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Abstract. Let M be the Lie group of Möbius transformations of the circle. Sup-

pose that the circle has initially a homogeneous distribution of mass and that the

particles are allowed to move only in such a way that two configurations differ in

an element of M. We describe all force free Möbius motions, that is, those curves

in M which are critical points of the kinetic energy. The main tool is a Rieman-

nian metric onM which turns out to be not complete (in particular not invariant, as

happens with non-rigid motions) given by the kinetic energy.

1. Introduction

In the spirit of the classical description of the force free motions of a rigid body in

Euclidean space using an invariant metric on SO (3) [1, Appendix 2], the second

author defined in [4] an appropriate metric on the Lorenz group SOo (n+ 1, 1)
to study force free conformal motions of the sphere S

n, obtaining a few explicit

ones (only through the identity and those which can be described using the Lie

structure of the configuration space). In this note, in the particular case n = 1, that

is, Möbius motions of the circle, we obtain all force free motions.

This is an example of a situation in which using concepts of Physics one can state

and solve a problem in Differential Geometry (see for instance [2, 3, 6]).

Notice that the canonical action of PSL (2,R) on RP
1 ∼= S

1 is equivalent to the

action of the group of Möbius transformations on the circle. Then, the results

presented here, up to a double covering, also extend the case n = 1 of [5], where

force free projective motions of the sphere S
n were studied.

This note, as well as [4, 5], is weakly related with mass transportation [7]. In our

situation, the set of admitted mass distributions is finite dimensional, and also the

allowed transport maps are very particular.
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1.1. Möbius Motions of the Circle

Let S1 be the unit circle centered at zero in C with the usual metric and let M be

the Lie group of Möbius transformations of the circle, that is, the group of Möbius

transformations of the extended plane preserving the circle. It consists of maps of

the form cTα, where c ∈ S
1 and

Tα (z) =
z + α

1 + ᾱz
(1)

for α ∈ C, |α| < 1 and all z ∈ S
1. Although we are interested in the action of

M on the circle, we recall that if the unit disc Δ = {z ∈ C ; |z| < 1} carries the

canonical Poincaré metric of constant negative curvature −1 and α �= 0, then Tα

is the transvection translating the geodesic with end points ±α/ |α|, which sends

0 to α.

A Möbius motion of the circle is by definition a smooth curve in M, thought of as

a curve of diffeomorphisms of the circle. (Throughout the paper, smooth means of

class C∞.)

In the next two subsections we recall, specialized for the circle, some definitions

and statements given in [4] for conformal motions on the n-dimensional sphere.

1.2. The Energy of Möbius Motions of Circle

Suppose that the circle has initially a homogeneous distribution of mass of constant

density one and that the particles are allowed to move only in such a way that two

configurations differ in an element of M. The configuration space may be naturally

identified with M.

Let γ : [t0, t1] → M be a Möbius motion of S1. The total kinetic energy Eγ (t) of

the motion γ at the instant t is given by

Eγ (t) =
1
2

∫
S1

|vt (q)|2 ρt (q) dm (q) (2)

where integration is taken with respect to the canonical volume form of S1 and, if

q = γ (t) (p) for p ∈ S
1, then

vt (q) =
d

ds

∣∣∣∣
t

γ (s) (p) ∈ TqS
1, ρt (q) = 1/det (dγ(t)p)
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are the velocity of the particle q and the density at q at the instant t, respectively.

Applying to (2) the formula for change of variables, one obtains

Eγ (t) =
1
2

∫
S1

∣∣∣∣ d

ds

∣∣∣∣
t

γ (s) (p)

∣∣∣∣2 dm (p) . (3)

The kinetic energy of γ is defined by

E (γ) =

∫ t1

t0

Eγ (t) dt.

The following definition is based on the principle of least action.

Definition 1. A smooth curve γ in M, thought of as a Möbius motion of S1, is said
to be force free if it is a critical point of the kinetic energy functional, that is,

d

ds

∣∣∣∣
0

E (γs) = 0

for any proper smooth variation γs of γ (here γs (t) = Γ (s, t), where Γ : (−ε, ε)×
[t0, t1] → M is a smooth map, with ε > 0, Γ (0, t) = γ (t) and Γ (s, ti) = γ (ti)
for all s ∈ (−ε, ε), i = 0, 1).

1.3. A Riemannian Metric on the Configuration Space

Given g ∈ M and X ∈ TgM, let us define the map X̃ : S1 → TS1 by

X̃(q) =
d

dt

∣∣∣∣
0

γ (t) (q) ∈ Tg(q)S
1 (4)

where γ is any smooth curve in M with γ (0) = g and γ̇ (0) = X . The map X̃
is well-defined and smooth and it is a vector field on S

1 if and only if X ∈ TeM.

Moreover,

X �→ ‖X‖2 = 1

2π

∫
S1

∣∣∣X̃(q)
∣∣∣2 dm (q) (5)

is a quadratic form on TgM and gives a Riemannian metric on M.

Remarks 2. a) The fundamental property of the metric (5) on M is that a curve γ
in M is a geodesic if and only if (thought of as a Möbius motion) it is force free,
since by (5) and (3), Eγ (t) = π ‖γ̇ (t)‖2.

b) The metric on M is neither left nor right invariant, since we saw in [4] that it is
not even complete.
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2. Force Free Möbius Motions of the Circle

The next theorem describes completely the geometry of M endowed with the met-

ric (5) given by the kinetic energy. Recall from (1) that Ta denotes the transvection

associated with α and that Δ is the unit disc centered at zero in C.

Theorem 3. Let ds2 be the metric on the disc Δ given in polar coordinates (r, θ)
by

ds2 =
2
(
dr2 + r2dθ2

)
1− r2

(6)

and consider on S
1 ×Δ the Riemannian product metric, where S

1 has length 2π.
Then the map

F : S1 ×Δ → M, F (u, α) = uTα

is an isometry.

Remarks 4. a) Note that the metric (6) on Δ is not the canonical metric of con-
stant negative curvature on Δ. Indeed, the curvature function can be easily com-
puted to be K(r, θ) = −1/

(
1− r2

)
, in particular, it tends to −∞ as r → 1−.

Also, the metric on Δ is not complete, since the inextendible ray (0, 1) � r �→ Tr

has length π/
√
2, since

∥∥ ∂
∂r

∥∥2 = 2
1−r2

·
b) In the higher dimensional situation [4] it is proven that the group SO(n) (with
the metric induced from the one given by the kinetic energy) is totally geodesic in
the group of directly conformal transformations of Sn, but the author did not know
whether this subgroup is a Riemannian factor, as it turned to be for n = 1. In the
projective case [5], SO(n) is not even totally geodesic.

Proof of Theorem 3. Let S1 ⊂ M be the subgroup of isometries of the circle. The

torus S1×S
1 acts on M on the left by (u, v) ·g = ugv̄, where (ugv̄) (z) = ug (zv̄)

for any z ∈ S
1. We know from the higher dimensional cases in [4] that this action

is by isometries of M, provided that this group is endowed with the metric (5).

We fix 0 < r < 1. By the torus symmetry just described, it suffices to verify that

dF(1,r) : T(1,r)

(
S
1 ×Δ

) → TF (1,r)M is a linear isometry. We put coordinates

t �→ eit on S
1 and (ρ, θ) �→ ρeiθ on Δ. We denote ∂x = d

dx . Let X,Y, Z be the

images under dF(1,r) of ∂t, ∂ρ, ∂θ, respectively. It suffices to show that {X,Y, Z}
is an orthogonal basis of TF (1,r)M with

‖X‖2 = 1, ‖Y ‖2 = 2

1− r2
, ‖Z‖2 = 2r2

1− r2
·



Force Free Möbius Motions of the Circle 63

First, we compute X̃ , Ỹ and Z̃ by their definition (4). In each case, we take the

curve γ as the image under F of the coordinate curves in S
1×Δ through the point

(1, r). We have

X̃(z) =
d

dt

∣∣∣∣
0

F (eit, r) (z) =
d

dt

∣∣∣∣
0

eitTr(z) = ieitTr(z)
∣∣
t=0

= iTr(z) = i
z + r

1 + rz

Ỹ (z) =
d

dρ

∣∣∣∣
r

F (1, ρ) (z) =
d

dρ

∣∣∣∣
r

Tρ(z) =
d

dρ

∣∣∣∣
r

z + ρ

1 + ρz
=

1− z2

(1 + rz)2

Z̃ (z) =
d

dθ

∣∣∣∣
0

F (1, reiθ) (z) =
d

dθ

∣∣∣∣
0

Treiθ(z) =
d

dθ

∣∣∣∣
0

z + reiθ

1 + re−iθz

=
ir(1 + 2rz + z2)

(1 + rz)2
·

Next we compute

2π‖X‖2 =
∫
S1

∣∣∣X̃ (z)
∣∣∣2 dm(z) =

∫
S1

|iTr(z)|2 dm(z) =

∫
S1

1 dm(z) = 2π.

We have also

2π‖Y ‖2 =
∫
S1

∣∣∣Ỹ (z)
∣∣∣2 dm(z) =

∫
S1

∣∣∣∣ 1− z2

(1 + rz)2

∣∣∣∣2 dm(z).

Setting z = eis, we have

2π‖Y ‖2 =
∫ 2π

0

1

ieis

∣∣∣∣ 1− ei2s

(1 + reis)2

∣∣∣∣2 ieis ds = ∫
S1

1

iz

∣∣∣∣ 1− z2

(1 + rz)2

∣∣∣∣2 dz.

Now, the integrand is a complex analytic function inside the circle (observe that

z̄ = 1/z for |z| = 1), except for a simple pole at z = 0 and a pole of order

two at z = −r, with residues i
r2

and
i(r2+1)

−r2(1−r2)
, respectively. One obtains that

‖Y ‖2 = 2/
(
1− r2

)
. In the same way one gets ‖Z‖2 = 2r2/

(
1− r2

)
.

We claim that the vectors X,Y, Z are pairwise orthogonal. Let h (U, V ) = UV̄
denote the Hermitian inner product on C. We compute∫

S1

h
(
X̃ (z) , Ỹ (z)

)
dm(z) =

∫
S1

f(z) dz

where f (z) = z2−1
z(1+rz)(z+r) is an complex analytic function inside the circle, ex-

cept for simple poles at z = 0 and z = −r, with residues 1/r and −1/r, respec-

tively. Then,

〈X,Y 〉 = 

∫
S1

h
(
X̃ (z) , Ỹ (z)

)
dm(z) = 0.
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Analogously, we find that 〈Y, Z〉 = 〈X,Z〉 = 0. �

Corollary 5. The force free Möbius motions of the circle, or equivalently, the
geodesics of M, are, via F , of the form γ = (γ1, γ2), where γ1 parametrizes
the circle with constant speed and γ2 is a geodesic in the disc Δ whose trajectory
coincides with the images of either c1(ρ) = (ρ, θ0) or c2 (θ) = (ρ(θ), θ), where ρ
satisfies the differential equation

(
ρ′
)2

=
μ+ ρ2

(1− ρ2) ρ2
(7)

for some constant μ > −1.

Proof. Clearly, a geodesic of a Riemannian product projects to a geodesic in each

factor. Besides, as the coefficients of the first fundamental form of Δ depend only

on ρ, the corresponding metric is Clairaut. Then, the trajectories of the geodesics

of Δ are, in polar form

c1(ρ) = (ρ, θ0) or c2 (θ) = (ρ(θ), θ)

for some constant θ0, where ρ(θ) satisfies Clairaut’s differential equation, for some

constant λ
λE2(ρ) = E(ρ) + (ρ′)2G(ρ).

Since in our case E(ρ) =
∥∥ ∂
∂r

∥∥2 = 2
1−ρ2

and G(ρ) =
∥∥ ∂
∂θ

∥∥2 = 2ρ2

1−ρ2
, the differ-

ential equation is equivalent to (7) for some constant μ > −1. �
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