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Abstract. Here we develop the direct scattering problem for quadratic bun-

dles associated to Hermitian symmetric spaces. We adapt the dressing method

for quadratic bundles which allows us to find special solutions to multicomponent

derivative Schrödinger equation for instance. The latter is an infinite dimensional

Hamiltonian system possessing infinite number of integrals of motion. We demon-

strate how one can derive them by block diagonalization of the corresponding Lax

pair.
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1. Introduction

The modern period in the history of integrable systems started with the discovery of

the inverse scattering transform (IST) by Gardner, Greene, Kruskal and Miura [7]

who solved the Cauchy problem for the Korteweg-de Vries equation. Ever since

that time the applications of IST increased tremendously – from purely discrete

equations to multidimensional partial differential equations [1, 22].
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Historically the first nonlinear evolution equations (NEEs) solved by means of IST

were associated with the scattering operator

L(λ) = i∂x +Q(x, t)− λσ3 (1)

where λ ∈ C is an external parameter called spectral parameter and

Q(x, t) =

(
0 q(x, t)

±q∗(x, t) 0

)
, σ3 =

(
1 0
0 −1

)
. (2)

The family of operators of this type operator is known as a linear bundle due to its

dependence on λ. Since that time the scheme of IST has been extended to matrix

Lax operators with a polynomial [6, 21] and even rational λ-dependence [28, 40].

The first step in this direction was done by Mikhailov and Kuznetsov [23, 26] who

proved the integrability of the two-dimensional Thirring model. The problem of

integrability can be reduced to the study of the following quadratic bundle Lax

operator

L(λ) = i∂x −
1

2
|q|2σ3 + λQ(x, t)− λ2σ3 (3)

where

Q =

(
0 q
q∗ 0

)
. (4)

Another equation with a physical application [29,30] was considered by Kaup and

Newell [20] who introduced the Lax operator

L(λ) = i∂x + λQ(x, t)− λ2σ3 (5)

where Q(x, t) is again in the form (4). This allowed them to solve the derivative

nonlinear Schrödinger equation (DNSE)

iqt + qxx + i(|q|2q)x = 0 (6)

and to find integrals of motion for it. The study of DNSE was continued by Gerd-

jikov, Kulish and Ivanov [14] who developed the generalised Fourier interpretation

for DNSE in terms of generating operators, squared solutions etc., have found the

action-angle variables for it and thus proved its complete integrability. Later Gerd-

jikov and Ivanov [10, 11] carried out an exhaustive study of the generic quadratic

bundle

L(λ) = i∂x + U0(x, t) + λU1(x, t)− λ2σ3 (7)

where U0(x, t) is an arbitrary 2 × 2 matrix while U1(x, t) has zero diagonal ele-

ments. In the latter papers the existence of Riemann-Hilbert problem with canoni-

cal normalization was exploited and its importance was clarified.
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Another fruitful idea in the soliton theory is to search for multicomponent equa-

tions integrable by means of IST. This trend was pioneered by Zakharov and Man-

akov [25, 38] who derived a three-wave system and a two-component counterpart

of the nonlinear Schrödinger equation. For that purpose they used a 3 × 3-matrix

analogue of the Lax operator (2). Soon it became clear that Lax pairs can be re-

lated to homogeneous and symmetric spaces in a very natural way [2, 4, 5]. In [4]

Fordy derived multicomponent versions of DNSE related to different Hermitian

symmetric spaces amongst which is the following one

iqt + qxx +
2i

m+ 1

((
qTq∗

)
q
)
x
= 0 (8)

where q : R2 → C
m, m ≥ 2 is a smooth function. The multicomponent NEEs

related to symmetric spaces attracted attention again [12, 13] as a result of recent

studies on Bose-Einstein condensates [18, 24, 33].

The aim of the current paper is to build the foundations of the theory of quadratic

bundles associated with Hermitian symmetric spaces. In order to do this we are

going to use a gauge covariant approach [15]. This will allow us to treat in a

uniform manner any quadratic bundle regardless of the structure of the underlying

symmetric space.

The paper is organised as follows. In Section 2 we give some basic preliminary

facts on quadratic bundles associated with Hermitian symmetric spaces. After in-

troducing the main object of study we proceed with developing the direct scattering

problem and discuss the spectral properties of the respective scattering operator. In

Section 3 we adapt Zakharov-Shabat dressing method for the case quadratic bun-

dles of the mentioned type. This method allow us to derive particular solutions

of multicomponent DNSE. The form of dressing factor depends crucially on the

structure of symmetric space. Section 4 is dedicated to Hamiltonian interpreta-

tion of DNSE. We prove that there exist infinite number of integrals of motion and

present a general recursion formula. In doing this we make use of the method of

(block) diagonalization of Lax pair proposed in [3]. Section 5 contains a summary

of our results and some additional remarks.

2. Quadratic Bundles Related to Hermitian Symmetric Spaces

The current section is preliminary in nature. Its purpose is to provide an intro-

duction to the direct scattering theory of quadratic bundles related to Hermitian

symmetric spaces. In doing this we shall follow some well-known ideas from soli-

ton theory [15, 39].
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Firstly we are going to shed light on the relation that exists between Hermitian sym-

metric spaces and quadratic bundles. Let G/H be a Hermitian symmetric space,

i.e., G is assumed to be a connected simple Lie group1 and H ⊂ G is a stabilizer

of a typical point p ∈ G, see [16] for more detailed explanations. The Lie algebra

g corresponding to the Lie group G obeys the splitting

g = h⊕m (9)

where h is the subalgebra corresponding to the Lie subgroup H and the subspace m

represents its complement in g. Since the homogeneous space G/H is symmetric

the following relations

[h,m] ⊂ m, [m,m] ⊂ h (10)

hold true as well. In other words g is Z2-graded and the subspaces h and m are

eigensubspaces

h = {X ∈ g ; CXC = X}, m = {X ∈ g ; CXC = −X}

of the adjoint action of an involutive automorphism X �→ CXC (Cartan’s involu-

tive automorphism).

Let us now consider the Lax pair

L(λ) = i∂x + λQ(x, t)− λ2J (11)

A(λ) = i∂t +
2N∑
k=1

λkAk(x, t) (12)

where λ ∈ C is spectral parameter while Q(x, t), J and Ak belong to the Lie

algebra g. Let L and A be subjects to the Z2 reduction conditions [27, 28]

L†(λ∗) = L̃(λ), A†(λ∗) = Ã(λ) (13)

CL(−λ)C = L(λ), CA(−λ)C = A(λ) (14)

where tilde operation is defined as follows

L̃(λ)ψ = −i∂xψ + λψ(Q− λJ)

for ψ : R2 → C
n being a smooth function and ∗ stands for complex conjugation.

As a result of (13) all coefficients above become Hermitian matrices while the latter

reduction implies that J,A2k(x, t) ∈ h while Q(x, t), A2k−1(x, t) ∈ m. This way

L and A become compatible with Z2-grading of g and thus following [4] we say

that the Lax operators are related to the symmetric space G/H.

1We shall deal with matrix Lie groups and Lie algebras only.
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Remark 1. It is always possible to pick up J in such a way that h coincide with
the centralizer CJ = {X ∈ g ; [X, J ] = 0} of J . We shall assume that this is
done since this will simplify significantly some of our further considerations.

Example 2. Let us consider as a simple illustration a quadratic bundle related to
the symmetric space SU(m + 1)/S(U(1) × U(m)), m ≥ 2. In this case C =
diag(1,−1 . . . ,−1) and the subspace h consists of all (m + 1) × (m + 1) block
diagonal anti-Hermitian traceless matrices of the form⎛⎜⎜⎜⎝

∗ 0 . . . 0
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗

⎞⎟⎟⎟⎠
while m consists of all anti-Hermitian matrices with complementary block struc-
ture, namely ⎛⎜⎜⎜⎝

0 ∗ . . . ∗
∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0

⎞⎟⎟⎟⎠ .

In particular, the potential Q is given by

Q(x, t) =

⎛⎜⎜⎜⎝
0 q1(x, t) . . . qm(x, t)

q∗1(x, t) 0 . . . 0
...

...
. . .

...
q∗m(x, t) 0 . . . 0

⎞⎟⎟⎟⎠ . (15)

The subalgebra h coincides with CJ if J = diag(m,−1, . . . ,−1). The compati-
bility condition of the operators (11) and (12) for N = 2 (i.e., the quadratic flow)

produces exactly the multicomponent DNSE we mentioned in the previous section
(see formula (8)).

Example 3. Another example worthy to mention here is given by a quadratic bun-
dle related to the symmetric space SO(2r+ 1)/SO(2)× SO(2r− 1), r ≥ 2. Now
Cartan’s involution is given by C = diag(−1, 1 . . . , 1,−1). The subalgebra h

therefore consists of all anti-Hermitian matrices of the form⎛⎜⎜⎜⎜⎜⎝
∗ 0 . . . 0 0
0 ∗ . . . ∗ 0
...

...
. . .

...
...

0 ∗ . . . ∗ 0
0 0 . . . 0 ∗

⎞⎟⎟⎟⎟⎟⎠
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while m contains all block off-diagonal matrices⎛⎜⎜⎜⎜⎜⎝
0 ∗ . . . ∗ 0
∗ 0 . . . 0 ∗
...

...
. . .

...
...

∗ 0 . . . 0 ∗
0 ∗ . . . ∗ 0

⎞⎟⎟⎟⎟⎟⎠ .

The constant element J ∈ h now is chosen as follows J = diag(1, 0, . . . , 0,−1)
while the potential Q is given by

Q(x, t) =

⎛⎝ 0 qT (x, t) 0
q∗(x, t) 0 s0q(x, t)

0 q†(x, t)s0 0

⎞⎠ (16)

for some smooth function q : R2 → C
2r−1. The presence of the 2r − 1 × 2r − 1

matrix (s0)ij = (−1)i−1δi 2r−j takes into account that Q is an element of the
orthogonal algebra so(2r + 1).

The compatibility condition of the Lax pair (11), (12) in the quadratic flow case
(N = 2) is equivalent to the multicomponent DNSE

iqt + qxx + i[2(qTq∗)q− (qT s0q
∗)s0q

∗]x = 0. (17)

In order to make the spectral problem well-defined we must impose certain bound-

ary conditions on the potential Q. We shall restrict ourselves to the simplest case

of zero boundary conditions

lim
x→±∞

Q(x, t) = 0. (18)

To be more specific we require that each matrix element of Q is a function of the

Schwartz type for x ∈ R. Moreover, we assume thatQ is such that the correspond-

ing Lax operator has a finite number of discrete eigenvalues.

The spectrum of the scattering operator L is determined by its resolvent R(λ)
defined by the equality

L(λ) ◦R(λ) = 11 (19)

where ◦ stands for operator composition. It follows from (19) that the resolvent is

an integral operator of the form

(R(λ)F ) (x, t) =

∫ ∞

−∞
R(x, y, t, λ)F (y)dy (20)
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for F : R → C
n being any continuous function. The kernel R(x, y, t, λ) is as-

sumed to be continuous with respect to variables x and y and its domain in the

spectral λ-plane is complementary to the spectrum of L. More specifically the

pole singularities of R, if exist, correspond to discrete eigenvalues of L while the

locus of points in the λ-plane for which the boundary limx, y→±∞R(x, y, t, λ)
does not exist determines the continuous part of the spectrum [8, 15]. We shall

convince ourselves that the latter requirement is reduced to the following one by

the condition

Imλ2J = 0.

In all examples we shall encounter later on in the text J is a real matrix hence the

continuous spectrum is simply the real and imaginary axis of the Cartesian frame

in C. On the other hand due to reductions (13) and (14) the discrete eigenvalues of

L are sorted into certain discrete orbits of the reduction group Z2×Z2 [15,27,28].

Indeed, the resolvent obeys the symmetries

R†(λ∗) = R̃(λ) =⇒ R
†(x, y, t, λ∗) = R(y, x, t, λ) (21)

CR(−λ)C = R(λ) =⇒ CR(x, y, t,−λ)C = R(x, y, t, λ) (22)

where

(R̃(λ)F )(x, t) =

∫ ∞

−∞
F (y)R(y, x, t, λ)dy.

It is immediately seen from the above relations that if μ is a pole of R(.) then −μ
and ±μ∗ are poles as well. Therefore the eigenvalues of L go into quadruples (each

quadrant in C contains the same number of eigenvalues.

Let us now consider the auxiliary linear problem

i∂xψ(x, t, λ) + λ(Q(x, t)− λJ)ψ(x, t, λ) = 0. (23)

The function ψ is fundamental solution to (23) and takes values in the Lie group

G. Since L and A commute any fundamental solution ψ satisfies

A(λ)ψ(x, t, λ) = ψ(x, t, λ)f(λ) (24)

as well. The quantity

f(λ) = lim
x→±∞

N∑
k=1

λkAk(x, t) (25)

is called dispersion law. It labels the specific NEE amongst the integrable hierar-

chy, i.e., all equations to share the same Lax operator L. It is therefore an essential

feature of the integrable 1 + 1 dimensional equations.
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Next we introduce a special type of fundamental solutions, namely Jost solutions

ψ±. They are defined through the following equality

lim
x→±∞

ψ±(x, t, λ)e
iλ2Jx = 11

as any two fundamental solutions are related with Jost solutions. The transition

matrix

T (t, λ) = (ψ+(x, t, λ))
−1 ψ−(x, t, λ) (26)

is called scattering matrix. It is not hard to see that the time evolution of T is driven

by the dispersion law through the linear equation

i∂tT + [f(λ), T ] = 0 (27)

which is easily integrated to give

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

Equation (27) is a linearized version of the corresponding NEE. This important

fact underlies the method of IST for integration of NEEs [1, 15, 39]. From now on

shall skip the time dependance in order to simplify our notation.

Like in the case of a quadratic bundle related to sl(2) [11, 20] the Jost solutions

are defined on the continuous spectrum of L only. To see this one introduces the

auxiliary functions ξ± = ψ±e
iλ2Jx which satisfy the linear equation

i∂xξ± + λQξ± − λ2[J, ξ±] = 0

with boundary condition

lim
x→±∞

ξ±(x, λ) = 11.

Equivalently ξ± are solutions to the following Voltera type integral equations

ξ±(x, λ) = 11 + iλ

∫ x

±∞
e−iλ2J(x−y)Q(x)ξ±(y, λ)e

iλ2J(x−y)dy. (28)

Outside of the continuous spectrum of L (i.e., λ2 /∈ R) there always exist at least

one increasing exponential factor to make the integral divergent. This is why ξ± as

well as ψ± can not be analytically extended outside of the continuous spectrum. A

more detailed analysis however shows that there exists a solution χ+ to be analytic

in the first and third quadrant in C and another denoted by χ− analytic in the

second and forth quadrant. The fundamental analytic solutions are related to the

Jost solutions through

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ) (29)
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where all matrix factors introduced above appear in the LDU decomposition

T (λ) = T∓(λ)D±(λ)(S±(λ))−1

of the scattering matrix. In fact this is a generalization of the usual LDU decom-

position since all matrices involved here have a block structure compatible with

the splitting (9) of the Lie algebra g. For example when dealing with symmetric

spaces of the type SU(m+ n)/S(U(m)×U(n)) we have the following

S+(λ) =

(
11m sT+(λ)
0 11n

)
, T+(λ) =

(
11m tT+(λ)
0 11n

)

S−(λ) =

(
11m 0T

s−(λ) 11n

)
, T−(λ) =

(
11m 0T

t−(λ) 11n

)

D+(λ) =

(
d+m(λ) 0T

0 d+n (λ)

)
, D−(λ) =

(
d−m(λ) 0T

0 d−n (λ)

)
where s±(λ) and t±(λ) are n ×m complex matrices and d±m(λ) are m ×m and

d±n (λ) are n × n complex matrices respectively. All these quantities can be ex-

pressed in terms of matrix elements of T , see [9] for instance.

It is clear from (29) that the fundamental analytic solutions are interrelated through

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R ∪ iR

for G(λ) = (S−(λ))−1S+(λ). Thus χ+(x, λ) and χ−(x, λ) can be viewed as

solutions2 to a local Riemann-Hilbert factorization problem in λ-plane for contin-

uous spectrum of L being the boundary contour. As we shall see in next section

this fact is important for elaboration of dressing method.

The reductions (13) and (14) impose certain symmetry conditions on the Jost so-

lutions, the scattering matrix and fundamental analytic solutions. Here is a list of

these [
ψ†
±(x, λ

∗)
]−1

=ψ±(x, λ),
[
T †(λ∗)

]−1
=T (λ)

Cψ±(x,−λ)C =ψ±(x, λ), CT (−λ)C =T (λ)[
χ+(x, λ∗)

]†
= [χ−(x, λ)]−1, Cχ±(x,−λ)C =χ±(x, λ).

(30)

2Strictly speaking solutions to a Riemann-Hilbert problem are the functions χ±eiλ
2Jx since they

have the proper normalization as |λ| → ∞.
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One important application of the fundamental analytic solutions is in the spectral

theory of the scattering operator. To see this let us define the function

R(x, y, λ) =

{
R+(x, y, λ), Imλ2 > 0

R−(x, y, λ), Imλ2 < 0
(31)

where

R
±(x, y, λ) = ±iχ±(x, λ)Θ±(x− y)

(
χ±(y, λ)

)−1
. (32)

In the above equation Θ± is a matrix-valued function expressed in terms of Heavy-

side’s step function and certain constant projectors. For instance, for the symmetric

space SU(m+ 1)/S(U(1)×U(m)) we have

Θ±(x− y) = θ(±(y − x))P − θ(±(x− y)) (11 − P ) (33)

for P being a constant projector of the form P = diag(1, 0, . . . , 0).

It directly follows from (29) that the asymptotic behavior of the fundamental ana-

lytic solutions for λ2 ∈ R are given by

χ±(x, λ) −−−→
x→∞

e−iλ2JxS±(λ)

χ±(x, λ) −−−−→
x→−∞

e−iλ2JxT∓(λ)D±(λ).
(34)

Taking into account (34) we see that for λ2 ∈ R the operatorR(λ) becomes asymp-

totically unbounded. Hence the integral (20) does not converge as R(λ) is not de-

fined. As we have mentioned this condition determines the continuous part of the

spectrum of the scattering operator L. On the other hand when λ2 /∈ R it is the role

of the projector P to ensure that R± decreases exponentially as x, y → ±∞. P is

therefore implicitly related to the structure of the underlying symmetric space, i.e.,

the Z2-grading of the corresponding Lie algebra.

We shall state without proof the following important theorem

Theorem 4. The function R defined through (31) and (32) is an integral kernel of
the resolvent of L, i.e., the equality

L(λ)R(x, y, λ) = δ(x− y) (35)

holds true. The kernel R is a mesomorphic function in C with a finite number of
poles {±μk,±μ∗k}

l
k=1 to form the discrete spectrum of the scattering operator L.

The continuous part of the spectrum coincides with the real and the imaginary axis
in the spectral λ-plane.
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3. Special Solutions to DNSE

In this section we are going to integrate multicomponent DNSE related to sym-

metric spaces, i.e., find their particular solutions. There are different approaches

for integration of such nonlinear evolution equations, see [15, 17, 31]. It is our be-

lief that the dressing technique proposed by Zakharov-Shabat [41] and developed

further in [19,40] provides a very convenient and powerful tool to solve multicom-

ponent evolution equations associated with homogeneous or symmetric spaces.

Being purely algebraic in nature the dressing method takes into account the al-

gebraic structures (if present) underlying the Lax pairs and in that way offers a

uniform approach to a variety of integrable nonlinear problems. This is why our

main purpose here is to adapt the dressing method in case of quadratic bundles.

This will allow us to find easily the soliton solutions to DNSE.

3.1. Dressing Method

As we saw in the previous section the inverse scattering method can be reduced to

a matrix Riemann problem on the λ-plane. This remarkable fact underlies one of

the formulations of the dressing method [15,39] in terms of one-parameter families

of gauge transforms of the Lax pair. The dressing method allows one to integrate a

given NEE indirectly, i.e., starting from a known solution one obtains another one.

Let Q0(x, t) be a known solution to a DNSE related to some Hermitian symmetric

space. It plays the role of a potential for the linear problem

L0ψ0 = i∂xψ0 + λ(Q0 − λJ)ψ0 = 0. (36)

Let us apply the gauge transform

g : ψ0(x, t, λ) → ψ1(x, t, λ) = g(x, t, λ)ψ0(x, t, λ) (37)

to the fundamental solution ψ0. Under the assumption of g-covariance of the lin-

ear problem, i.e., the dressed function ψ1 is a fundamental solution to the linear

problem

L1ψ1 = i∂xψ1 + λ(Q1 − λJ)ψ1 = 0 (38)

where Q1(x, t) is some other potential to be found, we deduce that the dressing

factor g satisfies

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0. (39)
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Similarly, by comparing the two linear problems

A0(λ)ψ0 = i∂tψ0 +
2N∑
k=1

λkA
(0)
k ψ0 = ψ0f(λ)

A1(λ)ψ1 = i∂tψ1 +
2N∑
k=1

λkA
(1)
k ψ1 = ψ1f(λ)

we obtain another differential equation for g, namely

i∂tg +
2N∑
k=1

λkA
(1)
k g − g

2N∑
k=1

λkA
(0)
k = 0. (40)

The gauge transform (37) acts on any fundamental solution including the Jost so-

lutions. To ensure that the dressing procedure leads to Jost solutions to (38) one

has to modify (37) into

ψ0,± → ψ1,± = gψ0,± g
−1
± , g± = lim

x→±∞
g. (41)

This results in the following transformation law for the scattering matrix

T0 → T1 = g+ T0 g
−1
− . (42)

The fundamental analytic solutions in their turn are dressed through the formula

χ±
1 = gχ±

0 g
−1
− . (43)

Using (43) it is seen that the resolvent kernel R0 for the bare operator L0 is trans-

formed into

R1(x, y, t, λ) = g(x, t, λ)R0(x, y, t, λ)[g(y, t, λ)]
−1. (44)

Formula (44) shows that even if the bare kernel R0 might have not any singu-

lar points while the dressed one could – these are singularities introduced by the

dressing factor and/or its inverse. The new singular points contribute to the discrete

spectrum of the dressed operator L1. As we discussed in the previous section these

points could not be arbitrary. Another way to see this is to write down the sym-

metry conditions fulfilled by the dressing factor. Indeed, due to the Z2 reductions

(30) we have [
g†(x, t, λ∗)

]−1
= g(x, t, λ) (45)

Cg(x, t,−λ)C−1 = g(x, t, λ). (46)
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Relation (46) implies that if μ is a singularity of g so is −μ while from (45) we

deduce that ±μ∗ are singularities for g−1. This proves that the singularities of

the resolvent go in quadruples which resonates to our statement from the previous

section.

In order to proceed further we need to make some additional assumptions for the

structure of the dressing factor. It is evident from (39) and (40) that if g does

not depend on λ then it is simply a constant. On the other hand the connection

between the inverse scattering method and Riemann-Hilbert problem implies that

the dressing factor has to be divergent as |λ| → ∞ to ensure that dressed solutions

χ±
1 have the proper λ-asymptotics. So to obtain nontrivial results we should pick

up a dressing factor possessing certain number of singularities. For the sake of

simplicity we shall restrict ourselves with dressing factors having simple poles

only. Such a factor can be presented as follows

g(x, t, λ) = 11 +

l∑
k=1

λ

μk

(
Bk(x, t)

λ− μk
+

CBk(x, t)C

λ+ μk

)
, μ2k /∈ R. (47)

According to (46) its inverse looks as follows

g−1 = 11 +
l∑

k=1

λ

μ∗k

(
B†

k

λ− μ∗k
+

CB†
kC

λ+ μ∗k

)
· (48)

After multiplying (39) by g−1/λ, and then taking the limit as |λ| → ∞ we get the

following interrelation between the seed solution Q0 and the dressed one

Q1 = AQ0A
† +

l∑
k=1

[J,Bk −CBkC]A† (49)

where

A = 11 +
l∑

k=1

1

μk
(Bk +CBkC). (50)

So Q1 is completely determined if we know the residues Bk. The power of the

dressing method consists in the fact that Bk can be expressed in terms of funda-

mental solutions to (36) (and its λ - derivatives) only. To see this we shall analyse

the identity

gg−1 = 11. (51)

Since (51) holds identically with respect to λ it gives rise to certain algebraic re-

lations for the residues of g. The form of these relations depends crucially on

whether a part of the poles of g and its inverse coincide or not. This is why we

shall consider two examples which are more or less representative ones.
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Example 5. Let us consider the case of a quadratic bundle associated with sym-
metric space SU(m+ 1)/S(U(1)×U(m)). Then the simplest choice for g is

g(x, t, λ) = 11 +
λB(x, t)

μ(λ− μ)
+
λCB(x, t)C

μ(λ+ μ)
, μ2 /∈ R (52)

and formula (49) simplifies into

Q1 = AQ0A
† + [J,B −CBC]A† (53)

where

A = 11 +
1

μ
(B +CBC)·

After calculating the residue at λ = μ in (51) we obtain the algebraic relation

B

(
11 +

μB†

μ∗(μ− μ∗)
+

μCB†C

μ∗(μ+ μ∗)

)
= 0. (54)

If B is invertible then (54) implies that it is proportional to 11. In order to obtain
nontrivial dressing we assume B is degenerate. Hence there exist two rectangular
(m + 1) × k matrices X(x, t) and F (x, t) such that B = XF T . Then (54) is
reduced to an algebraic equation for X whose solution reads

X =
μ

μ∗

(
F TF ∗

μ− μ∗
−
F TCF ∗

μ+ μ∗
C

)−1

F ∗. (55)

The factor F can be found from differential equation (39). Evaluating the residue
at λ = μ and taking into account (54) leads to the differential equation

i∂xF
T − F T (μQ0 − μ2J) = 0. (56)

Therefore we have
F T (x) = F T

0 [ψ0(x, μ)]
−1 (57)

where ψ0 is any fundamental solution to (36) defined in a vicinity of μ and F0 is a
constant matrix. What remains is to recover the time evolution. For this to be done
we analyse equation (40) in the same way we did with (39). The residue of (40) at
the point μ gives rise to a differential equation for F in the form

i∂tF
T − F T

2N∑
k=1

λkA
(0)
k = 0. (58)
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After taking into account (57) and (40) we deduce that the matrix F0 evolves with
time according to equation

i∂tF
T
0 − F T

0 f(μ) = 0 (59)

where f(λ) is the dispersion law of the nonlinear equation. Thus in order to derive
the time dependence for the dressed potential one does the following substitution

F T
0 → F T

0 e−if(μ)t. (60)

In the previous example the poles of the dressing factor and its inverse were dis-

tinct. As we shall see in next example this is not always possible to achieve. This

results in a more complicated procedure to find the residues of g.

Example 6. Let us consider now quadratic bundles related to BD.I Hermitian
symmetric spaces. Then apart of (45) and (46) the dressing factor must obey the
orthogonality condition

gTSg = S (61)

where S is the matrix involved in the definition of the orthogonal group. To meet
the requirements of all reductions we pick up g in the form

g = 11 +
λB

μ(λ− μ)
+

λCBC

μ(λ+ μ)
+

λSB∗S

μ∗(λ− μ∗)
+
λCSB∗SC

μ∗(λ+ μ∗)
(62)

while its inverse looks as follows

g−1 = 11 +
λB

μ(λ− μ)
+

λCBC

μ(λ+ μ)
+

λSB∗S

μ∗(λ− μ∗)
+
λCSBSC

μ∗(λ+ μ∗)
· (63)

Relation (49) now looks as follows

Q1 = AQ0A
† + [J,B + SB∗S −CBC− SCB∗CS]A† (64)

for A in the form

A = 11 +
1

μ
(B +CBC) +

1

μ∗
S(B∗ +CB∗C)S · (65)

The identity (51) now leads to a couple of algebraic conditions for B, namely

BSBT = 0 (66)

BSΩTS +ΩSBTS = 0 (67)
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where

Ω = 11 +
CBC

2μ
+

μSB∗S

μ∗(μ− μ∗)
+
μCSB∗SC

μ∗(μ+ μ∗)
·

Equations (66) and (67) imply that B is a degenerate, i.e., it is decomposable into
B = XF T for X(x, t) and F (x, t) being m × k rectangular matrices. Relations
(66) and (67) can be rewritten in terms of F and X to give

F TSF = 0, ΩSF = Xα (68)

for α(x, t) being some appropriately chosen k × k skew-symmetric matrix. In the
simplest case k = 1 it simply vanishes and (68) obtains the form

SF = aCX + bSX∗ + cCSX∗ (69)

where we have introduced

a = −
F TCSF

2μ
, b = −

μF †F

μ∗(μ− μ∗)
, c = −

μF †CF

μ∗(μ+ μ∗)
·

Due to the Z2 symmetries the algebraic relations derived at the other three poles
read

CSF = aX + bCSX∗ + cSX∗ (70)

F ∗ = a∗CSX∗ + b∗X + c∗CX (71)

CF ∗ = a∗SX∗ + b∗CX + c∗X. (72)

The system of equations (69)–(72) is regarded as a linear system for the factor X
(as well as for SX∗, CX and CSX∗). After performing elementary manipulations
we get

X =
1

Δ
(ΔdSF +ΔaCSF +ΔbF

∗ +ΔcCF
∗) (73)

where

Δd = a∗(bc∗ + cb∗), Δa = a∗(|a|2 − |b|2 − |c|2)

Δb = b|b|2 − b|a|2 − b∗c2, Δc = c|c|2 − c|a|2 − c∗b2

Δ = |a|4 − 2|ac|2 − 2|ab|2 + |b|4 − (b∗)2c2 − b2(c∗)2 + |c|4.

Thus we have expressed X through F . It is not hard to be verified that the formula
(57) holds in this case too.

In order to recover the time evolution one follows the same steps as in the previous
example. By doing this one can convince himself that the rule (60) is still valid.
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3.2. Soliton Solutions

Here apply the general results from the previous one to evaluate the simplest class

of solutions – the one-soliton solutions. We shall focus our attention to the vector

DNSE related to SU(m+ 1)/S(U(1)×U(m)), see (8).

To derive the one-soliton solution we setQ0 = 0. As a fundamental solution to (36)

we can pick up the plane wave exp(−iλ2Jx). Then in the case when rankB = 1
F becomes a column vector of the form

F (x, t) =

⎛⎜⎜⎜⎝
emiμ2xF0,1

e−iμ2xF0,2
...

e−iμ2xF0,m+1

⎞⎟⎟⎟⎠ . (74)

After substituting (74) into (55) and then into (53) we get the reflectionless poten-

tial to be

qj−1
1 (x) = (Q1)1 j(x) = 2i(m+ 1)

m+1∑
l=2

ρ sin(2ϕ)e−iσl(x)eθl(x)

e−2iϕ +
∑m+1

p=2 e2θp(x)

(75)

×

(
δjl − 2i sin(2ϕ)

eθj(x)+θl(x)ei(δj−δl−2ϕ)

e−2iϕ +
∑m+1

p=2 e2θp(x)

)
.

We have used above the notation

θp(x) = (m+ 1)ρ2 sin(2ϕ)x− ξ0,p, p = 2, . . . ,m+ 1

σp(x) = (m+ 1)ρ2 cos(2ϕ)x+ δ1 − δp − ϕ, μ = ρ exp(iϕ)

ξ0,p = ln |F0,1/F0,p|, δ1 = argF0,1, δp = argF0,p.

In order to obtain the one-soliton solution from (76) one needs to recover the time

dependence. Taking into account that for (8) f(λ) = −(m + 1)λ4J formula (60)

leads to the following correspondence

ξ0,p → ξ0,p − 2(m+ 1)ρ4 sin(4ϕ)t

δ1 → δ1 + 2mρ4 cos(4ϕ)t, δp → δp − 2ρ4 cos(4ϕ)t.
(76)

Remark 7. Let us consider the simplest possible case which occurs when m = 1.
Then the dressing factor (52) obtains the form

g = 11 +
λB

μ(λ− μ)
+

λσ3Bσ3
μ(λ+ μ)

· (77)
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According to (53) the reflectionless potential can be written as follows

q1(x) =
4iρ sin(2ϕ)e−iσ(x)eθ(x)

[
e2iϕ + e2θ(x)

][
e−2iϕ + e2θ(x)

]2 (78)

where

θ(x) = 2ρ2 sin(2ϕ)x− ξ0, ξ0 = ln |F0,1/F0,2|

σ(x) = 2ρ2 cos(2ϕ)x− δ0, δ0 = δ2 − δ1 − 3ϕ.

To obtain the one-soliton solution for DNSE (6) we should recover the time depen-
dence in (78) by using the rule

ξ0 → ξ0 − 4ρ4 sin(4ϕ)t, δ0 → δ0 − 2ρ4 cos(4ϕ)t.

This way we have just reproduced the Kaup-Newell soliton obtained in [20].

It is clear that by dressing (76) once again one is able to construct a two-soliton

solution and so on. Proceeding this way one can generate step by step the multi-

soliton solutions

Q0 → Q1 → . . .→ Ql → . . .

Another way to do this is by using a dressing factor with an appropriate number of

simple poles, namely

g = 11 +

l∑
k=1

λ

μk

(
Bk

λ− μk
+

CBkC

λ+ μk

)
, μ2k /∈ R. (79)

Then the multisoliton solution can be derived from the formula (49) by setting

Q0 = 0. As before the residues of g can be presented as a product of two rectangu-

lar matrices Xk and Fk. A detailed analysis, quite similar to what we did before,

shows that the factor Fk are expressed through the a fundamental solution to the

bare linear problem as follows

F T
k (x) = F T

0,k[ψ0(x, μk)]
−1. (80)

On the other hand the factors Xk are solutions to the linear system

F ∗
k =

l∑
j=1

μ∗k
μj

(
Xj

F T
j F

∗
k

μj − μ∗k
−CXj

F T
j CF ∗

k

μj + μ∗k

)
· (81)

By solving it one is able to find the residues Bk and then derive the reflectionless

potential. To recover the time dependence one should apply the same considera-

tions as in the Example 5. The result is given by the rule

F T
k,0 → F T

k,0e
−if(μk)t

which is a natural generalization of correspondence (60).
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4. Integrals of Motion

As it was shown in [4] the multicomponent DNSEs related to Hermitian symmetric

spaces can be viewed as infinite dimensional Hamiltonian systems whose Hamil-

tonian is connected to the curvature tensor of the corresponding symmetric space.

In this section we aim to describe analytically the conserved densities of integrals

of motion for multicomponent DNSEs. For this to be done we are going to use

the method of diagonalization of Lax pair proposed by Drinfel’d and Sokolov [3].

This will allow us to derive a general formula generating the conserved quantities

in a recursive manner.

We shall start with some general remarks on quadratic bundles related to arbitrary

symmetric spaces. Then in order to obtain more concrete results we shall consider

two examples referring to symmetric spaces of the type A.III and BD.I, see [16].

Let us consider the quadratic bundle Lax pair

L(λ) = i∂x + λQ(x, t)− λ2J (82)

A(λ) = i∂t +
2N∑
k=1

Ak(x, t)λ
k (83)

which is related to a Hermitian symmetric space G/H. This means that the po-

tential Q as well as A2j−1, j = 1, . . . , N take values in m ∈ g while J and A2j

take values in the subalgebra h (see the beginning of Section 2 for detailed expla-

nations). In accordance with the discussion in Section 2 we pick up J in such a

way that its centralizer coincides with h.

Let

P(x, t, λ) = 11 +
∞∑
k=1

pk(x, t)λ
−k (84)

be a one-parameter family of gauge transformations3 acting on the fundamental

solutions to the linear problem (23) as follows

ψ(x, t, λ) → ψ̃(x, t, λ) = (P(x, t, λ))−1ψ(x, t, λ).

3Strictly speaking the gauge transformation P takes values in G and one should use an expansion
of the form

P(x, t, λ) = exp

(
∞∑

k=1

Pk(x, t)λ
−k

)
, Pk(x, t) ∈ g

instead of (84). But since we deal with matrix Lie groups and Lie algebras the expansion (84) is
correctly defined. Of course, one should keep in mind that pk(x, t) are neither group nor algebra
elements – they are arbitrary matrices. This choice of expansion parameters although not quite aes-
thetic from theoretical point of view is very useful from purely practical one, since it will significantly
simplify our further calculations.
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The Lax pair (82) and (83) is transformed into

L̃ = P
−1LP = i∂x − λ2J + λL−1 + L0 +

L1

λ
+

L2

λ2
+ · · · (85)

Ã = P
−1AP = i∂t +

2N∑
k=1

λkA−k +A0 +
A1

λ
+

A2

λ2
+ · · · (86)

Let us now assume that Lk,Ak ∈ h, i.e., they are block diagonal matrices. As

we shall see in next examples for certain diagonal matrix elements (or traces of

diagonal blocks) of Lk and Ak the commutator in the zero curvature representation

i∂tLk − i∂xAk +
∑
j

[Aj ,Lk−j ] = 0, k = −1, 0, . . . (87)

vanishes. Thus (87) reduces to continuity equation, i.e., the corresponding ele-

ments (or traces of blocks) of Lk are local conserved densities. Apart of local

conserved densities there exist nonlocal ones related to matrix elements for which

the commutator does not vanish.

To find the conserved densities we simply substitute (82) and (84) into (85) and

then compare coefficients before the same powers of λ. In result we get the fol-

lowing system of recurrence relations

L−1 = Q− [J, p1] (88)

L0 + p1L−1 = Qp1 − [J, p2] (89)

L1 + p1L0 + p2L−1 = ip1,x +Qp2 − [J, p3] (90)

· · ·

Lk +
k+1∑
j=1

pjLk−j = ipk,x +Qpk+1 − [J, pk+2] (91)

· · ·

In order to resolve it we need to introduce the following projector

ΠJ = ad−1
J adJ , (ad−1

J X)rs =
Xrs

Jr − Js
, r �= s

which cuts off the corresponding block-diagonal parts of matrices. Thus extracting

the block diagonal part from the first recurrence relation we see that L−1 does not

contribute to the integrals of motion while the off-block diagonal part reads

Q = [J, p1]. (92)
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To fix the existing ambiguity we assume that the matrices p j , j = 1, 2, . . . do not

have block diagonal parts. Then (92) allows one to write

p1 = ad−1
J Q. (93)

To obtain a nonzero conserved density one considers relation (89) which splits into

L0 = (11 −ΠJ)Qp1 = (11 −ΠJ)
(
Q ad−1

J Q
)

(94)

p2 = ad−1
J ΠJ(Qp1) = ad−1

J ΠJ

(
Q ad−1

J Q
)
. (95)

Proceeding in the same way with the general recursion relation (91) we get the

following result

Lk = (11 −ΠJ)

⎛⎝Qpk+1 −
k+1∑
j=1

pjLk−j

⎞⎠ , k = 1, 2, . . . (96)

pk+2 = iad−1
J pk,x + ad−1

J ΠJ

⎛⎝Qpk+1 −
k+1∑
j=1

pjLk−j

⎞⎠ . (97)

Formula (96) allows us to find the conserved density contained in Lk algorithmi-

cally.

In order to interpret DNSE as a Hamiltonian equation one needs to introduce a

Poisson structure. Let

F ([Q(x, t)]) =

∫ ∞

−∞
F([Q(x, t)])dx

be a functional of the potential Q and its x-derivatives. The variational derivative

δF/δQ is a matrix whose matrix elements are defined by the equality(
δF

δQ

)
rs

=
δF

δQrs
·

For any two functionals F and G the simplest Poisson bracket4 for DNSE reads

{F,G} =

∫ ∞

−∞
dx tr

(
δF

δQ

∂

∂x

δG

δQT

)
· (98)

In order to be more specific let us illustrate our results with two examples.

4In fact, there is a whole infinite hierarchy of Poisson brackets introduced by appropriate recur-
sion operator.
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Example 8. Consider the symmetric space SU(m + 1)/S(U(1) × U(m)). Then
taking into account formula (15) for p1 we get

p1(x, t) =
1

m+ 1

(
0 qT (x, t)

−q∗(x, t) 0

)
(99)

where q(x, t) is a complex m-vector. According to (94) and (95) the coefficient L0

is given by

L0 =
1

m+ 1

(
−qTq∗ 0

0 q∗qT

)
(100)

while p2 vanishes. Thus as an integral density one can choose I1 = q†q. The
general recursion formula (96) in its turn simplifies into

Lk = Qpk+1 (101)

where pk can be found from the equality

pk = ad−1
J

⎛⎝ipk−2,x −
k−2∑
j=1

pjLk−2−j

⎞⎠ . (102)

Taking into account (101) and (102) it is evident that L1 = 0. Thus next nonzero
integral density I is connected to the matrix L2(x, t). The result reads

I2 = iq†qx −
1

m+ 1
(q†q)2. (103)

It is not hard to be checked that it represents the Hamiltonian density H for the
multicomponent DNSE (8) provided the Poisson bracket is defined as in (98). The
DNSE can be written down in a Hamiltonian form as follows

qk, t = ∂x
∂H

∂q∗k
, k = 1, . . . ,m. (104)

The results we have just obtained can be summarized in the following theorem:

Theorem 9. All matrices Lk corresponding to odd indices vanish while the rest
are generated by formulae (101) and (102).

Proof: We already saw that L−1 = L1 = 0. So the statement of the theorem

follows immediately from (101) and (102) after performing elementary induction.

�
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Example 10. Let us now examine the case when the Hermitian symmetric space
is of the type SO(2r+1)/SO(2)× SO(2r− 1). The potential in this case is given
by (16) and the coefficient p1 reads

p1 =

⎛⎝ 0 qT 0
−q∗ 0 s0q
0 −q†s0 0

⎞⎠ . (105)

According to formulae (94) and (95) we have

L0 =

⎛⎝−qTq∗ 0T 0
0 q∗qT − s0qq

†s0 0

0 0T q†q

⎞⎠ (106)

p2 =
1

2

⎛⎝ 0 0T qT s0q
0 0 0

q†s0q 0T 0

⎞⎠ · (107)

Hence the first conserved density I1 = q†q formally coincides with that in the
previous case. It is not hard to be verified that L1 = 0 so next conserved density is
obtained from L2. Substituting all quantities needed in (96) leads to the following
result

I2 = iq†qx −
(
q†q

)2
+

1

2

∣∣qT s0q
∣∣2 . (108)

This is the Hamiltonian density of DNSE (17) provided the Poisson structure is
picked up as in (98).

5. Conclusions

In the present paper we have studied some general properties of quadratic bundles

related to arbitrary Hermitian symmetric spaces. In particular, we have introduced

all basic notions like Jost solutions, scattering matrix, fundamental analytic solu-

tions etc., required to formulate direct scattering problem. Using the fundamental

analytic solutions we have constructed the resolvent of the scattering operator and

discussed its properties which determine the spectrum of the scattering operator L.

We have adapted the Zakharov-Shabat dressing technique to quadratic bundles of

the afore-mentioned type. Though the method itself is not sensitive to the sym-

metric space type (more precisely to its structure), the form of the dressing factor

may vary from one symmetric space to another. For example in the case of A.III
symmetric spaces one can use the two-pole dressing factor (52) while for BD.I
this is not possible any more – one needs to use a four poles factor, see formula
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(62). By applying the dressing method we have derived the one-soliton solution to

the multicomponent DNSE related to A.III and discussed how one can construct

multisoliton solutions. These results generalize the classical ones by Kaup and

Newell [20] for the scalar DNSE – the latter can be obtained by using a dressing

factor of the form (77). Similarly, one can derive the soliton solutions for DNSE

related to other symmetric spaces, say symmetric spaces of the series BD.I. How-

ever, this requires much more technical efforts due to the complicated form of the

dressing factor (62) .

Since multicomponent DNSE are infinite dimensional Hamiltonian systems there

exist at least one integral of motion for them – the Hamiltonian itself. We have

proved in the previous section that in fact there are infinite number of conserved

quantities associated with multicomponent DNSE and we have derived a general

recursion formula which allows one to generate them. For that purpose we have

applied the method of block-diagonalization of Lax pair. As a simple illustration

we have evaluated the first two integrals of motion in the case of the symmetric

spaces SU(m + 1)/S(U(1) × U(m)) and SO(2r + 1)/SO(2) × SO(2r − 1)).
The second integrals of motion represent the Hamiltonian of the multicomponent

DNSE (8) and (17) respectively provided the Poisson bracket is defined as in (98).

All this underlies the proof of the complete integrability of the multicomponent

DNSE in the sense of Liouville-Arnol’d, i.e., the construction of symplectic basis

and action-angle variables. To do this one needs to develop the generalized Fourier

transform interpretation of IST by introducing squared solutions (adjoint solutions)

and recursion operator [15, 34–36]. All this is a matter of a future study.

The results presented in the paper could be extended in several ways. Firstly, one

can study complete quadratic bundles

L(λ) = i∂x + U0(x, t) + λU1(x, t)− λ2J (109)

where U0(x, t) splits into a diagonal and off-diagonal part, U1(x, t) is strictly off-

diagonal and J is a diagonal matrix. In general the bundle (109) can not be as-

sociated with symmetric spaces unless U0 contains block diagonal part only and

U1 has a block structure complementary to U0 (otherwise symmetry conditions

(14) will be violated). As it is expected the theory of such bundles becomes more

complicated than that of bundles related to symmetric spaces.

We have been dealing in this paper with solutions satisfying zero boundary con-

ditions (the so-called trivial background solutions). These represent the simplest

class of solutions to the NEE. On the other hand finding nontrivial background so-

lutions is of current interest even for classical integrable equations like the scalar

nonlinear Schrödinger equation [32, 37]. Hence extending the results presented
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here for potentials satisfying more complicated boundary conditions is another

meaningful direction of further developments.
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