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FRAMING CURVES IN EUCLIDEAN AND MINKOWSKI SPACE

ROBERT J. LOW

Communicated by Gregory L. Naber

Abstract. We give a unified picture of the Frenet-Serret equations in Euclidean

space and their analogues in Minkowski space that provides further insight into how

and why the Minkowski versions differ from the Euclidean.

1. Introduction

The Frenet apparatus for a curve in Euclidean space E
3 whose curvature vanishes

nowhere is a standard part of the undergraduate introduction to differential ge-

ometry, and a description can be found in any introductory text, such as that of

Pressley [3]. The usual naming convention for this orthonormal triad is {T,N,B},
where T is (proportional to) the tangent vector, N is proportional to the derivative

of T , and B completes a right-handed orthonormal basis. These are related by the

Frenet-Serret equations ⎡⎣ Ṫ

Ṅ

Ḃ

⎤⎦ =

⎡⎣ 0 κ 0
−κ 0 τ
0 −τ 0

⎤⎦⎡⎣ T
N
B

⎤⎦ .

Analogous framings can be found in the three dimensional Minkowski space M1,2,

with signature (−,+,+) and inner product 〈. , .〉 for curves which are everywhere

timelike, everywhere spacelike, or everywhere null. The equations describing these

framings can be derived in a similar way once a cross product has been defined and

are similar to those of the Frenet-Serret equations frame, but with some changes of

sign arising from the indefinite nature of the metric, as in Lopez [2].

For example, for a timelike curve, one obtains⎡⎣ Ṫ

Ṅ

Ḃ

⎤⎦ =

⎡⎣ 0 κ 0
κ 0 τ
0 −τ 0

⎤⎦⎡⎣ T
N
B

⎤⎦
where the sign of κ in the second row changes because of the indefinite inner

product. For curves of other causal characters there is a different pattern of signs,

which can be found by an explicit calculation similar to that in Pressley [3].
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The purpose of this paper is to give a unified picture in terms of moving frames

which provides additional insight into the pattern of signs which occurs in these

equations.

2. Frames Adapted to a Curve

Let C : I → R
3 be a differential mapping with domain I , an interval in R. Then

to each s ∈ I , we associate F (s), a matrix whose columns are a basis for R
3,

and which we regard as attached to the point C(s). Denote the columns of F by

e1, e2, e3.

It follows that F ∈ GL(3,R). More interestingly, we can consider the case where

F represents a particular class of basis, such as an orthonormal basis, and so F
belongs to a subgroup of GL(3,R). In the case of an orthonormal triad, this will be

the rotation group, SO(3). Denote by H the subgroup of matrices whose columns

are the triads of interest.

We want to describe how this basis evolves along the curve, so fix some s0 ∈ I .

We need to know Ḟ (s0). If we denote F (s0) by B, then we can consider the curve

of matrices A(s) = B−1F (s), so that A(s0) is the identity. Differentiating this,

we see that Ȧ = B−1Ḟ , so that Ḟ (s0) = BȦ(s0) = F (s0)Ȧ(s0), where Ȧ(s0) is

an element of the Lie algebra of H . Denoting Ȧ(s0) by A we thus have

ėi =
3∑

j=1

ejAji

which can therefore be re-written as⎡⎣ ė1
ė2
ė3

⎤⎦ = Ω

⎡⎣ e1
e2
e3

⎤⎦
where Ω = At.

We can now immediately see a major difference between the Euclidean and Min-

kowskian signatures. All orthonormal bases in the Euclidean case give rise to the

same group of matrices, namely those whose transpose is their inverse. This is

the reason for the skew-symmetric nature of the Frenet-Serret equations. However,

in the case of Minkowski space, even when the basis contains one timelike and

two spacelike unit vectors, the choice of order changes the signs in the metric, and

consequently changes the signs in the Frenet-Serret equations. We also have to

contend with the case where the basis may contain null vectors, and will not be

orthonormal.
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In each case, however, the metric with respect to the chosen basis {e1, e2, e3} will

be given by the matrix η, where ηij = 〈ei, ej〉, the inner product of ei and ej .

We will now see how the structure of the matrices Ω which correspond to elements

of the Lie algebra determines the Frenet-Serret equations in each case of interest.

In each case, we will find form of the general evolution equation, and then restrict

our attention to frames where e1 is parallel to Ċ. Such frames are said to be adapted

to the curve C, see Sternberg’s notes on semi-Riemannian geometry [4] for an

accessible treatment placing these ideas in a much more general context.

3. The Frenet-Serret Equations in E
3

First, we see how the traditional Frenet-Serret equations arise in this context.

We look at frames which are orthonormal with respect to the standard Euclidean

metric and adapted to the curve C, which is parameterized by arc-length. Then our

frames give matrices in SO(3), and as is well-known [5], the Lie algebra consists

of skew-symmetric matrices.

From this, since the transpose of a skew-symmetric matrix is skew-symmetric, we

obtain evolution equations of the form⎡⎣ ė1
ė2
ė3

⎤⎦ =

⎡⎣ 0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

⎤⎦⎡⎣ e1
e2
e3

⎤⎦ .

Making the further constraint that e2 be proportional to ė1 we find that Ω13 = 0,

and so we obtain ⎡⎣ ė1
ė2
ė3

⎤⎦ =

⎡⎣ 0 Ω12 0
−Ω12 0 Ω23

0 −Ω23 0

⎤⎦⎡⎣ e1
e2
e3

⎤⎦
which we recognize as the familiar Frenet-Serret equations, with κ = Ω12 and

τ = Ω23.

4. The Frenet-Serret Equations in M
1,2

Let us now consider the case of a curve in three-dimensional Minkowski space.

It is possible to follow through the standard treatment in Euclidean space by in-

troducing an appropriate notion of cross product, as in Yilmaz [7]. However, the

purpose of this article to is provide an alternative derivation which uncovers the
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origin of the pattern of zeros and signs in the Frenet-Serret equations in a unified

way.

A catalogue of the possible types of curve, categorized by the causal nature of the

tangent and acceleration, and the corresponding Frenet-Serret equations, can be

found in the doctoral thesis of Walrave [6] and I will follow his sign and notational

conventions in order to make the comparison of results straightforward.

4.1. Timelike Curves

First, we consider the case where Ċ is timelike, and C is parameterized by proper

time. It then follows that e2 and e3 are spacelike, and so the matrix η, describing

the inner product of Minkowski space in this basis, is given by

η =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ .

Thus our frame F is required to satisfy the equation F tηF = η.

To find the form of an element of the Lie algebra of this matrix group, we consider

a curve of such matrices A(s) such that A(0) is the identity. Differentiating yields

Ȧt(0)η + ηȦ(0) = 0

and taking the general form of Ȧ(0) to be⎡⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦
we obtain ⎡⎣A11 −A21 −A31

A12 −A22 −A32

A13 −A23 −A33

⎤⎦ =

⎡⎣−A11 −A12 −A13

A21 A22 A23

A31 A32 A33

⎤⎦
so that

A =

⎡⎣ 0 A12 A13

A21 0 A23

A31 −A32 0

⎤⎦
which finally gives

Ω =

⎡⎣ 0 Ω12 Ω13

Ω21 0 Ω23

Ω31 −Ω23 0

⎤⎦ .
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We now make the further constraint that e2 is proportional to ė1, so we can set

Ω13 = 0, and we obtain⎡⎣ ė1
ė2
ė3

⎤⎦ =

⎡⎣ 0 Ω12 0
Ω12 0 Ω23

0 −Ω23 0

⎤⎦⎡⎣ e1
e2
e3

⎤⎦
which recovers the usual Frenet-Serret equations for a timelike curve as given in

Walrave [6], when we make the identification Ω12 = κ1 and Ω23 = κ2.

4.2. Spacelike Curves

If e1 is spacelike, then there are three possibilities: ė1 may be timelike, spacelike,

or null.

4.2.1. Timelike Acceleration

In the first case, we must replace η by⎡⎣ 1 0 0
0 −1 0
0 0 1

⎤⎦
and following through the above procedure we obtain

Ω =

⎡⎣ 0 Ω12 Ω13

Ω12 0 Ω13

−Ω13 Ω23 0

⎤⎦
and again, restricting to the case where e2 is parallel to ė1, we have

Ω =

⎡⎣ 0 Ω12 0
Ω12 0 Ω23

0 Ω23 0

⎤⎦
which agrees with Walrave with Ω12 = κ1 and Ω23 = κ2.

4.2.2. Spacelike Acceleration

In the second case our metric takes the form⎡⎣ 1 0 0
0 1 0
0 0 −1

⎤⎦ .
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Carrying out the analogous calculation, we obtain

Ω =

⎡⎣ 0 Ω12 Ω13

−Ω12 0 Ω23

Ω13 Ω23 0

⎤⎦ .

Again requiring e2 to be parallel to ė1, we obtain

Ω =

⎡⎣ 0 Ω12 0
−Ω12 0 Ω23

0 Ω23 0

⎤⎦
and we identify Ω12 and Ω13 as κ1 and κ2 to recover Walrave’s result.

4.2.3. Null Acceleration

In the third case, we have to consider a suitable replacement for an orthonormal

triad which includes a null vector. The natural triad to use is of the form (e, n1, n2),
where the ni are null vectors such that 〈n1, n2〉 = 1, and e is a unit spacelike vector

orthogonal to each of n1 and n2, parallel to the tangent to our curve.

Finding the metric in this basis, we now replace η by⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦
which yields a matrix of the form

Ω =

⎡⎣ 0 Ω12 Ω13

Ω13 Ω22 0
Ω12 0 −Ω22

⎤⎦
and it is noteworthy that since the metric is not represented by a diagonal matrix,

the Lie algebra loses its semi-skew symmetric nature. Nevertheless, we can pro-

ceed just as before.

Denoting (e, n1, n2) by (e1, e2, e3), this time, we define e2 by e2 = ė1, so that

Ω13 = 0 and Ω12 = 1. Finally we identify Ω22 = κ2 to recover Walrave’s result.

4.3. Null Curve

The final case is that of a null curve, so that Ċ is null. As there is no notion of

arclength here, we cannot normalize this curve by requiring that Ċ have unit speed.
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Instead, we note that (as long as C is not a null geodesic), C̈ must be spacelike, so

we will choose the parameter to make C̈ of unit length.

Since we have at least one null basis vector, we cannot have an orthonormal triad.

An obvious alternative is to choose a basis consisting of two null vectors n1 and

n2 such that 〈n1, n2〉 = 1 and a spacelike unit vector orthogonal to each of them.

In this case, we will have e1 = n1, the tangent to C, e3 = n2, the null vector

satisfying 〈n1, n2〉 = 1, and e2 = e, the unit spacelike vector orthogonal to both

n1 and n2.

In this basis, the metric is given by ⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦
and we obtain

Ω =

⎡⎣Ω11 Ω12 0
Ω21 0 −Ω12

0 −Ω12 −Ω11

⎤⎦ .

If we choose the parameter so that ṅ1 is a unit vector, we can take e2 = ė1, and we

have Ω11 = 0, and Ω12 = 1. Hence we obtain

Ω =

⎡⎣ 0 1 0
Ω12 0 −1
0 −Ω12 0

⎤⎦
and identifying Ω12 with κ2 we obtain Walrave’s final case.

We thus see that the pattern of signs and zeros in the Frenet-Serret equations for

curves in Minkowski space is determined by the pattern of signs and zeros of the

inner products of the type of frame. But this is an indirect dependance, via the Lie

algebra of the matrix group keeping the matrix of inner products invariant, which

allows the pattern to be different even in cases where the basis has one timelike

and two spacelike vectors.

5. Other Framings

As Bishop [1] pointed out, there is more than one way to frame a curve. In the case

he investigates in Euclidean space, the vector e2 is chosen so that ė2 and ė3 are

parallel to e1. In our approach, this corresponds to insisting that Ω23 = 0 instead

of requiring Ω13 = 0. Hence we immediately obtain Bishop’s evolution equations

with Ω12 = k1, Ω13 = k2.
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We can carry out the analogous procedure in Minkowski space with a timelike or

spacelike curve. If the acceleration vector is spacelike, set in Ω23 = 0 yields

Ω =

⎡⎣ 0 Ω12 Ω13

−Ω12 0 0
Ω13 0 0

⎤⎦
and again setting Ω12 = k1, Ω13 = k2 we recover the evolution equation for the

Bishop frame as given in Yilmaz [7].

The case of a spacelike curve with timelike acceleration can be done in just the

same way, yielding

Ω =

⎡⎣ 0 Ω12 Ω13

Ω12 0 0
−Ω13 0 0

⎤⎦ .

Likewise, for a timelike curve, setting Ω23 = 0 gives

Ω =

⎡⎣ 0 Ω12 Ω13

Ω12 0 0
Ω13 0 0

⎤⎦ .

Finally, we see immediately that for a null curve, we can only set ė2 and ė3 parallel

to e1 in the special case where the curve is a null geodesic and the frame is constant

(so the curvatures all vanish).

6. Conclusion

We have seen a unified approach to finding the evolution equations for frames in

Euclidean and Minkowski space. This shows clearly how the choice of a Frenet

frame arises as a special case, and also allows the development of the Frenet-Serret

equations in all the standard cases in Minkowski space, without the need to develop

a cross product. In the process, it elucidates how the choice of class of basis affects

the Frenet-Serret equations. The approach works equally well for obtaining the

evolution equations for a Bishop frame, and for seeing that no such frame exists

for a (non-geodesic) null curve.
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