approximation. Particular advantages are the generality

of our derivation from a Lagrangian starting point, the lower expected numeri-

cal noise in the hybrid fluid–particle approach, and the inclusion of kinetic effects

of wave-particle interactions, including their non-linear stage. Further simplifica-

tion of the model is suggested, which would apply to the interaction of a weakly

coupled soliton train with a small ion beam. Interesting questions in these nu-

merical investigations would be soliton growth and damping rates, soliton decay

conditions, beam particles wave trapping, and the possibility of formation of new,

quasi-stable structures of solitons and beam particles.
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