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Abstract. This review reports some theoretical results on the geometry

of membranes. The governing equations to describe equilibrium configu-

rations of lipid vesicles, lipid membranes with free edges, and chiral lipid

membranes are derived from the variation of free energies of these struc-

tures. Some analytic solutions to these equations and their corresponding

configurations are also shown.
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1. Introduction

Membranes are very crucial to living organisms. They are the barriers of cells and

ensure cells to be relatively isolated individuals but still able to exchange some ma-

terials between the inner sides and outer surroundings through specific ways due

to the fancy properties of membranes. Membranes usually consist of lipid bilay-

ers mosaicks built of various kinds of proteins. They are also the key factors to

determine shapes of some kinds cells. In particular, the biconcave discoidal shape

of the red blood cells is regarded as a result of minimization of the free energy of

membranes under the area and volume constraints [4, 11] because red blood cells

have no complex inner structures. The equilibrium configurations of membranes

have attracted much attention of mathematicians and physicists [19,32,34,38,46].

A membrane is thought of as a two-dimensional (2D) smooth surface in the Eu-

clidean space E
3 because its thickness is much smaller than its lateral dimension.

The first step to investigate configurations of membranes is the construction of a

free energy functional by consideration of symmetry. Then the governing equa-

tions to describe the equilibrium configurations can be derived by variation of the

free energy with some constraints. The next task is seeking for solutions to satisfy

the governing equations and comparing the results with the typical experiments.
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In this review, we will present some purely theoretical results on geometry of mem-

branes. For simplicity, we merely focus on structures of lipid membranes and

select only the theoretical problems that both physicists and mathematicians are

interested in. The governing equations to describe equilibrium configurations of

lipid structures are derived. Several solutions to these equations and their corre-

sponding geometries are also investigated. The rest of this review is organized as

follows.

In Section 2, we give a brief introduction to preliminary in mathematics and physics

including surface theory and variational method based on moving frame, and Hel-

frich’s model of lipid bilayer. In Section 3, we derive a shape equation that de-

scribes equilibrium configurations of lipid vesicles - closed lipid bilayers. Then

we discuss some analytic solutions and their corresponding configurations which

include surfaces of constant mean curvature, torus, biconcave discoid, cylinder-like

vesicles, and so on. In Section 4, we investigate a lipid membrane with free edge(s).

The shape equation and boundary conditions describing equilibrium configurations

of the membrane are derived. Then we discuss the compatibility between the shape

equation and boundary conditions, and verify five theorems of non-existence. In

Section 5, we construct the free energy functional of chiral lipid membranes in

terms of symmetric argument and then derive the governing equations to describe

their equilibrium configurations by variational method. Some analytic solutions

and their corresponding configurations are also shown. In the last section, we give

a brief summary and a list of related open questions.

2. Preliminaries in Mathematics and Physics

In order to continue our discussion, we first introduce several key mathematical

and physical concepts and tools that will be used in the following sections.

2.1. Surface Theory Based on Moving Frame

2.1.1. Moving Frame Method

A membrane can be regarded as a smooth orientable surface embedded in E
3.

The properties of the surface such as its mean and Gaussian curvatures determine

the shape of the membrane. As shown in Fig. 1, each point on the surface M
can be represented by a position vector r. At that point we construct three unit

orthonormal vectors e1, e2, and e3 with e3 being the normal vector to the surface

M at the point r. The set of right-handed orthonormal triple-vectors {e1, e2, e3} is
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called a frame at the point r. Different points on the surface have different vectors

r, e1, e2, and e3, thus the set {r, e1, e2, e3} is called a moving frame.

Figure 1. The moving frame on a surface.

Let us imagine a mass point that moves from position r to its neighbor position r
′

on the surface. The length of the path is denoted by Δs. Then we can define the

differentiation of the frame as

dr = lim
Δs→0

(r′ − r) = ω1e1 + ω2e2 (1)

and

dei = lim
Δs→0

(e′i − ei) = ωijej , i = 1, 2, 3 (2)

where ω1, ω2, and ωij (i, j = 1, 2, 3) are one forms, and ‘d’ is the exterior differ-

ential operator [7]. The one form ωij is anti-symmetric with respect to the indices

i and j, that is ωij = −ωji. Here and in the following contents without special

statements, the repeated subscripts represent summation from 1 to 3. Additionally,

the structure equations of the surface can be expressed as [7]

dω1 = ω12 ∧ ω2, dω2 = ω21 ∧ ω1, dωij = ωik ∧ ωkj , i, j = 1, 2, 3 (3)

and (
ω13

ω23

)
=

(
a b
b c

)(
ω1

ω2

)
(4)

where ‘∧’ denotes the wedge product of the two differential forms. The matrix(
a b
b c

)
is the representation matrix of the curvature tensor. Its trace and determi-

nant are two invariants under the coordinate rotation around e3 which are denoted
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respectively by

2H = a+ c and K = ac− b2. (5)

H and K are called the mean curvature and Gaussian curvature, respectively. They

determine the shape of the surface and can be expressed as 2H = −(1/R1+1/R2)
and K = R−1

1 R−1
2 via the two principal curvature radii R1 and R2 at each point

on the surface.

Now consider a curve on the surface M. Its tangent vector is denoted by t. Let φ
be the angle between t and e1 at the same point. Then the geodesic curvature kg,

the geodesic torsion τg, and the normal curvature kn along the direction of t can

be expressed as [42]

kg = (dφ+ ω12)/ds

τg = b cos 2φ+ (c− a) cosφ sinφ (6)

kn = a cos2 φ+ 2b cosφ sinφ+ c sin2 φ

where ds is the arc length along t. If t aligns with e1, then φ = 0, kg = ω12/ds,

τg = b, and kn = a. In the principal frame, the geodesic torsion and normal

curvature can be expressed as

kn = −
cos2 φ

R1
−

sin2 φ

R2
, τg = (1/R1 − 1/R2) cosφ sinφ. (7)

2.1.2. Stokes’ Theorem and Related Identities

Stokes’ theorem is a crucial theorem in differential geometry, which reads∮
∂D

ω =

∫
D

dω (8)

where D is a domain with boundary ∂D and ω is a differential form on ∂D. In

particular,
∫
D
dω = 0 for a closed domain D.

From Stokes’ theorem, we can derive several identities listed as follows [42, 46].

i) For smooth functions f and h on 2D subdomain D ⊆ M∫
D

(fd∗dh− hd∗df) =

∮
∂D

(f∗dh− h∗df)∫
D

(fd∗d̃h− hd∗d̃f) =

∮
∂D

(f∗d̃h− h∗d̃f) (9)∫
D

(fd∗̃d̃h− hd∗̃d̃f) =

∮
∂D

(f ∗̃d̃h− h∗̃d̃f)
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where ∗ is Hodge star operator satisfying ∗ω1 = ω2 and ∗ω2 = −ω1. Here d̃
and ∗̃ are generalized differential operator and generalized Hodge star which

satisfy d̃f = f1ω13+f2ω23 and ∗̃d̃f = f1ω23−f2ω13 if df = f1ω1+f2ω2

[42, 43].

ii) If u and v are two vector fields defined on 2D subdomain D ⊆ M, then [44]∫
D

(u · d∗dv − v · d∗du) =

∮
∂D

(u · ∗dv − v · ∗du)∫
D

(u · d∗d̃v − v · d∗d̃u) =

∮
∂D

(u · ∗d̃v − v · ∗d̃u) (10)∫
D

(u · d∗̃d̃v − v · d∗̃d̃u) =

∮
∂D

(u · ∗̃d̃v − v · ∗̃d̃u)

where the ‘dot’ represents the inner product of vectors. For simplicity, equa-

tions (9) and (10) are still called Stokes’ theorem in this review. They are

widely used in the variational process.

Additionally, we can also define the gradient, curl, divergent, Laplace operators,

etc. on the surface in terms of the differential operators and Hodge stars. They are

summarized as follows [45, 46]

(∇× u)dA = d(u · dr), (∇ · u)dA = d(∗u · dr), ∇f · dr = df

(∇̃ · u)dA = d(∗̃u · d̃r), (∇̄ · u)dA = d(∗u · d̃r), ∇̃f · dr = d̃f

(∇2f)dA = d ∗ df, (∇ · ∇̄f)dA = d ∗ d̃f, S · dr = −ω12

(u · ∇f)dA = u · dr ∧ ∗df, (∇ · ∇̃f)dA = d∗̃d̃f

(u · ∇̃f)dA = u · dr ∧ ∗̃d̃f, (u · ∇̄f)dA = u · dr ∧ ∗d̃f

(∇2
u)dA = d ∗ du, (∇u)· dr = du

(∇u:∇v)dA=du∧̇dv, (∇ · S)dA = −d ∗ ω12

(11)

where dA = ω1∧ω2 and S are the area element and spin connection of the surface,

respectively. And ∧̇ denotes the simultaneous calculations of the dot and wedge

products.

2.2. Helfrich’s Model

In 1973, Helfrich proposed a spontaneous curvature model to describe the free

energy of lipid membranes by analogy with a bent box of liquid crystal in Smectic
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A phase [11]. The free energy is in fact a functional defined in the space of shapes

of membranes, which reads

FH =

∫
M

[
kc
2
(2H + Ih)2 + k̄K

]
dA (12)

where M, H , and K represent the membrane surface, mean curvature, and Gaus-

sian curvature, respectively. The constants kc and k̄ are two bending moduli. The

former should be positive, while the latter can be negative or positive for lipid

membranes. The real constant Ih is called spontaneous curvature, which reflects

the asymmetrical chemical or physical factors between two leaves of lipid bilay-

ers.

On the other hand, the spontaneous curvature model can also be obtained from

symmetric argument. A lipid membrane can be locally regarded as 2D isotropic

elastic entity. Thus the local free energy density f should be invariant under ro-

tational transformation around the normal direction of the membrane surface. In

other words, it should be a function of H and K because H and K are the funda-

mental invariants of the surface under rotational transformation. Up to the second

order terms of curvatures, it can be expanded as

fc = A0 +A1H +A2H
2 +A3K (13)

which can be rewritten as

fc =
kc
2
(2H + Ih)2 + k̄K (14)

by omitting an unimportant constant. This is nothing else than the integrand in

equation (12). Therefore, the spontaneous curvature model is of general signif-

icance not only for lipid membranes, but also for other membranes consisting

of isotropic materials. The following discussions are mainly based on Helfrich’s

spontaneous curvature model.

2.3. Variational Method Based on Moving Frame

To obtain governing equations that describe equilibrium configurations of lipid

membranes, we need to minimize the free energy. That is, we should calculate

the variation of functionals defined in the space of shapes of membranes. In this

space, each shape might be expressed as a function, but the defining domain is not

a fixed planar domain. It is difficult to deal with this case by using the traditional

variational calculus. Now we will introduce the variational method based on the

moving frame developed by the present author and Ou-Yang [41, 42, 46], which is

capable to deal with variational problems on surfaces.
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Any infinitesimal deformation of a surface can be achieved by a displacement vec-

tor

δr ≡ v = Ωiei (15)

at each point on the surface, where δ can be understood as a variational operator.

The frame is also changed because of the deformation of the surface, which is

denoted as

δei = Ωijej , i = 1, 2, 3 (16)

where Ωij = −Ωji (i, j = 1, 2, 3) corresponds to the rotation of the frame due to

the deformation of the surface. From the general identities δdr = dδr, δdej =
dδej , and equations (1)–(4), we can derive

δω1 = dv · e1 − ω2Ω21 = dΩ1 +Ω2ω21 +Ω3ω31 − ω2Ω21

δω2 = dv · e2 − ω1Ω12 = dΩ2 +Ω1ω12 +Ω3ω32 − ω1Ω12
(17)

δωij = dΩij +Ωilωlj − ωilΩlj

dv · e3 = dΩ3 +Ω1ω13 +Ω2ω23 = Ω13ω1 +Ω23ω2.

These equations are the essential ingredients of the variational method based on

the moving frame. With them as well as equations (4) and (5), we can easily derive

δdA = (divv − 2HΩ3)dA

δ(2H) = [∇2 + (4H2 − 2K)]Ω3 +∇(2H) · v (18)

δK = ∇ · ∇̃Ω3 + 2KHΩ3 +∇K · v.

Using the above equations (3)-(6), (9)-(11), (17) and (18), we can deal with almost

all variational problems on surfaces.

3. Lipid Vesicles

Most of lipid molecules are amphiphiles with a hydrophilic head group and two

hydrophobic hydrocarbon tails. When a quantity of lipid molecules disperse in

water, they will assemble themselves into a bilayer vesicle as depicted in Fig. 2

due to hydrophobic forces. In this section, we will theoretically understand various

configurations of lipid vesicles.

3.1. Shape Equation to Describe Equilibrium Configurations

A lipid vesicle can be represented as a closed surface M. Its equilibrium shape is

determined by minimizing Helfrich’s free energy (12) under the constraints of con-

stant area and volume because experiments reveal that the area of lipid membranes
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Figure 2. A cartoon of lipid vesicle.

are almost incompressible and the membranes are impermeable for the solutions in

both sides of the membranes. Thus we can introduce two Lagrange multipliers λ
and p to replace these two constraints, and then minimize the following functional

F =

∫
M

[
kc
2
(2H + Ih)2 + k̄K

]
dA+ λA+ pV (19)

where M, A and V represent the membrane surface, total area of the vesicle and

volume enclosed by the vesicle. The multipliers λ and p can also be understood as

the apparent surface tension and osmotic pressure of the lipid vesicle.

The Euler-Lagrange equation for the functional (19) can be derived by using the

variational method presented in Section 2, which reads [27, 28, 42]

p̃− 2λ̃H + (2H + Ih)(2H2 − IhH − 2K) + 2∇2H = 0 (20)

with reduced parameters p̃ = p/kc and λ̃ = λ/kc. This formula is called the

shape equation because it describes the equilibrium shapes of lipid vesicles and

represents the force balance along the normal direction of the membrane surfaces.

Figure 3. The generation curve for an axisymmetric vesicle.
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Now let us consider an axisymmetric vesicle generated by a planar curve shown in

Fig. 3. Rotate the curve about the z− axis and then mirror with respect to the hori-

zontal plane. Here ρ is the revolving radius, and ψ is the angle between the tangent

of the curve and the horizontal plane. That is, dz/dρ = tanψ. Through simple

calculations, we can obtain −2H = h ≡ sinψ/ρ+(sinψ)′, K = sinψ(sinψ)′/ρ,

and ∇2(2H) = −(cosψ/ρ)(ρ cosψh′)′, where the ‘prime’ represents the deriva-

tive with respect to ρ. Substituting these relations into equation (20), we derive

(h− c0)

(
h2

2
+

c0h

2
− 2K

)
− p̃− λ̃h+

cosψ

ρ
(ρ cosψh′)′ = 0. (21)

The equivalent form of this equation is first derived by Hu and Ou-Yang [14]. The

shape equation (21) of axisymmetric vesicles is a third-order differential equation.

Following Zheng and Liu’s work [55], we can transform it into a second order

differential equation

cosψh′ + (h− c0) sinψψ
′ − λ̃tanψ +

2η0 − p̃ρ2

2ρ cosψ
−

tanψ

2
(h− c0)

2 = 0 (22)

where η0 is the integration constant. It is found that the shape equation of axisym-

metric vesicles obtained by Hu and Ou-Yang reduces into that derived by Seifert et
al. [37] when η0 = 0 in equation (22) or for vesicles with spherical topology free

of singular points [33, 55].

3.2. Analytic Solutions and Corresponding Configurations

Now we will show several analytic solutions to the shape equations (20) or (22)

of lipid vesicles that we have known till now. They correspond to the surfaces

of constant mean curvature, torus, biconcave discoid, and so on. Most of these

solutions are found by Ou-Yang and his coworkers. We will see that only sphere,

torus, and biconcave discoid can correspond to lipid vesicles. We also recommend

the reader to note the classic paper by Konopelchenko [17] who expressed equation

(20) in terms of the inverse mean curvature and density of squared mean curvature,

and then found a broad variety of its solutions and corresponding possible shapes.

3.2.1. Surfaces of Constant Mean Curvature

Obviously, surfaces of constant mean curvature (including sphere, cylinder, and

unduloid shown in Fig. 4) can satisfy the shape equation. First, let us consider a

spherical surface with radius R. Then H = −1/R and K = 1/R2. Substituting

them into equation (20), we derive

p̃R2 + 2λ̃R− Ih(2− IhR) = 0. (23)
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This equation gives the relation between the sphere radius R, spontaneous curva-

ture Ih, reduced osmotic pressure p̃, and reduced surface tension λ̃.

Figure 4. Surfaces of constant mean curvature: sphere (left), cylinder (mid-

dle), and unduloid (right).

Next, H = −1/(2R) and K = 0 for a cylindrical surface with radius R. Then the

shape equation (20) requires

2p̃R3 + 2λ̃R2 − 1 + Ih2R2 = 0. (24)

For other surfaces of constant mean curvature such as unduloid, H is a constant

but K is not a constant [20]. Via the shape equation (20), we obtain

H = −Ih/2 (25)

and p̃ = −λ̃Ih.

Note that cylindrical surface and unduloid are in fact not closed surfaces. Alexan-

drov proved that “an embedded surface (no self-intersection) with constant mean

curvature in E
3 must be a spherical surface” [1]. Thus we can only observe one

kind of vesicles of constant mean curvature - spheres.

3.2.2. Torus

As shown in Fig. 5, a torus is a surface of revolution generated by a circle with

radius r rotated about an axis in the same plane of the circle. The revolving

radius R should be larger than r. The torus can be expressed in vector form

{(R + r cosϕ) cos θ, (R + r cosϕ) sin θ, r sinϕ}. Through simple calculations,

we have 2H = −(R+ 2r cosϕ)/r(R+ r cosϕ) and K = cosϕ/r(R+ r cosϕ).
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Substituting them into equation (20), we derive

[(2Ih2r2 − 4Ihr+4λ̃r2 + 2p̃r3)/ν3] cos3 ϕ

+[(5Ih2r2 − 8Ihr + 10λ̃r2 + 6p̃r3)/ν2] cos2 ϕ
(26)

+[(4Ih2r2 − 4Ihr + 8λ̃r2 + 6p̃r3)/ν] cosϕ

+2/ν2 + (Ih2r2 − 1) + 2(p̃r + λ̃)r2 = 0

with ν = R/r. If ν is finite, then equation (26) holds if and only if the coefficients

of {1, cosϕ, cos2 ϕ, cos3 ϕ} vanish. It follows that 2λ̃r = c0(4−c0r), p̃r
2 = −2c0

and

ν = R/r =
√
2. (27)

That is, there exists a lipid torus with the ratio of its two generation radii being√
2 (called

√
2 torus by Ou-Yang [29]), which was confirmed in the experiment

[21]. It is also found that nonaxisymmetric tori [36] constructed from conformal

transformations of
√
2 torus also satisfy the shape equation.

Figure 5. Torus (left) and its generation curve (right).

To check the consistency, we need also to verify that the above toroidal solution

indeed satisfy shape equation (22) of axisymmetric vesicles. It is not hard to see

that
√
2 torus can be generated from a curve defined by

sinψ = (p̃/r)±
√
2. (28)

Substituting it into equation (22), we arrive at 2λ̃r = c0(4− c0r), p̃r
2 = −2c0 and

η0 = −1/r �= 0.

3.2.3. Biconcave Discoid

For 0 < IhρB < e, the parameter equations

sinψ = −Ihρ ln(ρ/ρB)

z = z0 +
∫ ρ
0 tanψdρ

(29)
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corresponds to a planar curve shown in Fig. 6. Substituting it into equation (22),

we have p̃ = 0, λ̃ = 0, and η0 = 2Ih �= 0. That is, a biconcave discoid generated by

revolving this planar curve about z-axis can satisfy the shape equation of vesicles.

This result can give a good explanation to the shape of human red blood cells under

normal physiological conditions [9, 22, 24].

Figure 6. Biconcave discoid (left) and its generation curve (right).

A small comment is that η0 = 2Ih �= 0 reflects the singularity at two poles of

the biconcave discoid. Whether does this singularity exist in real red blood cells?

What is the biological meaning of this singularity? Or does there exist a normal

solution to the shape equation that can also explain the shape of red blood cells?

These open questions need further discussions.

3.2.4. Unduloid-Like and Cylinder-Like Surfaces

If we only concern solutions to the shape equation, two cases are also widely dis-

cussed. The first case [20,23] is an axisymmetric surface generated by planar curve

satisfying

sinψ =
1

ρmIh

(
ρ

ρm
+

ρm
ρ

)
−

√
4

ρ2mIh2
− 2, 0 < ρmIh < 4/3. (30)

The generated surface abides by the shape equation with p̃ = −2Ihρ4m, λ̃ = 2/ρ2m−
Ih2/2, and η0 = 2Ih − 3/(Ihρ2m). This surface has the unduloid-like shape but

nonconstant mean curvature.

The second one is a cylinder-like surface generated by a planar curve translating

along the normal of the plane. If we denote the curvature of the curve as κ, then

the geometric quantities of the generated surface can be expressed as 2H = −κ,

K = 0, and ∇2(2H) = −κ̈, where the ‘dot’ above κ represents the derivative with

respect to the arc length of the curve. Thus the shape equation (20) degenerates

into [2, 49, 54]

p̃+ λ̄κ+ κ3/2− κ̈ = 0 (31)
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with λ̄ = λ̃+ Ih2/2. The above equation is integrable, which results in

κ̇2 = ξ0 + 2p̃κ+ λ̄κ2 − κ4/4 (32)

with an integral constant ξ0. This equation can be further solved in terms of elliptic

functions [2, 49, 54, 56].

It is necessary to note that these two cases do not correspond to real vesicles be-

cause they are not closed surfaces.

4. Lipid Membranes with Free Edges

The opening-up process of liposomal membranes by talin [35] was observed, which

gives rise to the study of equilibrium equation and boundary conditions of lipid

membranes with free exposed edges. This problem was theoretically investigated

by Capovilla et al. [5] and Tu et al. [41] in terms of different methods. In this

section, we will present these theoretical results and subsequent advancements.

Figure 7. An open smooth surface M with a boundary curve C. {e1, e2, e3}
forms the frame at some point on the surface. {t,b, e3} also forms the right-

handed frame for the point in C such that t is the tangent of C and b points

to the side that the surface is located in.

4.1. Shape Equation and Boundary Conditions to Describe Equilibrium Con-
figurations

As shown in Fig. 7, a lipid membrane with a free edge can be visualized as an

open smooth surface M with a boundary curve C in geometry. Because the free

exposed edge is energetically unfavorable, we assign the line tension (energy cost
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per length) to be γ > 0. Then the free energy functional that we need to minimize

can be expressed as

F =

∫
M

[
kc
2
(2H + Ih)2 + k̄K

]
dA+ λA+ γL (33)

where L is the total length of the free edge.

By using the variational method introduced in Section 2, we can arrive at the shape

equation [41]

(2H + c0)(2H
2 − c0H − 2K)− 2λ̃H +∇2(2H) = 0 (34)

and three boundary conditions [41]

[(2H + c0) + k̃κn]
∣∣∣
C

= 0 (35)

[−2∂H/∂b+ γ̃κn + k̃τ̇g]
∣∣∣
C

= 0 (36)

[(1/2)(2H + c0)
2 + k̃K + λ̃+ γ̃κg]

∣∣∣
C

= 0 (37)

where λ̃ ≡ λ/kc, k̃ ≡ k̄/kc, and γ̃ ≡ γ/kc are the reduced surface tension, reduced

bending modulus, and reduced line tension, respectively. κn, κg, and τg are the

normal curvature, geodesic curvature, and geodesic torsion of the boundary curve,

respectively. The ‘dot’ represents the derivative with respect to the arc length of

the edge. Equation (34) expresses the normal force balance of the membrane.

Equations (35)–(37) represent the force and the moment balances at each point in

curve C. Thus, in general, the above four equations are independent of each other

and applicable for an open membrane with several edges.

Now we consider the axisymmetric membranes. As before when a planar curve AC

shown in Fig. 8 revolves about the z axis, an axisymmetric surface is generated.

Let ψ represent the angle between the tangent line and the horizontal plane. Each

point in the surface can be expressed as a vector r = {ρ cosφ, ρ sinφ, z(ρ)}, where

ρ and φ are the radius and azimuth angle that the point corresponds to. Introduce a

notation σ such that σ = 1 if t is parallel to ∂r/∂φ, and σ = −1 if t is antiparallel

to ∂r/∂φ on the boundary curve generated by point C. The above equations (34)–

(37) are transformed into

(h− c0)

(
h2

2
+

c0h

2
− 2K

)
− λ̃h+

cosψ

ρ
(ρ cosψh′)′ = 0 (38)[

h− c0 + k̃sinψ/ρ
]
C
= 0 (39)[

−σ cosψh′ + γ̃sinψ/ρ
]
C
= 0 (40)[

1

2
(h− Ih)2 + k̃K + λ̃− σγ̃

cosψ

ρ

]
C

= 0 (41)
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Figure 8. The profile curve of the axisymmetric surface. Such surface can

be generated by a planar curve AC rotating about z axis. The angle between

the tangent line and the horizontal plane is ψ.

with h ≡ sinψ/ρ+ (sinψ)′ and K ≡ sinψ(sinψ)′/ρ. The ‘prime’ represents the

derivative with respect to ρ.

The shape equation (38) is integrable, which reduces to a second order differential

equation

cosψh′ + (h− c0) sinψψ
′ − λ̃tanψ +

η0
ρ cosψ

−
tanψ

2
(h− c0)

2 = 0 (42)

in which η0 is the integration constant [47]. This equation is equivalent to equa-

tion (22) with zero osmotic pressure. The configuration of an axisymmetric open

lipid membrane should satisfy shape equation (42) and boundary conditions (39)–

(41). In particular, the points on the boundary curve should satisfy not only the

boundary conditions, but also the shape equation (42) because they also locate in

the surface. That is, equations (39)-(41) and (42) should be compatible with each

other in the edge. Substituting equations (39)-(41) into (42), we derive the com-

patibility condition [47] to be

η0 = 0. (43)

It is a necessary (but not sufficient) condition for existence of axisymmetric open

membranes. Under this condition, the shape equation is reduced to

cosψh′ + (h− c0) sinψψ
′ − λ̃tanψ −

tanψ

2
(h− c0)

2 = 0 (44)

while three boundary conditions are reduced to two equations, i.e., equations (39)

and (41).
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4.2. Theorems of Non-Existence

Now our task is to find analytic solutions that satisfy both the shape equation and

the boundary conditions. An obvious but trivial one is a circular disk with radius

R. In this case, equations (34)–(37) degenerate to

λ̃R+ γ̃ = 0. (45)

Can we find nontrivial analytic solutions? We will prove several theorems of non-

existence in this subsection, which imply that it is almost hopeless to find nontrivial

analytic solutions.

Theorem 1. There is no open membrane being a part of a spherical vesicle.

Proof: For a sphere with radius R, we can calculate H = −1/R, κn = −1/R and

τg = 0 in terms of equation (6) because a = c = −1/R and b = 0 for a sphere.

Boundary condition (36) cannot be abided by. Thus an open membrane cannot be

a part of a spherical vesicle. �

Theorem 2. There is no open membrane being a part of a cylindrical surface.

Proof: For any line element on the surface of a cylinder with radius R, we can

calculate κn = − cos2 θ/R from equation (7) where θ is the angle between the line

element and the circumferential direction. Additionally, H = −1/R is a constant.

If k̃ = 0, then boundary condition (36) results in κn = 0, that is θ = π/2. The

line along this direction is not a closed curve, and so cannot be as an edge of a

membrane. If k̃ �= 0, then boundary condition (35) results in κn = (Ih− 1/R)/k̃,

which implies θ should be a constant. The unique closed curve is a circle, i.e.,

θ = 0 and κn = −1/R. But τg = 0 if θ = 0, then contradicts with boundary

condition (36). Thus an open membrane cannot be a part of a spherical surface. �

Theorem 3. There is no open membrane being a part of a curved surface with
constant mean curvature.

Proof: Two special surfaces (sphere and cylinder) with constant mean curvature

are discussed in the above theorems. Now we only need to investigate surfaces

with constant H but nonconstant K. From shape equation of open membranes, we

derive two possible cases: i) H = −Ih/2 �= 0 and λ̃ = 0; ii) H = Ih = 0 and

λ̃ �= 0.

In the former case, if k̃ = 0, then boundary conditions (36) and (37) result in

κn = κg = 0. Thus the curvature of the boundary curve is κ =
√
κ2n + κ2g = 0.
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That is, this curve is a straight line which is not closed curve. If k̃ �= 0, then

boundary conditions (35) and (36) results in κn = 0 and τg = constant. Using

equation (7), we derive the principal curvatures for the points in the curve are

constant. Then equation (37) requires κg = constant. That is, the curvature

and torsion are constant in the curve. The unique closed curve is a circle. But

τg = 0 for a circle. Let c1 and c2 represent the two principal curvatures, θ is the

angle between the tangent of the curve and one principal direction at each point

in the curve. Then we have two equations: κn = c1 cos
2 θ + c2 sin

2 θ = 0 and

τg = (c2 − c1) sin θ cos θ = 0. Substituting these two equations and K = c1c2

into equation (37), we obtain κg = 0. Then κ =
√
κ2n + κ2g = 0, which contradicts

with the preassumption of a circle.

In the latter case, H = Ih = 0, similar to the proof in the former one, it also leads

to a contradiction. Thus there is no open membrane being a part of a curved surface

with constant mean curvature. �

Theorem 4. There is no open membrane being a part of a Willmore surface.

Proof: Let us consider the scaling transformation r → Λr, where the vector r

represents the position of each point in the membrane and Λ is a scaling parameter

[6]. Under this transformation, we have A → Λ2A, L → ΛL, H → Λ−1H , and

K → Λ−2K. Thus, equation (33) is transformed into

F (Λ) =

∫
M
[(kc/2)(2H)2 + k̄K]dA

(46)

+2kcIhΛ

∫
M

HdA+ (λ+ kcIh
2/2)Λ2A+ γΛL.

The equilibrium configuration should satisfy ∂F/∂Λ = 0 when Λ = 1. Thus we

obtain

2Ih

∫
M

HdA+ (2λ̃+ Ih2)A+ γ̃L = 0. (47)

This equation is an additional constraint for open membranes.

Willmore surfaces satisfy the special form of equation (20) with vanishing λ̃ and

Ih [51]. Because γ̃L > 0, thus the constraint (47) cannot be satisfied when λ̃ = 0
and Ih = 0. That is, there is no open membrane being a part of Willmore surface.

�

Corollary There is no open membrane being a part of
√
2 torus.

Proof: Substituting
√
2 torus into equation (34), we obtain Ih = 0 and λ̃ = 0.

That is,
√
2 torus is a Willmore surface. In terms of Theorem 4, we arrive at this

corollary. �
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Figure 9. Schematics of several impossible open membranes with free

edges: parts of sphere, cylinder, unduloid, torus, biconcave discodal surface

(from left to right).

Theorem 5. There is no axisymmetric open membrane being a part of a biconcave
discodal surface generated by a planar curve defined by the Gauss map sinψ =
−Ihρ ln(ρ/ρB).

Proof: A biconcave discodal surface [22,24] generated by a planar curve specified

by sinψ = −Ihρ ln(ρ/ρB) with non-vanishing constants Ih and ρB . To avoid the

singularity at the two poles, we may dig two holes around the poles. Substituting

this equation into the shape equation (42), we obtain λ̃ = 0 and η0 = 2Ih. That

is, the biconcave discodal surface can be a solution to the shape equation. How-

ever, η0 = 2Ih �= 0 contradicts to compatibility condition (43). Thus there is no

axisymmetric open membrane being a part of this biconcave discoidal surface. �

In Fig. 9, we show several impossible open membranes with free edges in terms

of the above theorems. These theorems suggest that it is hopeless to find exactly

analytic solutions to the shape equation and boundary conditions of open lipid

membranes. Quasi-exact solutions or numerical simulations are highly appreci-

ated.

4.3. Quasi-Exact Solutions

Here the quasi-exact solution is defined as a surface with free edge(s) such that

the points on that surface exactly satisfy the shape equation, and most of points in

the edge(s) abide by boundary conditions. In fact, the proofs of Theorem 2 and

Theorem 3 implies two possible solutions as shown in Fig. 10. One is a straight

stripe along the axial direction of cylinder, another is a twist ribbon which is a part

of a minimal surface (H=0).

Let we consider a long enough straight stripe along the axial direction of cylinder

that satisfies shape equation (34), that is, λ̃ = (1− Ih2R2)/2R2. The long enough

configuration ensure us to omit the boundary of two ends. The lateral edges are
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Figure 10. Schematics of two quasi-exact solutions: straight stripe along

axial direction of cylinder (left) and twist ribbon which is a part of a minimal

surface (right).

straight lines which have κn = κg = τg = 0. Thus boundary conditions (35) and

(36) are trivial. The third boundary condition results in λ̃ = (1−IhR)2/2R2. Thus

we arrive at λ̃ = 0 and R = 1/Ih. That is, a long enough straight stripe along the

axial direction of a cylinder with R = 1/Ih is a quasi-exact solution.

Next, a twisted ribbon with pitch T and width 2u0 can be expressed in the vector

form {u cosϕ, u sinϕ, αϕ} with |u| ≤ u0, |ϕ| < ∞ and |α| = T/2π. By the

simple calculations, we have

H = 0, K = −α2/(u2 + α2)2 (48)

for the points on the surface, and

κn = 0,K = −α2/(u20 + α2)2

κg = u0/(u
2
0 + α2) (49)

τg = α/(u20 + α2)

for the points on the edges.

It is easy to see that equation (48) can satisfy shape equation (34) when Ih = 0.

Then equation (49) naturally validates boundary conditions (35) and (36). The last

boundary condition (37) leads to λ̃ = [k̃α2 − γ̃u0(u
2
0 + α2)]/(u20 + α2)2, which

can be satisfied by a proper choice of the parameters λ̃, k̃, γ̃, u0 and α. That is, the

twist ribbon is indeed a quasi-exact solution.

5. Chiral Lipid Membranes

In fact, our above discussions only concern lipid membranes where lipid molecules

are in Smectic A phase. In this phase, lipid molecules almost point to the normal

direction of the membrane surface. However, there are also many kinds of chiral

lipids in cell membranes. At body temperature, chiral lipids usually form Smec-

tic C∗ phase. They are tilting from the normal direction in a constant angle. It is

necessary to develop Helfrich’s spontaneous curvature model introduced in Sec-

tion 2.2 to cover the Smectic C∗ phase. Based on symmetric argument or Frank
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energy in the theory of liquid crystal, many theoretical models and results were

achieved [12,16,26,30,31,39,40]. These theoretical models contain much compli-

cated terms and many parameters, which make it is impossible to derive the exact

governing equations for describing equilibrium configurations of chiral lipid mem-

branes. Here we will discuss a simplified version proposed by the present author

and Seifert [45]. It is found that this concise theory can still explain most of the

experimental phenomena.

5.1. Constructing the Free Energy

The free energy density for a chiral lipid membrane are supposed to consist of the

following contributions.

i) The bending energy per area is still taken as Helfrich’s form (14). That is,

we neglect the anisotropic effect of lipid molecules’ tilting on the bending

moduli.

Figure 11. Right-handed orthonormal frame {e1, e2, e3} at any point in

a surface where e3 is the normal vector of the surface. a) Surface without

boundary curve. b) Surface with boundary curve where t is the tangent

vector of the boundary curve, and b, in the tangent plane of the surface, is

perpendicular to t.

ii) The energy per area originating from the chirality of tilting molecules has

the form [30]

fch = −hτm (50)

where h reflects the strength of molecular chirality. Without losing the gen-

erality, here we only discuss the case of h > 0. τm is the geodesic torsion

along the unit vector m at each point. Here m represents the projected

direction of the lipid molecules on the membrane surface. If we take a

right-handed orthonormal frame {e1, e2, e3} as shown in Fig. 11, m can



66 Zhanchun Tu

be expressed as m = cosφe1 + sinφe2, where φ is the angle between m

and e1. then geodesic torsion τm and normal curvature κm along m can be

expressed in the similar form of equation (6).

(iii) The energy per area due to the orientational variation is taken as

fov = (kf/2)[(∇×m)2 + (∇ ·m)2] (51)

where kf is a constant in the dimension of energy. This is the simplest term

of energy cost due to tilting order invariant under the coordinate rotation

around the normal of the membrane surface. By defining a spin connection

field S such that ∇.S = K, one can derive (∇×m)2+(∇·m)2 = (∇φ−S)2

through simple calculations [25].

The total free energy density adopted in the present paper, G = fc+fch+fov, has

the following concise form

G =
kc
2
(2H + c0)

2 + k̄K − hτm +
kf
2
v
2 (52)

with v ≡ ∇φ − S. This special form might arguably be the most natural and

concise construction including the bending, chirality and tilting order, for the given

vector field m and normal vector field e3.

5.2. Governing Equations to Describe Equilibrium Configurations

The free energy for a closed chiral lipid vesicle may be expressed as

F =

∫
M

GdA+ λA+ pV (53)

where A is the area of the membrane and V the volume enclosed by the vesicle.

Here again λ and p are two multipliers to implement area and volume constraints.

Using the variational method mentioned in Section 2, we can obtain two governing

equations to describe equilibrium configurations [45] as

2h̃(κm −H)− k̃f∇
2φ = 0 (54)

and

2∇2H + (2H+ c0)(2H
2 − c0H − 2K)− 2λ̃H + p̃+ h̃[∇ · (m∇×m)

(55)
+ ∇× (m∇ ·m)] + k̃f [(κv −H)v2 −∇v : ∇e3] = 0
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with reduced parameters h̃ = h/kc, k̃f = kf/kc, p̃ = p/kc, and λ̃ = λ/kc. κm and

κv are the normal curvature along the directions of m and v, respectively. When

writing equation (54), we have selected the proper gauge such that ∇ · S = 0, or

else ∇2φ should be replaced with ∇2φ−∇ · S. Additionally, we do not consider

singular points for closed vesicles different from toroidal topology.

Consider a chiral lipid membrane with a free edge as shown in Fig. 11b. Its free

energy can be expressed as

F =

∫
M

GdA+ λA+ γL (56)

where A is the area of the membrane and L the total length of the edge and γ
represents the line tension of the edge.

Using the variational method mentioned in Section 2, we can obtain the governing

equations to describe equilibrium configurations of membrane surfaces as

2h̃(κm −H)− k̃f∇
2φ = 0 (57)

and

2∇2H + (2H+ c0)(2H
2 − c0H − 2K)− 2λ̃H + p̃+ h̃[∇ · (m∇×m)

(58)
+ ∇× (m∇ ·m)] + k̃f [(κv −H)v2 −∇v : ∇e3] = 0.

Simultaneously, the boundary conditions obeyed by the free edge are derived as

[45]

vb = 0 (59)

(1/2)(2H + c0)
2 + k̃K − h̃τm + (k̃f/2)v

2 + λ̃+ γ̃κg = 0 (60)

(2H + c0) + k̃κn − (h̃/2) sin 2φ̄ = 0 (61)

γ̃κn + k̃τ̇g − 2∂H/∂b− h̃(vt +
˙̄φ) sin 2φ̄+ k̃fκnvt = 0 (62)

where κn, τg and κg are the normal curvature, geodesic torsion, and geodesic cur-

vature of the boundary curve (i.e., the edge), respectively. Here vb and vt are the

components of v in the directions of b and t. The ‘dot’ denotes the derivative

with respect to arc length parameter s and φ̄ denotes the angle between m and t at

the boundary curve. Equations (59)–(62) describe the force and moment balance

relations in the edge. Thus they are also available for a chiral lipid membrane with

several edges.

5.3. Solutions and Corresponding Configurations

Now we will present some analytic solutions to the governing equations of chiral

lipid membranes.
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5.3.1. Sphere

For spherical vesicles of chiral lipid molecules with radius R, τm is always van-

ishing because a = c = 1/R and b = 0. Thus the free energy (53) is independent

of the molecular chirality and permits the same existence probability of left- and

right-handed spherical vesicles. This is uninteresting case in practice.

5.3.2. Cylinder

Here we consider a long enough cylinder with radius R such that its two ends

can be neglected. The cylinder can be parameterized by two variables s and z
which are the arc length along the circumferential direction and coordinate along

axial direction, respectively. Let φ be the angle between m and the circumferential

direction. Then equations (54) and (55) are transformed into [45]

k̃f (φss + φzz) + (h̃/R) cos 2φ = 0 (63)

and

h̃[2(φ2
z − φ2

s+ φsz) sin 2φ+ (φss − φzz + 4φzφs) cos 2φ] + λ̃/R
(64)

+ p̃+ (c20 − 1/R2)/2R+ k̃f [(φ
2
z − φ2

s)/2R+ φsz/R] = 0

where the subscripts s and z denote the partial derivatives respect to s and z, re-

spectively.

It is not hard to see that φ = π/4 and 2p̃R3 + 2λ̃R2 − 1 + Ih2R2 = 0 can satisfy

the above two equations. Thus a cylinder shown in Fig. 12a with uniform tilting

state (tilting angle φ = π/4) is a solution.

Figure 12. Two possible chiral lipid membranes: a) Cylinder with uniform

tilting state; b) Torus with uniform tilting state.
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5.3.3. Torus

A torus is a surface of revolution generated by a circle with radius r rotated about

an axis in the same plane as shown in Fig. 5. It can be presented in the vector

formes {(R + r cosϕ) cos θ, (R + r cosϕ) sin θ, r sinϕ}. Equation (54) is trans-

formed into [45]

1

ν + cosϕ

∂2φ

∂θ2
+

∂

∂ϕ

[
(ν + cosϕ)

∂φ

∂ϕ

]
−

νh̃r

k̃f
cos 2φ = 0 (65)

where φ is the angle between m and the latitude of the torus, while ν ≡ R/r is the

ratio between two generated radii of the torus.

The uniform tilting state (φ =−π/4) satisfies equation (65) and makes −
∫
hτmdA

to take the minimum. With φ = −π/4, equation (55) is transformed [45] into

(2− k̃f )/ν
2 + (Ih2r2 − 1) + 2(p̃r + λ̃)r2

+ [(4Ih2r2 − 4Ihr − 2h̃r + 8λ̃r2 + 6p̃r3)/ν] cosϕ
(66)

+ [(5Ih2r2 − 8Ihr − 4h̃r + 10λ̃r2 + 3k̃f + 6p̃r3)/ν2] cos2 ϕ

+ [(2Ih2r2 − 4Ihr − 2h̃r + 4λ̃r2 + 2k̃f + 2p̃r3)/ν3] cos3 ϕ = 0

Because ν is finite for a torus, then the above equation holds if and only if the

coefficients in front of {1, cosϕ, cos2 ϕ, cos3 ϕ} vanish. It follows that 2λ̃r2 =

(4rc0 − r2c20)− 3k̃f + 2h̃r, p̃r3 = 2k̃f − 2rc0 − h̃r and

ν =

√
(2− k̃f )/(1− k̃f ). (67)

Thus a torus with uniform tilting state as shown in Fig. 12b is an exact solution

to governing equations of chiral lipid vesicles. The ratio of two generation radii

satisfies equation (67), which increases with k̃f . Especially, ν =
√
2 for k̃f = 0,

which leads to the
√
2 torus of non-tilting lipid molecules [29]. Since this kind of

torus was observed in the experiment [21], tori with ν >
√
2 for 0 < k̃f < 1 might

also be observed in some experiments on chiral lipid membranes.

5.3.4. Twisted Ribbons

Here we consider a quasi-exact solution for the governing equations to describing

equilibrium configurations of chiral lipid membranes with free edges. Two long

enough twisted ribbons with lipid molecules in different tilting states are shown

in Fig. 13. Similar to Section 4.3, a twist ribbon can be expressed as vector form
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{u cosϕ, u sinϕ, αϕ} with |u| ≤ W/2, |ϕ| < ∞ and |α| = T/2π. Equation (57)

is transformed into [45]

k̃f

(
φuu +

uφu + φϕϕ

u2 + α2

)
+

2h̃α sin 2φ

u2 + α2
= 0 (68)

where φ is the angle between m and the horizontal.

Figure 13. Long enough twisted ribbons with lipid molecules in different

tilting states: a) m is perpendicular to the edges; b) m parallels the edges.

Arrows represent the projected directions {m} of the tilting molecules on

the ribbons’ surface.

If we only consider the uniform tilting state, the above equation requires φ = 0 or

π/2. It is easy to see that φ = 0 minimizes −h
∫
τmdA for α < 0 while φ = π/2

minimizes −h
∫
τmdA for α > 0 because τm = −α cos 2φ/(u2 + α2) [45].

Thus we should take φ = 0 for α < 0 and φ = π/2 for α > 0. The former

case corresponds to Fig. 13a where m is perpendicular to the edges and the latter

corresponds to Fig. 13b where m is parallel to the edges. Both for φ = 0 and π/2,

equation (58) leads to Ih = 0 for non-vanishing α. Among the boundary conditions

(59)–(62), only equation (60) is nontrivial, which reduces to

λ̃(1 + x2)α2 − (h̃− γ̃x)|α|+
k̃fx

2 − 2k̃

2(1 + x2)
= 0 (69)

with x ≡ W/2|α|. Solutions to this equation exists for proper parameters. Thus,

there are indeed twisted ribbons in two states as shown in Fig. 13, they have differ-

ent chirality and tilting angles.
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6. Summary and Conclusions

In the above discussions, we have presented some theoretical results on the geom-

etry of membranes, which include the surface theory and variational method based

on moving frame, the governing equations to describe equilibrium configurations

of various lipid structures derived from the variation of free energy functionals,

some analytic solutions to these equations and their corresponding configurations.

We only focus on the pure theoretical researches and miss all experimental and

numerical results related to our topic on which gentle readers may consult the Ref-

erences [3, 8, 9, 13, 18, 48, 50, 52].

Although many theoretical advancements have been achieved, there are still a lot

of challenges waiting for further investigations. Several key open questions among

them are listed below:

i) Lipid vesicles of multi-components. Cell membranes contains many kinds

of lipids. At body temperature, different kinds of lipids usually separate

into several lipid domains. Lipid vesicles with two or several domains have

been investigated from experimental and theoretical points of view [3, 10,

15, 42, 46, 50, 53]. However, there is still lack of strictly exact solutions to

the governing equations [42,46] describing the vesicles with multi-domains.

ii) Other solutions on the shape equations of lipid membranes. We have found

only a few analytic solutions to the governing equations of lipid structures.

Whether are there other solutions, in particular to the simplest equations

(20) and (22)? Or can we prove that there is no other analytic solutions

except the ones that we have mentioned?

iii) Generalized boundary conditions for open lipid membranes. Although we

have investigated the boundary conditions of lipid membranes with free

edges, there are still other cases, such as confined edges, contact lines, and

so on. Can we develop a generalized variational principle covering such

cases?

iv) Non-orientable membranes. All membranes that we have considered are ori-

entable membranes. How can we deal with the non-orientable membranes,

such as Möbius band [57]?
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