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THE GAUSS MAP OF MINIMAL GRAPHS IN THE HEISENBERG
GROUP

CHRISTIAM FIGUEROA

Communicated by Abraham A. Ungar

Abstract. In this paper we study some geometric properties of surfaces in the

Heisenberg group, H3. We obtain, using the Gauss map for Lie groups, a partial

classification of minimal graphs in H3.

1. Introduction

The classical Heisenberg group, H3, is the group of 3× 3 matrices of the form⎛
⎝1 r t
0 1 s
0 0 1

⎞
⎠ , r, t, s ∈ R. (1)

This group is a two-step nilpotent (or quasi-abelian) Lie group, which is the nearest

condition to be abelian. Endowed with a left invariant metric g, the isometry group

of (H3, g) is four-dimensional. It is known that there is no three-dimensional Rie-

mannian manifold with isometry group of dimension five, so (H3, g) has isometry

group of the largest possible dimension for a non-constant curvature space.

In this paper we will fix a left invariant Riemannian metric in H3 and study the ge-

ometry of surfaces with special emphasis on minimal surfaces and the relationship

with their Gauss map.

We have organized the paper as follows. Section 2 we present the basic geometry

of the Heisenberg group, H3 including a basis for left invariant fields.

In Section 3 we study the non parametric surfaces in H3. We calculate the coeffi-

cients of the first and second fundamental form and the Gaussian curvature of this

type of surfaces.

In Section 4 we present the Gauss map for hypersurfaces of any Lie group and

present a relationship between this map and the second fundamental form and give

a direct proof of a non existence of umbilical surfaces in H3.
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In Section 5, we present the classification of minimal graphs in H3 when the rank

of its Gauss map is zero and one and finally we present some conditions in order

that a minimal graph is a plane.

2. The Geometry of the Heisenberg Group

The three-dimensional Heisenberg group H3 is a two-step nilpotent Lie group. It

has the standard representation in GL(3,R) specified in (1).

In order to describe a left-invariant metric on H3, we note that the Lie algebra h3
of H3 is given by the matrices

A =

⎛
⎝ 0 x z

0 0 y
0 0 0

⎞
⎠

with x, y, z real. The exponential map exp : h3 → H3 is a global diffeomorphism,

and is given by

exp(A) = I +A+
A2

2
=

⎛
⎝ 1 x z + xy

2
0 1 y
0 0 1

⎞
⎠ .

Using the exponential map as a global parametrization, with the identification of

the Lie algebra h3 with R
3 given by

(x, y, z) ↔
⎛
⎝ 0 x z

0 0 y
0 0 0

⎞
⎠

the group structure of H3 is given by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
x1y2 − x2y1

2
). (2)

From now on, modulo the identification given by exp, we consider H3 as R3 with

the product given in (2). Notice, in this model, the one-parameter subgroups are

straight lines. The Lie algebra bracket, in terms of the canonical basis {e1, e2, e3}
of R3, is given by

[e1, e2] = e3, [ei, e3] = 0

with i = 1, 2, 3. Now, using {e1, e2, e3} as the orthonormal frame at the identity,

we have the following left-invariant metric ds2 in H3

ds2 = dx2 + dy2 + (
1

2
ydx− 1

2
xdy + dz)2.
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And the basis of the orthonormal left-invariant vector fields is given by

E1 =
∂

∂x
− y

2

∂

∂z
, E2 =

∂

∂x
+

x

2

∂

∂z
, E3 =

∂

∂z
·

Then the Riemann connection of ds2, in terms of the basis {Ei}, is given by

∇E1
E2 =

1

2
E3 = −∇E2

E1

∇E1
E3 = −1

2
E2 = ∇E3

E1

∇E2
E3 =

1

2
E1 = ∇E3

E2

and ∇Ei
Ei = 0 for i = 1, 2, 3.

3. Graphs Over the xy-plane in H3

Let S be a graph of a smooth function f : Ω → R where Ω is an open set of R2.

We consider the following parametrization of S

X (x, y) = (x, y, f(x, y)), (x, y) ∈ Ω. (3)

A basis of the tangent space TpS associated to this parametrization is given by

Xx = (1, 0, fx) = E1 +
(
fx +

y

2

)
E3

Xy = (0, 1, fy) = E2 +
(
fy − x

2

)
E3

(4)

and its unit normal vector is given by

η (x, y) = −
(
fx +

y
2

w

)
E1 −

(
fy − x

2

w

)
E2 +

1

w
E3 (5)

where

w =

√
1 +

(
fx +

y

2

)2
+
(
fy − x

2

)2
. (6)

Then the coefficients of the first fundamental form of S are given by

E = < Xx, Xx > = 1 +
(
fx +

y

2

)2
F = < Xy, Xx > =

(
fx +

y

2

)(
fy − x

2

)
G = < Xy, Xy > = 1 +

(
fy − x

2

)2
.

(7)
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If ∇ is the Riemannian connection of
(H3, ds

2
)
, by Weingarten formula for hy-

persurfaces, we have that

Aηv = −∇vη, v ∈ TpS

and the coefficients of the second fundamental form are given by

L = − < ∇Xx
η,Xx > =

fxx + (fy − x

2
)(fx +

y

2
)

w

M = − < ∇Xx
η,Xy > =

fxy +
1

2

(
fy − x

2

)2
− 1

2

(
fx +

y

2

)2
w

N = − < ∇Xy
η,Xy > =

fyy −
(
fy − x

2

)(
fx +

y

2

)
w

·

(8)

To end this section we calculate the Gauss curvature of a non-parametric surface,

that is, a surface which is a graph over the xy-plane. You can see the same formula

in [2].

Theorem 1. Let S be a non-parametric surface in H3 given by (x, y, f(x, y)) with
(x, y) ∈ Ω ⊂ R

2. Then the Gauss curvature of S is given by

w4K = w2(f2
xy − fxxfyy − 1

4
)− (1 + q2)(fxy +

1

2
)2 − fxxfyy

− (1 + p2)(fxy − 1

2
)2 − fxxfyy + pq(fyy − fxx)

where p, q and w are defined by

p = fx +
y

2
, q = fy − x

2
, w =

√
1 + p2 + q2.

Proof: We recall the following formula from the Gauss equation for isometric

immersions for this case

K(Xx, Xy)− K̄(Xx, Xy) = detAη

where Xx, Xy is the basis of S, associated to the parametrization (3), K and K̄ are

the sectional curvatures of S and H3 respectively. Using this basis, we have

∇Xx
(∇Xx

Xx) = [
1

2
fxx − 1

2
(fy − x

2
)(fx +

y

2
)]E1 − (fxy +

1

2
)E2 + fxxyE3.



The Gauss Map of Minimal Graphs in the Heisenberg Group 5

In the same way

∇Xx
(∇Xy

Xx) = [
1

2
fxx − 1

4
(fy − x

2
)(fx +

y

2
)]E1

− [fxy +
1

4
(fx +

y

2
)2 − 1

4
]E2 + [fxxy − 1

4
(fy − x

2
)]E3.

Since [Xx, Xy] = 0, the curvature tensor of H3, is

R(Xx, Xy)Xx = −1

4
(fy− x

2
)(fx+

y

2
)E1+[

1

4
(fx+

y

2
)2− 3

4
]E2+

1

4
(fy− x

2
)E3

and its sectional curvature is given by

K̄(Xx, Xy) =
< R(Xx, Xy)Xx, Xy >

‖Xx ∧Xy‖2 =
1

4
− 1

w2
·

On the other hand, using (7) and (8), we have

detAη =
LN −M2

EG− F 2

=
fxxfyy + pq(fyy − fxx)− 1

4
(p2 + q2)2 − f2

xy − fxy(q
2 − p2)

w4
·

So the Gauss curvature of S, satisfies

w4K = fxxfyy − f2
xy +

1

4
+ pq(fyy − fxx) + p2(fxy − 1

2
)− q2(fxy +

1

2
)− 1.

From this relation follows the formula. �

Using the above formula, Inoguchi classified flat translation invariant surfaces

while Dillen and van der Veken, constructed some examples of semi-parallel sur-

faces in H3, see [11] and [5] respectively.

4. The Gauss Map

Recall that the Gauss map is a function from an oriented surface, S ⊂ E
3, to the

unit sphere in the Euclidean space. It associates to every point on the surface its

oriented unit normal vector. Considering the Euclidean space as a commutative

Lie group, the Gauss map is just the translation of the unit normal vector at any

point of the surface to the origin, the identity element of R3. Reasoning in this way

we define a Gauss map in the following form.
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Definition 2. Let S ⊂ G be an orientable hypersurface of a n-dimensional Lie
group G, provided with a left invariant metric. The map

γ = S → Sn−1 = {v ∈ g̃ ; |v| = 1}
where γ (p) = dL−1

p ◦ η (p), g̃ is the Lie algebra of G and η is the unitary normal
vector field of S, is called the Gauss map of S.

We observe that

dγ (TpS) ⊆ Tγ(p)S
n−1 = {γ (p)}⊥ = dL−1

p (TpS)

and therefore dLp ◦ dγ (TpS) ⊆ TpS.

We know also that in the Euclidean case the differential of the Gauss map is just the

second fundamental form for surfaces in R
3, this fact can be generalized for hyper-

surfaces in any Lie group. The following theorem, see [14], states a relationship

between the Gauss map and the extrinsic geometry of S.

Theorem 3. Let S be an orientable hypersurfaces of a Lie group. Then

dLp ◦ dγp (v) = − (Aη (v) + αη̄ (v)) , v ∈ TpS

where Aη is the Weingarten operator, αη̄ (v) = ∇vη̄ and η̄ is the left invariant
vector field such that η (p) = η̄ (p) .

In the case of orientable surfaces in H3 we shall obtain the expressions of the

operators dLp ◦dγp and aη̄ , when such a surface is the graph of a smooth function

f (x, y) . In fact, using the basis {Xx, Xy} , given by the parametrization (3), we

have

dγp (Xx) =
3∑

i=1

∂ai
∂x

Ei (e)

dγp (Xy) =
3∑

i=1

∂ai
∂y

Ei (e)

where ai are the components of the normal η, see (5), and p ∈ S. Hence

dLp ◦ dγp (Xx) =
3∑

i=1

∂ai
∂x

Ei (p)

dLp ◦ dγp (Xy) =
3∑

i=1

∂ai
∂y

Ei (p) .

On the other hand, we have that dLp ◦ dγ (TpS) ⊆ TpS, so

dLp ◦ dγp (Xx) = aXx + bXy

dLp ◦ dγp (Xy) = cXx + dXy.
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Using (4) and comparing the above two systems, we obtain the matrix of dLp ◦dγp
in the basis {Xx, Xy}

dLp ◦ dγp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
⎛
⎝fx +

y

2
w

⎞
⎠

x

−
⎛
⎝fx +

y

2
w

⎞
⎠

y

−
⎛
⎝fy − x

2
w

⎞
⎠

x

−
⎛
⎝fy − x

2
w

⎞
⎠

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Notice that

det (dLp ◦ dγp) =
fxxfyy − f2

xy +
1
4

w2
(10)

and we will call this expression, the determinant of the Gauss map. Finally the

matrix of αη̄ in the basis {Xx, Xy} is

αη̄ =
1

2w

⎛
⎜⎝−

(
fx +

y

2

)(
fy − x

2

)
1−

(
fy − x

2

)2
(
fx +

y

2

)2
− 1

(
fx +

y

2

)(
fy − x

2

)
⎞
⎟⎠ (11)

where w is like (6). Observe that in the case of surface in the Heisenberg group the

trace of αη̄ is zero. Our first result is

Theorem 4. The vertical plane is the unique connected surface in H3 with the
property that its Gauss map is constant.

Proof: Let S be a surface in H3 parameterized as the graph of a smooth function

f (x, y). As we have seen, a basis of the tangent space of S is given by

Xx = E1 +
(
fx +

y

2

)
E3

Xy = E2 +
(
fy − x

2

)
E3.

Now if there is p ∈ S such that dγp = 0, then dL−1
p (TpS) is a subalgebra of

h3, see [14]. But this is a contradiction, because
[
dL−1

p (Xx) , dL
−1
p (Xy)

]
=

e3 /∈ dL−1
p (TpS) . Therefore, there are no graphs in H3 such that its Gauss map is

constant.

Now we consider S as a vertical surface. In this case we can consider such a

surface as a ruled surface. We parameterize the surface by

X (t, s) = (t, a (t) , s) , (t, s) ∈ U (12)
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where U is an open set of R2. So the basis associated to this parametrization is

Xt = E1 + ȧE2 + (a− tȧ)E3

Xs = E3

and the unit normal field to this surface is

η =
ȧ√

1 + (ȧ)2
E1 − 1√

1 + (ȧ)2
E2.

Notice that η is constant iff ȧ (t) is constant, that is, a (t) is affine. �

We remark that Piu proved that there are no totally geodesic hypersurfaces in

H2n+1, see [13] and Sanini generalized this result, that is, there are no totally

umbilical hypersurfaces in this group, see [15]. Finally van der Veken gave a full

local classification of totally umbilical surfaces in three-dimensional homogeneous

spaces with four-dimensional group, see [17]. Also, R. Souam and E. Toubiana,

obtained the same result independently, see [16]. We present here an alternative

proof of the following result.

Theorem 5. There are no totally umbilical surfaces in H3.

Proof: Let S be an umbilical surface which is, locally, the graph of a differentiable

function f. Then

Aη (Xx) = λXx

Aη (Xy) = λXy

where λ is a differentiable function. The Codazzi equation (in the umbilical case)

is given by

R (Xx, Xy) η = Xy (λ)Xx −Xx (λ)Xy = λyXx − λxXy.

By replacing (4) and (5) into the last expression, we obtain

λx = − (fx + y
2

)
/w

λy = − (fy − x
2

)
/w.

From (9) and the differentiability of λ we can see that dLp ◦ dγp is represented by

a symmetric matrix in the basis (4). Then using theorem 3 and (11), we conclude

that the matrix representation of αη̄ is also symmetric. Therefore

w =
√
3
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where w is like (5). So, using again the fact that λxy = λyx, i.e.,(
fx +

y

2

)
y
=
(
fy − x

2

)
x

which is a contradiction.

Now assume that S is a vertical surface, we may consider it as a ruled surface,

where the vertical lines are the rulings and the directrix, a (t) , lies in the xy −
plane. As usual, we parameterize this surface like (12). The coefficients of the

first fundamental form in the basis {Xt, Xs} are given by

E = 1 + ȧ2 + (a− tȧ)2 /4

F = (a− tȧ) /2

G = 1

(13)

and the coefficients of the second fundamental form in the same basis are given by

L = ((a− tȧ)(1 + ȧ2)− 2ä)/2
√
1 + ȧ2

M =
√
1 + ȧ2/2

N = 0.

(14)

Since we have assumed that the surface was umbilical, we conclude that the Wein-

garten operator is a diagonal matrix in any basis, in particular in the basis associ-

ated to the parametrization (12), then 0 = NF −MG, but this is a contradiction.

�

5. Minimal Graphs Over the xy-plane in H3

We recall firstly the mean curvature formula of any surface of H3 in terms of the

coefficients of their first and second fundamental forms

H =
1

2

(
EN +GL− 2FM

EG− F 2

)
· (15)

If the surface is the graph of a smooth function f , using (7) and (8) into the above

equation, we obtain the equation of the minimal graphs in H3(
1 + q2

)
fxx − 2pqfxy +

(
1 + p2

)
fyy = 0 (16)

where p =
(
fx +

y
2

)
and q =

(
fy − x

2

)
. This equation appears for the first time

in [1]. Before presenting some consequences of the above equation, we shall show

some examples of minimal graphs and compute the rank of their Gauss map, using

formula (10).
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Example 6. As in Euclidean space E
3, the plane f (x, y) = ax + by + c is a

minimal graph of H3. The rank of the Gauss map is two.

Another minimal graph may be obtained by searching for solutions of Scherk type,

i.e., for solutions of the form f (x, y) =
xy

2
+u (x)+ v (y) . From this method we

find, among others, the following example, see [3].

Example 7. A surface of saddle type

f (x, y) =
xy

2
+ k

[
ln
(
y +

√
1 + y2

)
+ y
√

1 + y2
]

where k ∈ R. Notice that this minimal surface is ruled by affine lines, i.e., transla-
tions of one-parameter subgroups. The rank of its Gauss map is one.

The following example was found by Daniel [4], using a Weierstrass representa-

tion.

Example 8. Let f(x, y) = xh(y), where h(y) = u− 1

2 cothu
, u and y are related

by the equation y = cothu− 2u, u > 0. In this case, the determinant of the Gauss
map is equal to

−1

4
(

1

coth4 u
− 1), u > 0.

So, the rank of its Gauss map is two.

Unlike the case of Euclidean spaces, where the only complete minimal graphs are

linear (Bernstein’s theorem), we have several solutions defined on the entire xy-

plane.

Let us come back to the minimal graph equation (16). Notice that this is a quasilin-

ear, elliptic PDE. with analytic coefficients and therefore its solutions are analytic

and satisfy the following maximum principle, see [10].

Theorem 9. Consider an elliptic, differential equation of the form

F [u] := F
(
x, y, u,Du,D2u

)
= 0

with F : S = Ω×R×R
2×S(2,R) → R where S(2,R) is the space of symmetric,

real-valued, 2× 2 matrices. Let u0, u1 ∈ C2(Ω) ∩ C0(Ω), and suppose

1. F ∈ C1(S).

2. F is elliptic at all functions tu1 + (1− t)u0, 0 ≤ t ≤ 1.
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3.
∂F

∂u
≤ 0 in Ω.

If u1 ≤ u0 on ∂(Ω) and F [u1] ≥ F [u0] in Ω, then either u1 < u0 in Ω or u0 ≡ u1
in Ω.

A simple application of these facts imply the following result

Theorem 10. There are no compact (i.e., bounded and closed) minimal surfaces
in H3.

Proof: Suppose S is a compact minimal surface (without boundary) in H3. Take

the plane z = c, which is a minimal surface, such that the plane is tangent to S and

S lies below the plane, so by the maximum principle, S locally coincides with the

plane and, by analyticity, S is the plane, which contradicts compactness. �

Unlike the minimal surface case, for graphs of non-zero constant mean curvature,

we have a Bernstein type theorem, see [7].

Theorem 11. There are no complete graphs of constant mean curvature H �= 0.

We shall now study the stability of minimal graphs. To explain this, we need to

characterize the minimal surfaces as solution of a variational problem. Let S be

a surface given by z = f (x, y) with (x, y) ∈ Ω ⊂ R
2. Then we consider the

following variation of S :

St (x, y) = (x, y, f (x, y) + th (x, y)) , (x, y) ∈ Ω

where h ∈ C1 and h|∂Ω = 0. Furthermore, the area of St over Ω̄ is

A (t) =

∫∫
Ω̄

w (t) dxdy

where w (t) =
√
1 +

(
fx + thx +

y
2

)2
+
(
fy + thy − x

2

)2
. Since S has least area

among all surfaces of St , we have that S must be critical point of A (t) i.e.,

A′ (0) = 0. Now we compute the first derivative of A (t)

A′ (t) =
∫∫
Ω̄

w−1
((

fx + thx +
y

2

)
hx +

(
fy + thy − x

2

)
hy

)
dxdy. (17)

Evaluated at t = 0, integrating by parts, and using the fact that h = 0 on ∂Ω, we

find
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A′(0) =
∫∫
Ω̄

w−1
((

fx +
y

2

)
hx +

(
fy − x

2

)
hy

)
dxdy

=
∫∫
Ω̄

⎛
⎝
⎛
⎝fx +

y

2
w

⎞
⎠

x

+

⎛
⎝fy − x

2
w

⎞
⎠

y

⎞
⎠hdxdy.

It follows that the equation

(
fx +

y
2

w
)x + (

fy − x
2

w
)y = 0

must hold for all (x, y) ∈ Ω. Notice, this is nothing but the minimal graph equation

(16). Using this equation and the matrix representation of dLp ◦ dγp we conclude

the following

Proposition 12. Let f : Ω → R be a smooth function. A graph of f is a minimal
surface in H3 if and only if the trace of dLp ◦ dγp is equal to zero.

Now we are ready to prove the following

Proposition 13. Every minimal graph in H3 is stable.

Proof: It is sufficient to consider the second derivative of the area function, A (t),
evaluated at t = 0. From (17) we obtain that

A′′ (0) =
∫∫
Ω̄

h2x + h2y +
((
fy − x

2

)
hx −

(
fx +

y
2

)
hy
)2

w2
dxdy.

Notice that A′′ (0) ≥ 0 and is equal to zero if and only if hx = hy = 0 that is

h = 0, because h|∂Ω = 0. �

Now we will give a classification of the minimal surfaces in H3 with Gauss map

of rank zero and one. We begin with the rank zero case.

As we have seen in theorem (4) the vertical plane is the unique connected surface

in H3 with the property that its Gauss map is constant. Then it remains to prove

that such a surface is minimal. But the only minimal vertical surface in H3 is the

vertical plane. In fact, if we replace, (13) and (14) in the mean curvature formula

(15), when H = 0, we obtain that ä(t) = 0, that is, the minimal surface is a

vertical plane. So we conclude that the vertical plane is the only minimal surface

in H3 with the property that its Gauss map is constant.
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Now we study the minimal graphs of H3, whose Gauss map have rank one. That

is

fxxfyy − f2
xy +

1

4
= 0. (18)

Lemma 14. Let (x, y, f(x, y)), with (x, y) ∈ Ω, be a minimal graph in H3, which
contains the origin, its normal at the origin is η(0) = 1√

1+4k2
(0,−2k, 1) and its

Gauss map has rank one. Furthermore assume that fyy(0) = 0, then

f(x, y) =

⎧⎨
⎩

xy
2 + k

[
ln
(
y +

√
1 + y2

)
+ y
√

1 + y2
]

2ky − xy
2 ·

Proof: Since the unit normal at 0 is η(0) = 1√
1+4k2

(0,−2k, 1) we have, using (5),

that fx (0) = 0 and fy (0) = 2k. On the other hand the Gauss map of such surface

has rank one, then, using (18), we have

fxx (0) fyy (0)− f2
xy (0) +

1

4
= 0.

Since f satisfies the minimal graph equation (16), we obtain

(1 + 4k2)fxx(0) + fyy(0) = 0.

From the above two equations and the hypothesis, fyy(0) = 0, we conclude that

fxy (0) = ±1
2 and fxx (0) = 0.

Recalling that f is an analytic function, we can write its Taylor expansion in the

form f (x, y) = 2ky ± xy
2 +Ψ(x, y) . Substituting into (18) we obtain

ΨxxΨyy −Ψ2
xy = ±Ψxy.

Let n be the minimal order of Ψ(x, y) . We claim that the terms of minimal order

of Ψ do not appear mixed. In fact, assuming that this is not the case, the minimal

order of Ψxy and ΨxxΨyy −Ψ2
xy are (n− 2) and 2 (n− 2) respectively. This is a

contradiction and proves our claim.

We shall now compute the third partial derivatives of f at 0. To do this we differen-

tiate, with respect to x and y, the minimal graph equation (16) , the equation (18)

and evaluate both at 0. We obtain the following two cases

1. If fxy (0) =
1
2 , we have that fyyy (0) = 2k and the others third derivatives of f

are zero. Then the Taylor expansion of f about (0, 0) has the form

f(x, y) = 2ky +
xy

2
+ ψ(y) + axn + byn + Ψ̃(x, y)
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where ψ(y) is a polynomial such that 3 ≤ degψ(y) ≤ (n − 1) with n ≥ 4. A

simple computation shows that

fx = y
2 + anxn−1 + Ψ̃x

fy = 2k + x
2 + ψy + bnyn−1 + Ψ̃y

fxx = an(n− 1)xn−2 + Ψ̃xx

fxy = 1
2 + Ψ̃xy

fyy = ψyy + bn(n− 1)yn−2 + Ψ̃yy.

Substituting into (16)

(an(n− 1)xn−2 + Ψ̃xx)[1 + (2k + ψy + bnyn−1 + Ψ̃y)
2]

− 2(
1

2
+ Ψ̃xy)(2k + ψy + bnyn−1 + Ψ̃y)(y + anxn−1 + Ψ̃x)

+ (ψyy + bn(n− 1)yn−2 + Ψ̃yy)[1 + (y + anxn−1 + Ψ̃x)
2] = 0.

If we analyze the coefficient of the term xn−2 we obtain that

(1 + 4k2)an(n− 1)xn−2 = 0.

Hence a = 0, that is, f (x, y) = xy
2 + g (y). We conclude that such a surface is

invariant under translation of type L(b,0,0), see [7], and therefore

f(x, y) =
xy

2
+ k[ln(y +

√
1 + y2) + y

√
1 + y2]

for some k ∈ R.

2. If fxy(0) = −1
2 , we have that the third partial derivatives of f , evaluated at the

origin, are equal to zero, then the Taylor expansion of f about (0, 0) has the form:

f(x, y) = 2ky − xy
2 + axn + byn + Ψ̃(x, y), where n ≥ 4. In this case

fx = −y
2 + anxn−1 + Ψ̃x

fy = 2k − x
2 + bnyn−1 + Ψ̃y

fxx = an(n− 1)xn−2 + Ψ̃xx

fxy = Ψ̃xy − 1
2

fyy = bn(n− 1)yn−2 + Ψ̃yy.
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Substituting into (16) we obtain

(an(n− 1)xn−2 + Ψ̃xx)[1 + (2k − x+ bnyn−1 + Ψ̃y)
2]

− 2(Ψ̃xy − 1

2
)(2k − x+ bnyn−1 + Ψ̃y)(anx

n−1 + Ψ̃x)

+ (bn(n− 1)yn−2 + Ψ̃yy)[1 + (anxn−1 + Ψ̃x)
2] = 0.

If we analyze the coefficients of xn−2 and yn−2, we conclude that a = b = 0.

Therefore

f(x, y) = 2ky − xy

2
·

This conclude the proof. �

Now we shall prove that every minimal graph with Gauss map of rank one must be

a ruled surface, that is foliated by straight lines. Let S be such a surface, param-

eterized as a graph of a differentiable function f, with f (0, 0) = 0. Since S has

rank one, there exists a curve in S, passing through the origin, such that the unit

normal field along this curve is constant. We indicate this curve by Γ(t), where

Γ(t) = (x(t), y(t), z(t)) = (t, α(t), f(t, α(t)), t ∈ (−ε, ε)

and α(0) = 0. We can assume that the normal field at 0 is given by η(0) =
1√

1+4k2
(0,−2k, 1). Then, along the curve Γ(t), and using (5) we obtain

fx(t) +
α(t)

2
= 0, fy(t)− t

2
= 2k, t ∈ (−ε, ε). (19)

Whence
fxx(t) + α′fxy(t) + α′

2 = 0

fyx(t) + α′fyy(t)− 1
2 = 0.

(20)

We need also the second and third partial derivatives of f evaluated along the curve

Γ (t). From (19)and equations (16) and (18), we obtain the following expressions

for the partial derivatives of f

fxx(t) =
sin θ

2
√
1 + 4k2

, fxy(t) =
cos θ

2
, fyy(t) = −

√
1 + 4k2 sin θ

2
·

Using this partial derivatives and the second equation of (20), we obtain

α′(t) =
cos θ − 1

sin θ
√
1 + 4k2

· (21)
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Now, by differentiating the equations (16) and (18) , with respect to x and y, and

evaluating at (t, α (t)) , we obtain the following system

⎛
⎜⎜⎜⎝

−
√
1+4k2 sin θ

2 − cos θ sin θ
2
√
1+4k2

0

0 −
√
1+4k2 sin θ

2 − cos θ sin θ
2
√
1+4k2

(1 + 4k2) 0 1 0
0 (1 + 4k2) 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

fxxx(t)
fxxy(t)
fxyy(t)
fyyy(t)

⎞
⎟⎟⎠=
⎛
⎜⎜⎝

0
0

k sin θ√
1+4k2

k(1 + cos θ)

⎞
⎟⎟⎠.

Solving this system, we obtain the third partial derivatives of f along the curve

Γ (t)

2fxxx(t) =
k sin θ(1− cos θ)

2(1 + 4k2)3/2
, fxxy(t) =

k sin 2θ

2(1 + 4k2)

fyyy(t) =
k(1 + cos θ)2

2
, fyyx(t) =

k sin θ(1 + cos θ)

2
√
1 + 4k2

·
(22)

We are now ready to prove

Theorem 15. If (x, y, f (x, y)) with (x, y) ∈ Ω ⊂ R
2 is a minimal graph such

that its normal at the origin is η (0) = 1√
1+4k2

(0,−2k, 1) and its Gauss map has
rank one, then it is a ruled surface.

Proof: We shall show that the curve Γ, defined above, must be a straight line. To

do this , we differentiate the third component of Γ, that is

dz

dt
= fx(t) + α′fy(t).

From this expression and (20), we have that
d2z

dt2
= α′′fy(t). By differentiating the

second equation of (20) with respect to t, we obtain

fyxx(t) + 2α′fyyx(t) + (α′)2fyyy(t) + α′′fyy(t) = 0. (23)

Then we have two cases

If fyy (0) = 0, using the proposition (14), we conclude that such a surface is a

ruled surface.

If fyy (0) �= 0 then, fyy (t) �= 0, t ∈ (−ε, ε) By replacing (22) and ( 21) in (23),

we obtain that α′′fyy (t) = 0, t ∈ (−ε, ε). Then α (t) = bt and therefore, from

(19), we conclude that f(t, bt) = 2kbt . This completes the proof. �

The following classification for ruled minimal surfaces in H3 was proved by Bekkar

and Sari, see [3].
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Theorem 16. The ruled minimal surfaces of H3, up isometry, are

1. The plane

2. The hyperbolic paraboloid

3. The helicoid parameterized by⎧⎨
⎩

x(t, s) = s sin t
y(t, s) = s cos t
z(t, s) = ρt, ρ ∈ R− {0}.

4. The surface given by the equation

z =
xy

2
− λ

2

[
y
√

1 + y2 + log
(
y +

√
1 + y2

)]
, λ ∈ R− {0}.

5. The surfaces which are locally the graph of the function z = y
2 (R (x) + x),

where R is a solution of the differential equation

R′′ (4 +R2
)− 2R

(
R′ + 1

) (
R′ + 2

)
= 0.

6. The surfaces which are locally parameterized by⎧⎨
⎩

x(t, s) = t+ su(t)
y(t, s) = s
z(t, s) = a(t)− st

2

where u and a are solutions of the system(
1 + u2 + t2

)
u′′ − (1 + 2u′a′) tu′ = 0(

1 + u2 + t2
)
a′′ − (1 + 2u′a′) (ta′ − u) = 0.

(24)

The above theorem, together with Theorem 15, give us the classification for mini-

mal surfaces in H3 with Gauss map of rank one. In fact, to do this we determine,

among the surfaces given by the above classification, which ones have the rank

equal to one.

It is not difficult to compute, using (18) that the rank of the Gauss map of the

surfaces of items 1 and 3 of the above theorem have rank different from 1 and the

surfaces of items 2 and 4 have rank one.

We shall now study the surface of the item 5, In this case, we have that f (x, y) =
y
2 (R (x) + x). Hence

fxx = R′′, fxy =
1

2

(
R ′ + 1

)
, fyy = 0.
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Substituting into (18), we obtain (R′ + 1)2 = 1. Solving this differential equation

we obtain the following solution

f (x, y) =
y

2
(a− x) .

The isometry L(a,0,0) takes this surface to the parabolic hyperboloid z =
xy

2
·

In the case of the surface of item 6, we parameterized this surface as a graph of a

differential function f, where

f (x, y) = a (t (x, y))− 1

2
yt (x, y) .

First, we compute the following derivatives

tx =
1

1 + yu′
, ty =

−u

1 + yu′

fxx = a′′t2x +
(
a′ +

y

2

)
txx

fxy =
1

2
tx + a′′txty +

(
a′ +

y

2

)
txy

fyy = a′′t2y + ty +
(
a′ +

y

2

)
tyy.

Substituting into (18), we obtain that t2x

[
1

2
−
(
a′ +

y

2

)
u′tx

]2
=

1

4
· Then

(
u′
)2

y2 + 2u′y + 2u′a′ = 0.

Notice that this is a polynomial of second degree with respect to y and its coeffi-

cients depend only on t, so, there must be zero, that is, u′ = 0. Hence u is constant.

By mean a rotation about the z − axis we may take u = 0. By replacing in the

second equation of (24), we obtain(
1 + t2

)
a′′ − ta′ = 0.

The general solution of this equation is

a (t) =
λ

2

[
t
√
1 + t2 + ln

(
t+

√
1 + t2

)]
+ μ

where λ, μ ∈ R. This minimal surface may be expressed as the graph of the func-

tion

f (x, y) =
xy

2
− λ

2

[
y
√

1 + y2 + ln
(
y +

√
1 + y2

)]
.

Therefore we have the following classification for minimal surfaces in H3.



The Gauss Map of Minimal Graphs in the Heisenberg Group 19

Theorem 17. The minimal graphs in H3 with Gauss map of rank one, are

f (x, y) =
xy

2
− k

2

[
y
√

1 + y2 + ln
(
y +

√
1 + y2

)]
where k ∈ R.

To conclude this section we shall present some results about complete minimal

graphs in H3. Firstly, we present one directly consequence of the minimal graph

equation.

Proposition 18. If f (x, y) is a function that satisfies (16), then

fxxfyy − f2
xy ≤ 0.

Proof: Let a = 1 +
(
fy − x

2

)2
, b =

(
fx +

y
2

) (
fy − x

2

)
and c = 1 +

(
fx +

y
2

)2
.

Then using equation (16), we obtain

fxxfyy − f2
xy = −1

a

(
af2

xy − 2bfyyfxy + cf2
yy

)
.

Since a > 0 and ac− b2 = 1+
(
fx +

y
2

)2
+
(
fy − x

2

)2
> 0, the result follows. �

Now we recall the following theorem of Bernstein, see [9] and [12].

Theorem 19. Let f (x, y) be a real-valued function which satisfies the following
conditions

1. f (x, y) ∈ C2
(
R
2
)
.

2. fxxfyy − f2
xy ≤ 0, fxxfyy − f2

xy �= 0.

Then f (x, y) is not bounded.

It follows from the above theorem that a complete minimal graph in H3 cannot be

bounded. More precisely

Proposition 20. Let (x, y, f (x, y)) be a minimal graph in H3, which is defined in
the entire xy − plane and |f (x, y)| ≤ k, for all (x, y), then f is constant.

Proof: Since f is bounded we have, using the Bernstein’s theorem that

fxxfyy − f2
xy ≡ 0.
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It follows from the proof of the proposition (18)

af2
xy + 2bfyyfxy + cf2

yy = 0

where a, b and c are as in such proof. Then fyy = fxy = 0 and, substituting in

minimal graph equation, we obtain that fxx = 0. Therefore, f is constant. �

A consequence of the above proof is that when a rank of the Gauss map of a

complete minimal graph is equal to 1/4w2 where w is like (6), the surface must be

a plane.

Finally, we must mention that Fernadez and Mira gave a classification of the entire

minimal graphs in H3 in terms of the Abresh-Rosenberg holomorphic differential

for minimal surfaces in H3, see [6]. But if we study the images of the Gauss map

of the minimal surfaces given in Examples 6 and 8, we observe that they are quite

different: the plane covers all the upper hemisphere, whereas the other does not. So

we considered of interest to give an explicit classification of all complete minimal

graphs whose Gauss map has rank two, using the image of their corresponding

Gauss maps.
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