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Abstract. Let G be a semi-simple Lie group and π some representation of

G belonging to the discrete series. We give interpretations of the constant

π(g), for g ∈ Z(G), in terms of geometric concepts associated with the flag

manifold M of G. In particular, when G is compact this constant is related

to the action integral around closed curves in M . As a consequence, we

obtain a lower bound for de cardinal of the fundamental group of Ham(M),
the Hamiltonian group of M . We also interpret geometrically the values of

the infinitesimal character of π in terms of quantization operators.

1. Introduction

Given a Lie group G, its coadjoint action on the dual of the Lie algebra of G gives

rise to the coadjoint orbits. On the other hand, associated with G we have the set

of the irreducible unitary representations of G. Thus, the group G has attached a

set of “geometric objects”, the coadjoint orbits, and a set of “algebraic objects”, its

irreducible unitary representations.

The study of the possible relations between the set of the coadjoint orbits of G
and the unitary dual of G, which is the space of the equivalence classes of unitary

irreducible representations, is the aim of the Orbit Method.

The origin of the Orbit Method is the following theorem due to Kirillov [2]

Theorem 1 (Kirillov) . Let G be a nilpotent connected simply connected Lie group.
Then the unitary dual of G is in bijective correspondence with the space of the
coadjoint orbits of G.

Furthermore, Kirillov gave interpretations of various facts relative to representation

theory in terms of the geometry of the coadjoint orbits. For example, if O is the

coadjoint orbit of the element μ in the dual of the Lie algebra of G and π is the
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corresponding representation in the above bijection, then the character χπ of π is

given by an integral on the orbit O

χπ(exp(A)) =

∫
O
e2πiμ(A)d vol

for A ∈ g := Lie(G). In Kirillov’s exposition [4], this equality is called the sixth

rule of the Orbit Method.

The Heisenberg group is nilpotent, connected and simply connected, and thus, it is

an example to which Kirillov’s theorem is applicable. The hypotheses of Kirillov’s

theorem are strong, and the assertion of this theorem is not true if we relax in a

substantial way the hypotheses on the group G. For example, the complementary

series of representations of SL(2,R) are not associated with coadjoint orbits.

The Orbit Method is based on the idea that a bijective map similar to the preceding

one exists for any Lie group, if we modify the domain and the range of the map in

an appropriate way [19–21]. Moreover, the Orbit Method tries to relate geometric

properties of the coadjoint orbit with properties of the corresponding irreducible

representation.

The “philosophical ground” of the Orbit Method is related with the quantization.

Very roughly speaking, symplectic geometry is a mathematical model for classical

mechanics. The phase space of a classical mechanical system is a symplectic man-

ifold. A homogeneous G-manifold can be considered as a classical mechanical

system equipped with a group of symmetries.

On the other hand, Hilbert spaces are reasonable mathematical models for quan-

tum mechanics. Thus, a representation may be regarded as a quantum mechanical

system endowed with a group of symmetries.

Classical and quantum mechanics can be considered as different descriptions of

“the same physical system”. So, for each classical system there should be a cor-

responding quantum system, and theoretically at least, one could construct from

a classical system the respective quantum system. When there is the action of a

group G, this construction, going from the orbit (the homogeneous G-space) to an

irreducible representation is precisely what the Orbit Method asserts should exist.

The mathematical translation of this “philosophical” consideration is implemented

by Geometric Quantization. Below we will recall briefly some points of this theory.

Given a closed symplectic quantizable manifold (N, ω), there exists a complex

line bundle L over N (the prequantum bundle) whose first Chern class is essentially

the cohomology class of ω [23].

Each Hamiltonian vector field X on N has associated a differential operator called

quantization operator QX , which acts on the sections of L. These operators satisfy

Q[X,Y ] = [QX , QY ]
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where the bracket on the right hand side is for the commutator of the correspond-

ing operators. If a Lie group G acts on N as a group of Hamiltonian symplecto-

morhisms, each A ∈ g gives rise to a vector field XA on M and the operators QXA

form a representation of the Lie algebra g.

When the group G is compact and N is a coadjoint orbit of an integral dominant

element of g∗ endowed with the Kirillov symplectic structure, the corresponding

prequantum bundle is G-equivariant. This property allows us to define a repre-

sentation of G on the space of sections of L, in a natural way. The choice of a

subalgebra of g permits us to define polarized sections of L. The restriction of the

above representation to this space of the polarized sections is an irreducible repre-

sentation of G. This is the Borel-Weil theorem regarded from the point of view of

Geometric Quantization.

As we said, not every representation is associated to an orbit. In [17], we have

studied the representations associated to hyperbolic orbits. Here we will consider

a particular type of representations: the discrete series representations, whose def-

inition is shortly reminded here.

Firstly, we will refer to the regular representation. For a Lie group G the left

regular representation is the space L2(G) endowed with the left translation. For

f ∈ L2(G) and g ∈ G, g · f is defined by (g · f)(x) = f(g−1x).

An irreducible unitary representation π of a Lie group G is said to be in the dis-

crete series of G if it can be realized as a direct summand of the left regular rep-

resentation [1]. This is equivalent to the fact that the Plancherel measure for the

decomposition of L2(G) assigns strictly positive mass to the one-point set {π} in

the unitary dual of G (from this property comes the name “discrete” series). For G
compact, every irreducible representation of G belongs to the discrete series.

If a group possesses discrete series representations, then it contains a compact

Cartan subgroup. Kostant and Langlands conjectured the realization of the discrete

series by the L2-cohomology of holomorphic line bundles over the quotient of

the group by the compact Cartan subgroup. This conjecture has been proved by

Wilfried Schmid [12, 13].

Objectives of the Paper
In the spirit of the Orbit Method and using the geometric construction of Schmid,

we will describe here interpretations of some invariants of discrete series represen-

tations in terms of geometric concepts relative to the corresponding orbits.

Let G be a linear semi-simple group, T a compact Cartan subgroup of G and π a

representation in the discrete series of G. We will consider the following points



92 Andrés Viña

1) If g1 belongs to the centre of G, then the corresponding operator π(g1) com-

mutes with the operators π(h) with h ∈ G. Schur’s lemma asserts that π(g1) is

a scalar operator, a multiple of the identity. That is, π(g1) is κ times the identity.

Thus, to each element in the centre of G the representation π assigns a complex

constant κ ∈ U(1). We will give a geometric interpretation of the invariants κ
in terms of objects related with manifold G/T , which is an orbit of the G-action

in the flag variety of the complexification gC of g. When G is compact, we will

express κ in terms of the symplectic action around closed curves in G/T . This is

the first purpose of the paper.

2) On the other hand, the differential representation π ′ of π is a representation

of the Lie algebra of G, which gives rise to an irreducible representation of the

universal enveloping algebra U(gC) of gC. The simplest nontrivial invariant of π′

is its infinitesimal character χ, which gives the action of the center of U(gC). The

second purpose of this article is to express the infinitesimal character χ in terms

of the geometry of M = G/T . More concretely, we relate the invariant χ with

“quantization operators”, which act on sections of a vector bundle over G/T .

3) Finally, we use the above results to give a lower bound for the cardinal of the

homotopy group of the Hamiltonian group of the orbit M .

For a precise formulation of our results, we need to review briefly, following

Schmid, the construction of the representation associated to an element φ in the

weight lattice of t.

2. Geometrical Framework

Let G be a linear semi-simple Lie group, T a compact maximal Cartan subgroup

and K a maximal compact subgroup of G containing T . By Δ we denote a positive

root system of tC = t⊗ C. We set

u =
⊕
ν∈Δ

g
−ν , ū =

⊕
ν∈Δ

g
ν

g
ν being the root space of ν. A root ν is said to be compact if the corresponding

root space is contained in the Lie algebra kC = k ⊗ C. We will say that it is

noncompact if gν is orthogonal to kC with respect to the Killing form. We denote

by b the Borel subalgebra tC ⊕ u.

As usual, ρ stands for the half the sum of positive roots. Let φ be an element of

the weight lattice of t. Denoting by ( . , . ) the bilinear form on t
∗ induced by the

Killing form, we put q for the integer obtained as the sum of the cardinals of two
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sets of positive roots

q :=#{ ν ∈ Δ ; ν compact, (φ+ ρ, ν) < 0}

+#{ν ∈ Δ ; ν noncompact, (φ+ ρ, ν) > 0}.

In particular, when G is compact and φ is a dominant weight, q = 0.

By B we denote the Borel subgroup of GC, determined by the (T,Δ). The G-

orbit of b in the flag manifold GC/B is a complex submanifold that is isomorphic

to G/T and will be denoted by M . The weight φ induces a character Φ on B,

which in turn allows us to define the holomorphic line bundle V = GC ×B C over

the flag manifold GC/B

V = {(g, z) ; g ∈ GC, z ∈ C}/ ∼

where (g, z) ∼ (gb, Φ(b−1)z), with b ∈ B.

On the space of compactly supported V-valued (0, ∗)-forms on M , we have the

Dolbeault operator ∂̄ : A0,∗(V) → A0,∗+1(V).

Furthermore, the group G acts on the space A0,i(V) by translation and the action

commutes with the operator ∂̄. By means of G-invariant Hermitian metrics on

M and on V , we define the operator ∂̄∗, the formal adjoint of ∂̄. The space of

square integrable, C∞, V-valued (0, q)-forms on M which belong to the intersec-

tion ker(∂̄) ∩ ker(∂̄∗) is denoted by H.

According to the Langlands conjecture, if φ+ρ is regular, the action of G on H is an

irreducible unitary representation π, equivalent to a discrete series representation

[1]. When G is compact, the integer q = 0, as we said, and H is precisely the

representation given by Borel-Weil theorem.

Note that every σ ∈ H is, in fact, a ∂̄-closed smooth Dolbeault form, but H can

not be identified with the cohomology Hq(M, O(V)), since M is not compact, in

general.

Following the pattern of Geometric Quantization, it is convenient to consider the

space H as a set of sections of an appropriate vector bundle. For this, we put

W := C ⊗ (
∧q

u)∗ and we consider the representation Ψ of T , tensor product of

Φ by the q-exterior product of Ad∗, i.e., Ψ is a representation of T on the vector

space W . We denote by P the GL(W )-principal bundle over M determined by

Ψ, and by W the associated vector bundle with fiber W (defined by the standard

representation of GL(W )). That is

P = G×Ψ GL(W ) → M = G/T

and

W : = G×Ψ W = {(g, v) ∈ G×W}/ ∼
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with (g, v) � (gl,Ψ(l−1)v) and l ∈ T. Thus, the vector space H is contained in

the space Γ(W) of sections of W .

On P it is possible to define a G-invariant connection [18] and the corresponding

covariant derivative in W will be denoted ∇.

The bundles P and W will be the geometric framework for developments presented

below. The vector bundle W will play a similar role as the prequantum bundle in

Geometric Quantization.

Taking into account the natural actions of G on W and on G/T , one can define the

following representation of G on the space Γ(W)

(g · σ)(x) = g(σ(g−1x))

for σ ∈ Γ(W) and x ∈ M = G/T . Its restriction to the subspace H of Γ(W) is

the discrete series representation π.

The space of sections Γ(W) can be identified with the space of Ψ-equivariant

functions, i.e., functions s : G → W satisfying s(gl) = Ψ(l−1)s(g), for all

l ∈ T and all g ∈ G. A section σ is related with a Ψ-equivariant function s by the

formula σ(gT ) = 〈g, s(g)〉, where 〈g, v〉 denotes the element in W determined

by the pair (g, v) ∈ G×W . It easy to prove that the representation π, in terms of

Ψ-equivariant functions, is given by

π(g)(s) = s ◦ Lg−1

where L is the left translation in G.

3. Differential Representation and Quantization Operators

Throughout, we will assume that the element φ + ρ ∈ it∗ is regular. We will

denote by HK the space of K-finite vectors of H, namely vectors in H which

belong to a finite-dimensional K-invariant subspace. In other words, HK is the

Harish-Chandra module of H [14]. The differential representation, on the space

HK , of the above irreducible unitary representation π will be denoted by π ′.
The decomposition of gC as direct sum of root spaces

gC = tC ⊕
⊕
ν∈Δ

(gν ⊕ g
−ν)

induces a direct sum decomposition for g of the form

g = t⊕ l.
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The projection of an element C of g on t will be denoted C0. Thus, given A ∈ g,

we can define

hA : G → gl(W ) with hA(g) = Ψ′((g−1 ·A)0) (1)

where the dot means adjoint action. By means of hA we define the endomorphism

FA of the fibre bundle W

FA : W → W with FA(〈g, v〉) = 〈g, hA(g)(v)〉.

For A ∈ g, we denote by XA the vector field on M determined by A, and we define

the following first order differential operator, which acts on the space of sections

Γ(W)
QA := −∇XA

+ FA.

When G is a compact group and φ is a dominant weight, then q = 0, W is a

prequantum bundle and QA is the respective quantization operator associated with

the vector field XA in Geometric Quantization [15].

By abusing of language, the operators QA will be called “quantization operators”,

although G is not necessarily compact. The following theorem expresses the dif-

ferential representation π′ as an action on geometric objects (see [17,18] for proof)

Theorem 2. The map A 
→ QA defines a representation of the Lie algebra g on
the space HK , which is equivalent to π′.

The universal enveloping algebra U(gC) is defined as the quotient of the tensor

algebra T (gC) by the two-sided ideal generated by the set

{X ⊗ Y − Y ⊗X − [X,Y ] ; X,Y ∈ gC}.

Each representation of g, in particular π′, determines a representation of the as-

sociative algebra U(gC). The elements of the centre of the universal enveloping

algebra play an important role in representation theory (among the elements of

degree two in the centre is the Casimir element) [5, 6]. As a consequence of the

generalization of Schur’s lemma due to Dixmier, it turns out that the centre Z(gC)
of U(gC) acts by scalars in the representation induced by π′. The resulting homo-

morphism

χ : Z(gC) → C

is called an infinitesimal character of the U(gC)-module HK .

Let {C1, . . . , Cr} be a basis of tC and Eν a basis of gν . Each element J ∈ Z(gC)
is a polynomial p(Ci, Eν) in the variables Ci and Eν . One can prove the following

theorem [17, 18].
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Theorem 3. The differential operator p(QCi
, QEν ), obtained via substituting in

the polynomial p the corresponding “quantization operators”, is the scalar one
defined by the constant χ(J), which acts on the space HK .

4. Invariants Defined by Schur’s Lemma

Given an element g1 in the center of G, by Schur’s lemma it is known that

π(g1) = κ IdH

κ being a complex number of modulus one.

To know the action of π(g1), we will integrate π′ along a curve in G with initial

point at the identity element and final point at g1. In this way, we will give two

geometric interpretations of the invariant κ associated with π

i) in terms of “evolution equations” for elements in H, equations generated by

families of “quantization operators”

ii) as a gauge transformation of the fibre bundle P , which is the time-one map

of a flow in P that preserves the connection.

For the explanation of i) and ii) we need to introduce some notations. Henceforth,

{gt ; t ∈ [0, 1]} stands for a smooth curve in G with the initial point at e. For

brevity, such a curve will be called a path in G.

Given the path {gt}, we denote by {At} ⊂ g the corresponding velocity curve,

that is,

At = ġtg
−1
t

which in turn determines the “quantization operators” QAt . Furthermore, through

the G-action on M , the path gt defines an isotopy of M = G/T , which will be

denoted by {ϕt}t∈[0, 1], i.e.,

ϕt(gT ) = gtgT.

Let {gt} be a path in G and σ a section of W , we can consider the set of sections

σt of W determined by the following “evolution equations”

dσt
dt

= QAt(σt), σ0 = σ. (2)

When g1 belongs to Z(G), the center of G, the family {ϕt} is a loop of diffeomor-

phisms of M , and one has the following theorem [17, 18]
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Theorem 4. If g1 ∈ Z(G), then σ1 = κσ, for any σ ∈ H.

That is, in the evolution defined by (2), the section σ takes at the instant t = 1 the

initial value multiplied by κ.

On the other hand, for each A ∈ g, the natural left G-action on the principal

bundle P determines a vector field YA on P . Hence, a path {gt} in G defines

the time-dependent vector field YAt , which in turn determines a flow Ht on P .

The following theorem gives other interpretation of κ, now in the context of the

principal bundle P [17, 18].

Theorem 5. If g1 ∈ Z(G), the time-one map H1 of the flow Ht is the gauge
transformation on P given by H1(p) = pκ.

That is, the flow along the integral curves of YAt moves a given point in such a way

that at the instant t = 1, the transported point reaches the initial fibre in a position

that is the initial one multiplied by κ.

The constant κ also appears in the evolution of W -valued GL(W )-equivariant

functions on P , as the following theorem shows [17, 18]

Theorem 6. If ft : P → W is the family of GL(W )-equivariant maps solutions
of

d ft
d t

= −YAt(ft)

with f0 = f (an arbitrary GL(W )-equivariant map), then f1 = κf.

When G is compact and φ is a regular dominant weight, the representation π is the

one provided by the Borel-Weil Theorem. In this case M is the flag variety of gC,

a compact manifold diffeomorphic to the coadjoint orbit of φ ∈ g
∗. On M we will

consider the symplectic Kirillov structure � [3]. If {gt} is a path with g1 ∈ Z(G),
then the respective isotopy {ϕt} is a loop in Ham(M, �), the Hamiltonian group

[10] of (M, �), with hAt the corresponding time-dependent Hamiltonian. Given

an arbitrary point x0 ∈ M , the closed curve {ϕt(x0)}t, obtained by evaluation of

the loop ϕt at the point x0, is nullhomologous [8]. The symplectic action around

the loop {ϕt} is the element of R/Z defined by

SA(ϕ) :=

∫
S

� +

∫ 1

0
hAt(ϕt(x0)) dt

S being a two-chain whose boundary is {ϕt(x0)}t [16, 22].

From Theorem 3, one can deduce the following result [17, 18]
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Theorem 7. If G is compact, φ is a regular dominant weight and g1 ∈ Z(G), then
κ is the exponential of the symplectic action around the Hamiltonian loop ϕt. That
is

κ = exp
(
SA(ϕ)

)
.

5. Lower Bounds for the Cardinal of the Fundamental Group
of Some Subgroups of Diff(M)

We will consider subalgebras X of X(M) (the Lie algebra consisting of the vector

fields on M ), such that its elements admit lifts to GL(W )-invariant vector fields

on P that are infinitesimal symmetries of the connection. The precise properties

which characterize these algebras are written below (see [18] for more detailed

explanations).

By X we denote any Lie subalgebra of X(M) satisfying the following conditions:

1) There is a continuous R-linear map

Z ∈ X 
→ U(Z) ∈ X(P)

such that Z�, the horizontal lift of Z, is the horizontal component of U(Z).

2) For each Z ∈ X, there is a C∞ map a(Z) : P → gl(W ) such that

2a) a(Z)(pβ) = β−1a(Z)(p)β, for all β ∈ GL(W ), p ∈ P. That is, a(Z) is a

pseudo-tensorial function on P of type Ad [7].

2b) U(Z) = Z� + Va(Z), where Va(Z) is the vertical vector field on P defined

by a(Z).

2c) Da(Z) = −K(Z�, . ), where D is the covariant derivative and K is the

curvature of the connection on P .

2d) The map Z 
→ a(Z) is R-linear and continuous.

Example 8. For XC , with C ∈ g we define U(XC) := YC . We denote by [g, α]
the element of P determined by (g, α) ∈ G×GL(W ), and set

a(XC)([g, α]) := α−1hC(g)α

where hC is the map defined in 1). The Lie algebra X := {XC ; C ∈ g}, with
these choices for U(XC) and a(XC), satisfies the conditions 1)-2d).
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Let {Zt}t∈[0, 1] be a time-dependent vector field on M , with Zt ∈ X. Let {ψt} be

the isotopy of M defined by

dψt

dt
= Zt ◦ ψt, ψ0 = IdM .

We have the time-dependent vector field Ut := U(Zt) on P and the corresponding

flow Ht

dHt

dt
= Ut ◦Ht, H0 = IdP .

It is not hard to prove that Ht is a diffeomorphism of P over ψt which preserves

the connection (see [18]).

In particular, let {gt} be a path in G and {At} the corresponding velocity curve,

such that XAt ∈ X. This family of vector fields gives rise to the time-dependent

vector field on P , U(XAt) = YAt , which in turn defines a flow Ht on P . If g1 is an

element of the center of G, then {ϕt} is a loop and H1 is a gauge transformation

of P . Furthermore, by Theorem 5, for all p ∈ P , H1(p) = pκ, with κ = Φ(g1).

We can consider the T -principal bundle T → G → M = G/T, endowed with the

invariant connection [7, page 103] determined by the splitting g = t⊕ l introduced

in Section 3. For each g1 ∈ Z(G), there is a path in G which is horizontal with

respect to this connection and with endpoint at g1 (see [18]). These particular paths

will be considered in the following paragraph.

Let G be a connected Lie subgroup of Diff(M) such that, it contains the isotopies

associated with paths in G, and Lie(G) is subalgebra of some algebra X. Let gt
and g̃t be paths in G with final point in Z(G) and horizontal with respect the T -

invariant connection above mentioned. These paths define the loops ϕ and ϕ̃ in

the group G, respectively. Let {ξs}s be a homotopy in G between the loops ϕ and

ϕ̃. Using properties of the bundle isomorphisms of P Ht, H̃t and H
s
t , (determined

ϕ, ϕ̃ and ξs, respectively) one can prove that Φ(g1) = Φ(g̃1). In other words, we

have the following theorem (see [18])

Theorem 9. Let G be a connected Lie subgroup of Diff(M), such that

i) it contains the isotopies associated with paths in G.

ii) Lie(G) is subalgebra of some algebra X.

Then

#(π1(G)) ≥ #{Φ(g) ; g ∈ Z(G)}.
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If G is compact, φ is a regular dominant weight and G is any subgroup of the

Hamiltonian group Ham(M,�), then Lie(G) satisfies condition ii) in the state-

ment of theorem (see [18]). Thus, we have the following corollary

Corollary 10. If G is compact, φ is a regular dominant weight and G is any con-
nected subgroup of Ham(M,�) that contains G, then

#{Φ(g) ; g ∈ Z(G)}

is a lower bound of #(π1(G)).

Example 11. For G = SU(2), the corresponding flag manifold is CP
1. On the

other hand, let φ be the weight of T = U(1) defined on t by

φ(diag(ai, −ai)) = a.

The corresponding Kirillov symplectic structure � is equal to −2πωFS , where
ωFS is de Fubini-Study symplectic form. Thus

Ham(CP1, �) � Ham(CP1, ωFS).

By Corollary 10

#{π1(Ham(CP1, �))} ≥ 2.

The homotopy type of the Hamiltonian groups Ham(N,Ω) is known only for some
symplectic manifolds [9]. However, for the simplest case of CP1 endowed with the
Fubini-Study form, one has see page 52 of [11]

π1(Ham(CP1, ωFS)) � Z/2Z.

Thus, in this particular case, the lower bound given in Corollary 10 is precisely the
cardinal of the fundamental group of the Hamiltonian group.
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