

MODULAR FORMS ON BALL QUOTIENTS OF NON-POSITIVE KODAIRA DIMENSION

AZNIV KASPARIAN

Communicated by Vasil V. Tsanov

Abstract. The Baily-Borel compactification \mathbb{B}/Γ of an arithmetic ball quotient admits projective embeddings by Γ -modular forms of sufficiently large weight. We are interested in the target and the rank of the projective map Φ , determined by Γ -modular forms of weight one. This paper concentrates on the finite *H*-Galois quotients \mathbb{B}/Γ_H of a specific $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, birational to an abelian surface A_{-1} . Any compactification of \mathbb{B}/Γ_H has non-positive Kodaira dimension. The rational maps Φ^H of $\widehat{\mathbb{B}}/\Gamma_H$ are studied by means of the *H*-invariant abelian functions on A_{-1} .

The modular forms of sufficiently large weight are known to provide projective embeddings of the arithmetic quotients of the two-ball

$$\mathbb{B} = \{ z = (z_1, z_2) \in \mathbb{C}^2; \ |z_1|^2 + |z_2|^2 < 1 \} \simeq \mathrm{SU}(2, 1) / \mathrm{S}(\mathrm{U}_2 \times \mathrm{U}_1).$$

The present work studies the projective maps, given by the modular forms of weight one on certain Baily-Borel compactifications \mathbb{B}/Γ_H of Kodaira dimension $\kappa(\mathbb{B}/\Gamma_H) \leq 0$. More precisely, we start with a fixed smooth Picard modular surface $A'_{-1} = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)'$ with abelian minimal model $A_{-1} = E_{-1} \times E_{-1}$, $E_{-1} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}$ i. Any automorphism group of A'_{-1} , preserving the toroidal compactifying divisor $T' = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)' \setminus \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)$ acts on A_{-1} and lifts to a ball lattice Γ_H , normalizing $\Gamma_{-1}^{(6,8)}$. The ball quotient compactification $A'_{-1}/H = \overline{\mathbb{B}/\Gamma_H}$ is birational to A_{-1}/H . We study the Γ_H -modular forms $[\Gamma_H, 1]$ of weight one by realizing them as H-invariants of $[\Gamma_{-1}^{(6,8)}, 1]$. That allows to transfer $[\Gamma_H, 1]$ to the H-invariant abelian functions, in order to determine $\dim_{\mathbb{C}}[\Gamma_H, 1]$ and the transcendence dimension of the graded \mathbb{C} -algebra, generated by $[\Gamma_H, 1]$. The last one is exactly the rank of the projective map $\Phi : \overline{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1])$.

69

1. The Transfer of Modular Forms to Meromorphic Functions is Inherited by the Finite Galois Quotients

Definition 1. Let $\Gamma < SU(2,1)$ be a lattice, i.e., a discrete subgroup, whose quotient $SU(2,1)/\Gamma$ has finite invariant measure. A Γ -modular form of weight n is a holomorphic function $\delta : \mathbb{B} \to \mathbb{C}$ with transformation law

$$\gamma(\delta)(z) = \delta(\gamma(z)) = [\det \operatorname{Jac}(\gamma)]^{-n} \delta(z) \qquad \gamma \in \Gamma, \quad z \in \mathbb{B}.$$

Bearing in mind that a biholomorphism $\gamma \in Aut(\mathbb{B})$ acts on a differential form $dz_1 \wedge dz_2$ of top degree as a multiplication by the Jacobian determinant $detJac(\gamma)$, one constructs the linear isomorphism

$$j_n: [\Gamma, n] \longrightarrow H^0(\mathbb{B}, (\Omega^2_{\mathbb{B}})^{\otimes n})^{\Gamma}$$

with the Γ -invariant holomorphic sections of the canonical bundle $\Omega^2_{\mathbb{B}}$ of \mathbb{B} . Thus, the graded \mathbb{C} -algebra of the Γ -modular forms can be viewed as the tensor algebra of the Γ -invariant volume forms on \mathbb{B} . For any $\delta_1, \delta_2 \in [\Gamma, n]$ the quotient $\frac{\delta_1}{\delta_2}$ is a correctly defined holomorphic function on \mathbb{B}/Γ . In such a way, $[\Gamma, n]$ and $j_n[\Gamma, n]$ determine a projective map

$$\Phi_n: \mathbb{B}/\Gamma \longrightarrow \mathbb{P}([\Gamma, n]) = \mathbb{P}(j_n[\Gamma, n]).$$

The Γ -cusps $\partial_{\Gamma} \mathbb{B}/\Gamma$ are of complex co-dimension two, so that Φ_n extends to the Baily-Borel compactification

$$\Phi_n:\widehat{\mathbb{B}/\Gamma}\longrightarrow \mathbb{P}([\Gamma,n]).$$

If the lattice $\Gamma < SU_{2,1}$ is torsion-free then the toroidal compactification $X' = (\mathbb{B}/\Gamma)'$ is a smooth surface. Denote by $\rho : X' = (\mathbb{B}/\Gamma)' \to \widehat{X} = \widehat{\mathbb{B}/\Gamma}$ the contraction of the irreducible components T'_i of the toroidal compactifying divisor T' to the Γ -cusps $\kappa_i \in \partial_{\Gamma} \mathbb{B}/\Gamma$. The tensor product $\Omega^2_{X'}(T')$ of the canonical bundle $\Omega^2_{X'}$ of X' with the holomorphic line bundle $\mathcal{O}(T')$, associated with the toroidal compactifying divisor T' is the logarithmic canonical bundle of X'. In [2] Hemperly has observes that

$$H^0(X', \Omega^2_{X'}(T')^{\otimes n}) = \rho^* j_n[\Gamma, n] \simeq [\Gamma, n].$$

Let $K_{X'}$ be the canonical divisor of X'

$$\mathcal{L}_{X'}(nK_{X'} + nT') = \{ f \in \mathfrak{Mer}(X'); (f) + nK_{X'} + nT' \ge 0 \}$$

be the linear system of the divisor $n(K_{X'} + T')$ and s be a global meromorphic section of $\Omega^2_{X'}(T')$. Then

$$s^{\otimes n} : \mathcal{L}_{X'}(nK_{X'} + nT') \longrightarrow H^0(X', \Omega^2_{X'}(T')^{\otimes n})$$

is a \mathbb{C} -linear isomorphism. Let $\xi : X' \to X$ be the blow-down of the (-1)curves on $X' = (\mathbb{B}/\Gamma)'$ to its minimal model X. The Kobayashi hyperbolicity of \mathbb{B} requires X' to be the blow-up of X at the singular locus T^{sing} of $T = \xi(T')$. The canonical divisor $K_{X'} = \xi^* K_X + L$ is the sum of the pull-back of K_X with the exceptional divisor L of ξ . The birational map ξ induces an isomorphism $\xi^* :$ $\mathfrak{Mer}(X) \to \mathfrak{Mer}(X')$ of the meromorphic function fields. In order to translate the condition $\xi^*(f) + nK_{X'} + nT' \ge 0$ in terms of $f \in \mathfrak{Mer}(X)$, let us recall the notion of a multiplicity of a divisor $D \subset X$ at a point $p \in X$. If $D = \sum_i n_i D_i$ is the decomposition of D into irreducible components then $m_p(D) = \sum_i n_i m_p(D_i)$, where

$$m_p(D_i) = \begin{cases} 1 & \text{for } p \in D_i \\ 0 & \text{for } p \notin D_i. \end{cases}$$

Let $L = \sum_{p \in T^{sing}} L(p)$ for $L(p) = \xi^{-1}(p)$ and $f \in \mathfrak{Mer}(X)$. The condition $\xi^*(f) + L(p) = \xi^{-1}(p)$ and $f \in \mathfrak{Mer}(X)$.

 $nL \ge 0$ is equivalent to $m_p(f) + n \ge 0$ for all $p \in T^{\text{sing}}$. Thus, $\mathcal{L}_{X'}(nK_{X'} + nT')$ turns to be the pull-back of the subspace

$$\mathcal{L}_X(nK_X + nT, nT^{\text{sing}})$$

 $= \{ f \in \mathfrak{Mer}(X); (f) + nK_X + nT \ge 0, \ m_p(f) + n \ge 0, \ p \in T^{sing} \}$

of the linear system $\mathcal{L}_X(nK_X + nT)$. The \mathbb{C} -linear isomorphism

$$\operatorname{Trans}_n := (\xi^*)^{-1} s^{\otimes (-n)} j_n : [\Gamma, n] \longrightarrow \mathcal{L}_X(nK_X + nT, nT^{\operatorname{sing}})$$

introduced by Holzapfel in [3], is called transfer of modular forms. Bearing in mind Hemperly's result $H^0(X', \Omega^2_{X'}(T')^{\otimes n}) = \rho^* j_1[\Gamma, n]$ for a fixed point free Γ , we refer to

$$\Phi_n^H: \widetilde{\mathbb{B}}/\Gamma_H \longrightarrow \mathbb{P}([\Gamma_H, n]) = \mathbb{P}(j_n[\Gamma_H, n])$$

as the *n*-th logarithmic-canonical map of $\widehat{\mathbb{B}/\Gamma_H}$, regardless of the ramifications of $\mathbb{B} \to \mathbb{B}/\Gamma_H$.

The next lemma explains the transfer of modular forms on finite Galois quotients \mathbb{B}/Γ_H of \mathbb{B}/Γ to meromorphic functions on X/H. In general, the toroidal compactification $X'_H = (\mathbb{B}/\Gamma_H)'$ is a normal surface. The logarithmic-canonical bundle is not defined on a singular X'_H , but there is always a logarithmic-canonical Weil divisor on X'_H .

Lemma 2. Let $A' = (\mathbb{B}/\Gamma)'$ be a neat toroidal compactification with an abelian minimal model A and H be a subgroup of $G = \operatorname{Aut}(A, T) = \operatorname{Aut}(A', T')$. Then

i) the transfer $\operatorname{Trans}_n := (\xi^*)^{-1} s^{\otimes (-n)} j_n : [\Gamma, n] \longrightarrow \mathcal{L}_A(nT, nT^{\operatorname{sing}})$ of Γ -modular forms to abelian functions induces a linear isomorphism

 $\operatorname{Trans}_{n}^{H} : [\Gamma_{H}, n] \longrightarrow \mathcal{L}_{A}(nT, nT^{\operatorname{sing}})^{H}$

of Γ_H -modular forms with rational functions on A/H, called also a transfer

ii) the projective maps

$$\Phi_n^H : \widehat{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, n]), \quad \Psi_n^H : A/H \longrightarrow \mathbb{P}(\mathcal{L}_A(nT, nT^{\text{sing}})^H)$$

coincide on an open Zariski dense subset.

Proof: i) Note that $j_n[\Gamma_H, n] = j_n[\Gamma, n]^H$. The inclusion $j_n[\Gamma_H, n] \subseteq j_n[\Gamma, n]$ follows from $\Gamma \leq \Gamma_H$. If $\Gamma_H = \bigcup_{j=1}^n \gamma_j \Gamma$ is the coset decomposition of Γ_H modulo Γ , then $H = \{h_i = \gamma_i \Gamma; 1 \leq i \leq n\}$. A Γ -modular form $\omega \in j_n[\Gamma, n]$ is Γ_H -modular exactly when it is invariant under all γ_i , which amounts to the invariance under all h_i .

One needs a global meromorphic G-invariant section s of $\Omega^2_{A'}(T')$, in order to obtain a linear isomorphism

$$(\xi^*)^{-1}s^{\otimes(-n)} = \operatorname{Trans}_n^H j_n^{-1} : j_n[\Gamma_H, n] = j_n[\Gamma, n]^H \to \mathcal{L}_A(nT, nT^{\operatorname{sing}})^H.$$

The global meromorphic sections of the logarithmic-canonical line bundle $\Omega_{A'}^2(T')$ are in a bijective correspondence with the families $(f_\alpha, U_\alpha)_{\alpha \in S}$ of local meromorphic defining equations $f_\alpha : U_\alpha \to \mathbb{C}$ of the logarithmic-canonical divisor L + T'. We construct local meromorphic *G*-invariant equations $g_\alpha : V_\alpha \to \mathbb{C}$ of *T* and pull-back to $(f_\alpha = \xi^* g_\alpha, U_\alpha = \xi^{-1}(V_\alpha))_{\alpha \in S}$. Let $F_A : \widetilde{A} = \mathbb{C}^2 \to A$ be the universal covering map of *A*. Then for any point $p \in A$ choose a lifting $\widetilde{p} \in F_A^{-1}(p)$ and a sufficiently small neighborhood \widetilde{W} of \widetilde{p} on \widetilde{A} , which is contained in the interior of a $\pi_1(A)$ -fundamental domain on \widetilde{A} , centered at \widetilde{p} . The *G*-invariant open neighborhood $W = \bigcap_{g \in G} g\widetilde{W}$ of \widetilde{p} on \widetilde{A} intersects $F_A^{-1}(T)$ in lines with local equations $l_j(u, v) = a_j(\widetilde{p})u + b_j(\widetilde{p})v + c_j(\widetilde{p}) = 0$. The holomorphic function $g(u, v) = \prod_{g \in G} \prod_j (l_j(u, v))$ on W is *G*-invariant and can be viewed as

a *G*-invariant local defining equation of *T* on $V = F_A(W)$. Note that F_A is locally biholomorphic, so that $V \subset A$ is an open subset, after an eventual shrinking of \widetilde{W} . The family $(g, V)_{p \in A}$ of local *G*-invariant defining equations of *T* pulls-back to a family $(f = \xi^* g, U = \xi^{-1}(V))_{p \in A}$ of local *G*-invariant sections of $\Omega_A^2(T')$. ii) Towards the coincidence $\Psi_n^H|_{[(A \setminus T)/H]} \equiv \Phi_n^H|_{[(\mathbb{B}/\Gamma_H) \setminus (L/H)]}$, let us fix a basis $\{\omega_i; 1 \leq i \leq d\}$ of $j_n[\Gamma_H, n]$ and apply i), in order to conclude that the set $\{f_i = \operatorname{Trans}_n^H j_n^{-1}(\omega_i); 1 \leq i \leq d\}$ is a basis of $\mathcal{L}_A(nT, nT^{\operatorname{sing}})^H$. Tensoring by $s^{\otimes (-n)}$ does not alter the ratios $\frac{\omega_i}{\omega_j}$. The isomorphism $\xi : \mathfrak{Mer}(A) \to \mathfrak{Mer}(A')$ is identical on $(A \setminus T)/H$.

2. Preliminaries

In order to specify $A'_{-1} = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)'$ let us note that the blow-down $\xi : A'_{-1} \to A_{-1}$ of the (-1)-curves maps T' to a divisor $T = \xi(T')$ with smooth elliptic irreducible components T_i . Such T are called multi-elliptic divisors. Any irreducible component T_i of T lifts to a $\pi_1(A_{-1})$ -orbit of complex lines on the universal cover $\widetilde{A'_{-1}} = \mathbb{C}^2$. That allows to represent

$$T_j = \{ (u \pmod{\mathbb{Z} + \mathbb{Z}i}), v \pmod{\mathbb{Z} + \mathbb{Z}i}); a_j u + b_j v + c_j = 0 \}.$$

If T_j is defined over the field $\mathbb{Q}(i)$ of Gauss numbers, there is no loss of generality in assuming $a_j, b_j \in \mathbb{Z}[i]$ to be Gaussian integers.

Theorem 3 (Holzapfel [4]). Let $A_{-1} = E_{-1} \times E_{-1}$ be the Cartesian square of the elliptic curve $E_{-1} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}i$, $\omega_1 = \frac{1}{2}$, $\omega_2 = i\omega_1$, $\omega_3 = \omega_1 + \omega_2$ be half-periods, $Q_0 = 0 \pmod{\mathbb{Z} + \mathbb{Z}i}$, $Q_1 = \omega_1 \pmod{\mathbb{Z} + \mathbb{Z}i}$, $Q_2 = iQ_1$, $Q_3 = Q_1 + Q_2$ be the two-torsion points on E_{-1} , $Q_{ij} = (Q_i, Q_j) \in A_{-1}^{2-\text{tor}}$ and

 $T_k = \{ (u \pmod{\mathbb{Z} + \mathbb{Z}i}), v \pmod{\mathbb{Z} + \mathbb{Z}i}; u - i^k v = 0 \} \text{ with } 1 \le k \le 4, \\ T_{4+m} = \{ u \pmod{\mathbb{Z} + \mathbb{Z}i}, v \pmod{\mathbb{Z} + \mathbb{Z}i}; u - \omega_m = 0 \} \text{ for } 1 \le m \le 2 \text{ and } 1 \le m \le 2 \text{ or } 1 \le 2 \text{ or } 1 \le m \le 2 \text{ or } 1 \le 2 \text{ or } 1 \le 2 \text{ or } 1 \le m \le 2 \text{ or } 1 \le 2 \text{$

$$T_{6+m} = \{ u (\operatorname{mod} \mathbb{Z} + \mathbb{Z}i), v (\operatorname{mod} \mathbb{Z} + \mathbb{Z}i); v - \omega_m = 0 \} \text{ for } 1 \le m \le 2.$$

Then the blow-up of A_{-1} at the singular locus $\left(T_{-1}^{(6,8)}\right)^{\text{sing}} = Q_{00} + Q_{33} + \sum_{i=1}^{2} \sum_{j=1}^{2} Q_{ij}$ of the multi-elliptic divisor $T_{-1}^{(6,8)} = \sum_{i=1}^{8} T_i$ is a neat toroidal ball quotient compactification $A'_{-1} = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)'$.

Theorem 4 (Kasparian and Kotzev [6]). The group $G_{-1} = \operatorname{Aut}(A_{-1}, T_{-1}^{(6,8)}) = \operatorname{Aut}(A'_{-1}, T')$ of order 64 is generated by the translation τ_{33} with Q_{33} , the multiplications

$$I = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{respectively,} \quad J = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

with $i \in \mathbb{Z}[i]$ on the first, respectively, the second factor E_{-1} of A_{-1} and the transposition

$$\theta = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

of these factors.

Throughout, we use the notations from Theorem 3 and Theorem 4, without mentioning this explicitly. With a slight abuse of notation, we speak of Kodaira-Enriques classification type, irregularity and geometric genus of A_{-1}/H , $H \leq G_{-1}$, referring actually to a smooth minimal model Y of A_{-1}/H .

Theorem 5 (Kasparian and Nikolova [7]). Let

$$\mathcal{L}: G_{-1} \to \mathrm{GL}_2(\mathbb{Z}[\mathbf{i}]) = \{ g \in \mathbb{Z}[\mathbf{i}]_{2 \times 2}; \, \det(g) \in \mathbb{Z}[\mathbf{i}]^* = \langle \mathbf{i} \rangle \}$$

be the homomorphism, associating to $g \in G_{-1}$ its linear part \mathcal{L} and

$$L_1(G_{-1}) = \{ g \in G_{-1}; \operatorname{rk}(\mathcal{L}(g) - I_2) = 1 \}$$
$$= \{ \tau_{33}^n I^k, \tau_{33}^n J^k, \tau_{33}^n I^l J^{-l} \theta; \ 0 \le n \le 1, \ 1 \le k \le 3, \ 0 \le l \le 3 \}.$$

Then:

- i) A_{-1}/H is an abelian surface for $H = \langle \tau_{33} \rangle$
- ii) A_{-1}/H is a hyperelliptic surface for $H = \langle \tau_{33}I^2 \rangle$ or $H = \langle \tau_{33}J^2 \rangle$
- iii) A_{-1}/H is a ruled surface with an elliptic base for

$$H = \langle h \rangle, \ h \in L_1(G_{-1}) \setminus \{\tau_{33}I^2, \tau_{33}J^2\} \ or \ H = \langle \tau_{33}, h_o \rangle, \ h_o \in \mathcal{L}(L_1(G_{-1}))$$

iv) A_{-1}/H is a K3 surface for $\langle \tau_{33}^n \rangle \neq H \leq K = \text{kerdet}\mathcal{L}$, where

$$K = \{\tau_{33}^n I^k J^{-k}, \tau_{33}^n I^k J^{2-k} \theta; 0 \le n \le 1, \ 0 \le k \le 3\}$$

- v) A_{-1}/H is an Enriques surface for $H = \langle I^2 J^2, \tau_{33} I^2 \rangle$
- vi) A_{-1}/H is a rational surface for

$$\langle h \rangle \leq H, \ h \in \{\tau_{33}^n IJ, \tau_{33}^n I^2 J, \tau_{33}^n I J^2; \ 0 \leq n \leq 1\} \ or \ \langle \tau_{33}^n I^2 J^2, h_1 \rangle \leq H,$$

$$h_1 \in \{I^{2m} J^{2-2m}, \tau_{33}^m I, \tau_{33}^m J, \tau_{33}^m I^l J^{-l} \theta; \ 0 \leq m \leq 1, \ 0 \leq l \leq 3\}, \ 0 \leq n \leq 1.$$

The following lemma specifies some known properties of Weierstrass σ -function over Gaussian integers $\mathbb{Z}[i]$.

Lemma 6. Let $\sigma(z) = z \prod_{\lambda \in \mathbb{Z}[i] \setminus \{0\}} (1 - \frac{z}{\lambda})^{\frac{z}{\lambda} + \frac{1}{2} (\frac{z}{\lambda})^2}$ be the Weierstrass σ -function, associated with the lattice $\mathbb{Z}[i]$ of \mathbb{C} . Then:

i)
$$\sigma(\mathbf{i}^{k}z) = \mathbf{i}^{k}\sigma(z), \quad z \in \mathbb{C}, \quad 0 \le k \le 3$$

ii) $\frac{\sigma(z+\lambda)}{\sigma(z)} = \varepsilon(\lambda)e^{-\pi\overline{\lambda}z - \frac{\pi}{2}|\lambda|^{2}}, \quad z \in \mathbb{C}, \quad \lambda \in \mathbb{Z}[\mathbf{i}], \text{ where}$
 $\varepsilon(\lambda) = \begin{cases} -1 & \text{if } \lambda \in \mathbb{Z}[\mathbf{i}] \setminus 2\mathbb{Z}[\mathbf{i}] \\ 1 & \text{if } \lambda \in 2\mathbb{Z}[\mathbf{i}]. \end{cases}$

Proof: i) follows from

$$\prod_{\lambda \in \mathbb{Z}[\mathbf{i}] \setminus \{0\}} \left(1 - \frac{\mathbf{i}^k z}{\lambda} \right)^{\frac{\mathbf{i}^k z}{\lambda} + \frac{1}{2} \left(\frac{\mathbf{i}^k z}{\lambda} \right)^2} = \prod_{\mu = \frac{\lambda}{\mathbf{i}^k} \in \mathbb{Z}[\mathbf{i}] \setminus \{0\}} \left(1 - \frac{z}{\mu} \right)^{\frac{z}{\mu} + \frac{1}{2} \left(\frac{z}{\mu} \right)^2}.$$

ii) According to Lang's book [8]

$$\frac{\sigma(z+\lambda)}{\sigma(z)} = \varepsilon(\lambda) e^{\eta(\lambda)\left(z+\frac{\lambda}{2}\right)}, \qquad z \in \mathbb{C}, \qquad \lambda \in \mathbb{Z}[i]$$

where $\eta : \mathbb{Z}[i] \to \mathbb{C}$ is the homomorphism of \mathbb{Z} -modules, related to Weierstrass ζ -function $\zeta(z) = \frac{\sigma'(z)}{\sigma(z)}$ by the identity $\zeta(z + \lambda) = \zeta(z) + \eta(\lambda)$. It suffices to establish that $\eta(\lambda) = -\pi \overline{\lambda}, \lambda \in \mathbb{Z}[i]$. Recall from [8] Legendre's equality $\eta(i) - i\eta(1) = 2\pi i$, in order to derive

$$\eta(\lambda) = \frac{\lambda + \overline{\lambda}}{2} \eta(1) + \frac{\lambda - \overline{\lambda}}{2i} \eta(i) = (\eta(1) + \pi)\lambda - \pi\overline{\lambda}, \quad \lambda \in \mathbb{Z}[i].$$

Combining with homogeneity $\eta(i\lambda) = \frac{1}{i}\eta(\lambda), \lambda \in \mathbb{Z}[i]$ (cf. [8]), one obtains

$$(\eta(1) + \pi)i\lambda + \pi i\overline{\lambda} = \eta(i\lambda) = -i\eta(\lambda) = -(\eta(1) + \pi)i\lambda + \pi i\overline{\lambda}, \quad \lambda \in \mathbb{Z}[i].$$

Therefore $\eta(1) = -\pi$ and $\eta(\lambda) = -\pi\overline{\lambda}, \lambda \in \mathbb{Z}[i].$

Corollary 7.

$$\frac{\sigma(z+\omega_m)}{\sigma(z-\omega_m)} = -e^{2(-1)^m \omega_m \pi z}$$
$$\frac{\sigma(z+\omega_m+2\varepsilon\omega_{3-m})}{\sigma(z-\omega_m)} = (-1)^{m+1} \varepsilon i e^{-\frac{\pi}{2}+2(-1)^{m+1}\varepsilon\omega_{3-m}\pi z+2(-1)^m \omega_m \pi z}$$
$$\frac{\sigma(z-\omega_m+2\varepsilon\omega_{3-m})}{\sigma(z-\omega_m)} = (-1)^{m+1} \varepsilon i e^{-\frac{\pi}{2}+2(-1)^{m+1}\varepsilon\omega_{3-m}\pi z}.$$

for the half-periods $\omega_1 = \frac{1}{2}$, $\omega_2 = i\omega_1$ and $\varepsilon = \pm 1$.

Corollary 8.

$$\frac{\sigma(z+2\varepsilon\omega_m)}{\sigma(z-1)} = e^{-\pi z + (-1)^m 2\varepsilon\pi\omega_m z}$$
$$\frac{\sigma(z+(-1)^m\omega_m + \varepsilon(-1)^m\omega_{3-m})}{\sigma(z-(-1)^m\omega_m + (-1)^m\omega_{3-m})} = -i^{(-1)^m \frac{(1+\varepsilon)}{2}} e^{2\omega_m \pi z + (1-\varepsilon)\omega_{3-m}\pi z}$$
for the half-periods $\omega_1 = \frac{1}{2}, \, \omega_2 = i\omega_1$ and $\varepsilon = \pm 1$.

Corollary 7 and Corollary 8 follow from Lemma 6 ii) and $\bar{\omega}_m = (-1)^{m+1} \omega_m$, $\omega_m^2 = \frac{(-1)^{m+1}}{4}$.

In [5] the map $\Phi : \mathbb{B}/\Gamma_{-1}^{(6,8)} \to \mathbb{P}([\Gamma_{-1}^{(6,8)}, 1])$ is shown to be a regular embedding. This is done by constructing a \mathbb{C} -basis of $\mathcal{L} = \mathcal{L}_{A_{-1}}\left(T_{-1}^{(6,8)}, \left(T_{-1}^{(6,8)}\right)^{\text{sing}}\right)$, consisting of binary parallel or triangular σ -quotients. An abelian function $f_{\alpha,\beta} \in \mathcal{L}$ is binary parallel if the pole divisor $(f_{\alpha,\beta})_{\infty} = T_{\alpha} + T_{\beta}$ consists of two disjoint smooth elliptic curves T_{α} and T_{β} . A σ -quotient $f_{i,\alpha,\beta} \in \mathcal{L}$ is triangular if $T_i \cap T_{\alpha} \cap T_{\beta} = \emptyset$ and any two of T_i, T_{α} and T_{β} intersect in a single point.

Theorem 9 (Kasparian and Kotzev [5]). Let

$$\Sigma_{12}(z) = \frac{\sigma(z-1)\sigma(z+\omega_1-\omega_2)}{\sigma(z-\omega_1)\sigma(z-\omega_2)}, \qquad \Sigma_1 = \frac{\sigma(u-iv+\omega_3)}{\sigma(u-iv)}$$
$$\Sigma_2 = \frac{\sigma(u+v+\omega_3)}{\sigma(u+v)}, \quad \Sigma_3 = \frac{\sigma(u+iv+\omega_3)}{\sigma(u+iv)}, \quad \Sigma_4 = \frac{\sigma(u-v+\omega_3)}{\sigma(u-v)}$$
$$\Sigma_5 = \frac{\sigma(u-\omega_2)}{\sigma(u-\omega_1)}, \quad \Sigma_6 = \frac{\sigma(u-\omega_1)}{\sigma(u-\omega_2)}, \quad \Sigma_7 = \frac{\sigma(v-\omega_2)}{\sigma(v-\omega_1)}, \quad \Sigma_8 = \frac{\sigma(v-\omega_1)}{\sigma(v-\omega_2)}.$$

Then:

i) the space $\mathcal{L} = \mathcal{L}_{A_{-1}} \left(T_{\sqrt{-1}}^{(6,8)}, \left(T_{\sqrt{-1}}^{(6,8)} \right)^{\text{sing}} \right)$ contains the binary parallel σ -quotients $f_{56}(u,v) = \Sigma_{12}(u)$, $f_{78}(u,v) = \Sigma_{12}(v)$ and the triangular σ -quotients

$$f_{157} = ie^{-\frac{\pi}{2} + \pi u} \Sigma_1 \Sigma_5 \Sigma_7, \qquad f_{168} = -e^{-\pi - \pi iu - \pi v - \pi iv} \Sigma_1 \Sigma_6 \Sigma_8$$

$$f_{357} = -e^{-\pi + \pi u + \pi v + \pi iv} \Sigma_3 \Sigma_5 \Sigma_7, \qquad f_{368} = -ie^{-\frac{\pi}{2} - \pi iu} \Sigma_3 \Sigma_6 \Sigma_8$$

$$f_{258} = e^{-\pi + \pi u - \pi iv} \Sigma_2 \Sigma_5 \Sigma_8, \qquad f_{267} = e^{-\pi - \pi iu + \pi v} \Sigma_2 \Sigma_6 \Sigma_7$$

$$f_{458} = -ie^{-\frac{\pi}{2} + \pi u - \pi v} \Sigma_4 \Sigma_5 \Sigma_8, \qquad f_{467} = ie^{-\frac{\pi}{2} - \pi iu + \pi iv} \Sigma_4 \Sigma_6 \Sigma_7$$

ii) a
$$\mathbb{C}$$
-basis of \mathcal{L} is

$$f_o := 1, f_1 := f_{157}, f_2 := f_{258}, f_3 := f_{368}, f_4 := f_{467}, f_5 := f_{56}, f_6 := f_{78}.$$

3. Technical Preparation

The group $G_{-1} = \operatorname{Aut} \left(A_{-1}, T_{-1}^{(6,8)} \right)$ permutes the eight irreducible components of $T_{-1}^{(6,8)}$ and the $\Gamma_{-1}^{(6,8)}$ -cusps. For any subgroup H of G_{-1} , the Γ_H -cusps are the H-orbits of $\partial_{\Gamma_{-1}^{(6,8)}} \mathbb{B} / \Gamma_{-1}^{(6,8)} = \{\kappa_i; 1 \leq i \leq 8\}.$

Lemma 10. If $\varphi : G_{-1} \to S_8(\kappa_1, \dots, \kappa_8)$ is the natural representation of $G_{-1} =$ Aut $\left(A_{-1}, T_{-1}^{(6,8)}\right)$ in the symmetric group of the $\Gamma_{-1}^{(6,8)}$ -cusps, then $\varphi(\tau_{33}) = (\kappa_5, \kappa_6)(\kappa_7, \kappa_8), \qquad \qquad \varphi(I) = (\kappa_1, \kappa_4, \kappa_3, \kappa_2)(\kappa_5, \kappa_6)$

$$\varphi(J) = (\kappa_1, \kappa_2, \kappa_3, \kappa_4)(\kappa_7, \kappa_8), \qquad \varphi(\theta) = (\kappa_1, \kappa_3)(\kappa_5, \kappa_7)(\kappa_6, \kappa_8).$$

Proof: The $\Gamma_{-1}^{(6,8)}$ -cusps κ_i are obtained by contraction of the proper transforms T'_i of T_i under the blow-up of A_{-1} at $\left(T_{-1}^{(6,8)}\right)^{\text{sing}}$. Therefore the representations of G_{-1} in the permutation groups of $\{T_i; 1 \leq i \leq 8\}$, $\{T'_i; 1 \leq i \leq 8\}$ and $\{\kappa_i; 1 \leq i \leq 8\}$ coincide.

According to $\tau_{33}(u - i^k v) = u - i^k v + (1 - i^k)\omega_3 = u - i^k v \pmod{\mathbb{Z} + \mathbb{Z}i}$, the translation τ_{33} acts identically on T_1 , T_2 , T_3 , T_4 . Further, $\tau_{33}(u - \omega_m) = u + \omega_{3-m} \equiv u - \omega_{3-m} \pmod{\mathbb{Z} + \mathbb{Z}i}$ reveals the permutation $(T_5, T_6)(T_7, T_8)$ of the last four components of $T_{-1}^{(6,8)}$.

Due to the identity $I(u - i^k v) = iu - i^k v = i(u - i^{k-1}v)$, the automorphism I induces the permutation (T_1, T_4, T_3, T_2) of the first four components of $T_{-1}^{(6,8)}$. Further, $I(u - \omega_m) = i(u \pm \omega_{3-m})$ reveals that I permutes T_5 with T_6 . Note that I acts identically on v and fixes T_7, T_8 .

In a similar vein, $J(u - i^k v) = u - i^{k+1}v$, $J(v - \omega_m) = i(v \pm i\omega_{3-m})$ determine that $\varphi(J) = (\kappa_1, \kappa_2, \kappa_3, \kappa_4)(\kappa_7, \kappa_8)$. According to $\theta(u - i^k v) = v - i^k u = -i^k(u - i^{-k}v)$ and $\theta(u - \omega_m) = v - \omega_m$, one concludes that $\varphi(\theta) = (\kappa_1, \kappa_3)(\kappa_5, \kappa_7)(\kappa_6, \kappa_8)$.

The following lemma incorporates several arguments, which will be applied repeatedly towards determination of the target $\mathbb{P}([\Gamma_H, 1])$ and the rank of the logarithmic canonical map Φ^H .

Lemma 11. In the notations from Theorem 9, for an arbitrary subgroup H of $G_{-1} = \operatorname{Aut}\left(A_{-1}, T_{-1}^{(6,8)}\right)$ and any $f \in \mathcal{L} = \mathcal{L}_{A_{-1}}\left(T_{-1}^{(6,8)}, \left(T_{-1}^{(6,8)}\right)^{\operatorname{sing}}\right)$, let $R_H(f) = \sum_{h \in H} h(f)$ be the value of Reynolds operator R_H of H on f.

- i) The space \mathcal{L}^H of the H-invariants of \mathcal{L} is spanned by $\{R_H(f_i); 0 \le i \le 6\}$.
- ii) Let $T_i \subset (R_H(f_{i,\alpha_1,\beta_1}))_{\infty}, (R_H(f_{i,\alpha_2,\beta_2}))_{\infty} \subseteq \operatorname{Orb}_H(T_i) + \sum_{\alpha=5}^{8} T_{\alpha}$ for some $1 \leq i \leq 4, 5 \leq \alpha_j \leq 6, 7 \leq \beta_j \leq 8$. Then

$$R_H(f_{i,\alpha_2,\beta_2}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{78}), R_H(f_{i,\alpha_1,\beta_1}))$$

iii) Let $\bar{\kappa}_{i_1}, \ldots, \bar{\kappa}_{i_p}$ with $1 \leq i_1 < \ldots < i_p \leq 4$ be different Γ_H -cusps

$$T_{i_j} \subset (R_H(f_{i_j}))_{\infty} \subseteq \operatorname{Orb}_H(T_{i_j}) + \sum_{\alpha=5}^{8} T_{\alpha} \quad \text{for all} \quad 1 \le j \le p$$

and B be a
$$\mathbb{C}$$
-basis of $\mathcal{L}_2^H = \mathcal{L}_{A_{-1}} \left(\sum_{\alpha=5}^8 T_\alpha\right)^H$. Then the set $\{R_H(f_{i_j,\alpha_j,\beta_j}); 1 \le j \le p\} \cup B$

consists of linearly independent invariants over \mathbb{C} .

iv) If $R_j = R_H(f_{j,\alpha_j,\beta_j}) \not\equiv \text{const}, R_j|_{T_j} = \infty$ and $R_i = R_H(f_{i,\alpha_i,\beta_i})$ has $R_i|_{T_j} \not\equiv \text{const}$ then for any subgroup H_o of H the projective maps

$$\Psi^{H_o}: X/H_o \longrightarrow \mathbb{P}(\mathcal{L}^{H_o}), \qquad \Phi^{H_o}: \widehat{\mathbb{B}/\Gamma_{H_o}} \longrightarrow \mathbb{P}(j_1[\Gamma_{H_o}, 1])$$

are of rank $\mathrm{rk}\Phi^{H_o} = \mathrm{rk}\Psi^{H_o} = 2.$

v) If the group H' is obtained from the group H by replacing all $\tau_{33}^n I^k J^l \theta^m \in H$ with $\tau_{33}^n I^l J^k \theta^m$, then the spaces of modular forms $j_1[\Gamma_{H'}, 1] \simeq j_1[\Gamma_H, 1]$ are isomorphic and the logarithmic-canonical maps have equal rank $\mathrm{rk}\Phi^H = \mathrm{rk}\Phi^{H'}$.

Proof: i) By Theorem 9 ii), $\mathcal{L} = \operatorname{Span}_{\mathbb{C}}(f_i; 0 \le 6)$. Therefore any $f \in \mathcal{L}$ is a \mathbb{C} -linear combination $f = \sum_{i=0}^{6} c_i f_i$. Due to *H*-invariance of *f* and the linearity of the representation of *H* in Aut(\mathcal{L}), Reynolds operator

$$|H|f = R_H(f) = \sum_{i=0}^{6} c_i R_H(f_i).$$

ii) Let $\omega_s \in j_1 \left[\Gamma_{-1}^{(6,8)}, 1 \right]^H$ are the modular forms, which transfer to $R_H(f_{i,\alpha_s,\beta_s})$, $1 \leq s \leq 2$. Since $\omega_1(\kappa_i) \neq 0$, there exists $c_i \in \mathbb{C}$, such that $\omega'_i = \omega_2 - c_i \omega_1$ vanishes at κ_i . By the assumption $(R_H(f_{i,\alpha_s,\beta_s}))_{\infty} \subseteq \operatorname{Orb}_H(T_i) + \sum_{\alpha=5}^{8} T_{\alpha}$, the transfer $F_i \in \mathcal{L}^H$ of ω'_i belongs to $\operatorname{Span}_{\mathbb{C}}(1, f_{56}, f_{78})^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{78}))$.

iii) As far as the transfer $\operatorname{Trans}_{1}^{H} : j_{1}[\Gamma_{H}, 1] \to \mathcal{L}$ is a \mathbb{C} -linear isomorphism, it suffices to establish the linear independence of the corresponding modular forms $\{\omega_{ij}; 1 \leq j \leq p\} \cup \{\omega_{b}; b \in B\}$. Evaluating the \mathbb{C} -linear combination $\sum_{j=1}^{p} c_{ij}\omega_{ij} + \sum_{b \in B} c_{b}\omega_{b} = 0$ at $\bar{\kappa}_{i_{1}}, \ldots, \bar{\kappa}_{i_{p}}$, one obtains $c_{i_{j}} = 0$, according to $\omega_{i_{j}}(\bar{\kappa}_{i_{s}}) = \delta_{j}^{s} = \begin{cases} 1 & \text{for } j = s \\ 0 & \text{for } j \neq s \end{cases}$ and $\omega_{b}(\bar{\kappa}_{i_{j}}) = 0, b \in B, 1 \leq j \leq p$. Then $\sum_{b \in B} \omega_{b} = 0$ requires the vanishing of all c_{b} , due to the linear independence of B. iv) If H_{o} is a subgroup of H then \mathcal{L}^{H} is a subspace of $\mathcal{L}^{H_{o}}, j_{1}[\Gamma_{H}, 1]$ is a subspace of $j_{1}[\Gamma_{H_{o}}, 1]$ and $\Psi^{H} = \operatorname{pr}^{\mathcal{L}}\Psi^{H_{o}}, \Phi^{H} = \operatorname{pr}^{\Gamma_{H}}\Phi^{H_{o}}$ for the projections $\operatorname{pr}^{\mathcal{L}}$:

of $j_1[\Gamma_{H_o}, 1]$ and $\Psi^H = \mathrm{pr}^{\mathcal{L}}\Psi^{H_o}$, $\Phi^H = \mathrm{pr}^{\Gamma_H}\Phi^{H_o}$ for the projections $\mathrm{pr}^{\mathcal{L}}$: $\mathbb{P}(\mathcal{L}^{H_o}) \to \mathbb{P}(\mathcal{L}^H)$, $\mathrm{pr}^{\Gamma_H} : \mathbb{P}(j_1[\Gamma_{H_o}, 1]) \to \mathbb{P}(j_1[\Gamma_H, 1])$. That is why, it suffices to justify that $\mathrm{rk}\Phi^H = \mathrm{rk}\Psi^H = 2$ is maximal. Assume the opposite and consider $R_i, R_j : X/H \dots \gg \mathbb{P}^1$. The commutative diagram

has surjective R_j , as far as $R_j \not\equiv \text{const.}$ If the image $C = (R_i, R_j)(X/H)$ is a curve, then the projection $\text{pr}_2 : C \to \mathbb{P}^1$ has only finite fibers. In particular, $\text{pr}_2^{-1}(\infty) = R_i((R_j)_\infty) \times \infty \supseteq R_i(T_j) \times \infty$ consists of finitely many points. However, $R_i(T_j) = \mathbb{P}^1$ as an image of the non-constant elliptic function $R_i :$ $T_j \longrightarrow \mathbb{P}^1$. The contradiction implies that $\dim_{\mathbb{C}} C = 2$ and $\text{rk}\Psi^H = 2$.

v) The transposition of the holomorphic coordinates $(u, v) \in \mathbb{C}^2$ affects nontrivially the constructed σ -quotients. However, one can replace the equations $u - i^k v = 0$ of T_k , $1 \le k \le 4$ by $v - i^{-k} u = 0$ and repeat the above considerations with interchanged u, v. The dimension of $j_1[\Gamma_H, 1]$ and the rank of Φ^H are invariant under the transposition of the global holomorphic coordinates on $\widetilde{A_{-1}} = \mathbb{C}^2$.

With a slight abuse of notation, we write g(f) instead of $g^*(f)$, for $g \in G_{-1}$, $f \in \mathcal{L} = \mathcal{L}_{A_{-1}}\left(T_{-1}^{(6,8)}, \left(T_{-1}^{(6,8)}\right)^{\text{sing}}\right)$.

Lemma 12. The generators τ_{33} , I, J, θ of G_{-1} act on the binary parallel and triangular σ -quotients from Corollary 9 as follows:

Proof: Making use of Lemma 6 and Corollary 8, one computes that

$$\begin{aligned} \tau_{33}\sigma(u-1) &= -e^{\pi u + \pi i u}\sigma(u+\omega_1-\omega_2), \ \ \tau_{33}\sigma(u+\omega_1-\omega_2) = e^{-2\pi u}\sigma(u-1) \\ \tau_{33}\sigma(u-\omega_1) &= -e^{\pi i u}\sigma(u-\omega_2), \ \ \tau_{33}\sigma(u-\omega_2) = -e^{-\pi u}\sigma(u-\omega_1) \\ \tau_{33}(\Sigma_1) &= -ie^{-\frac{\pi}{2}}\Sigma_1, \ \ \tau_{33}(\Sigma_2) = e^{-\pi}\Sigma_2, \ \ \tau_{33}(\Sigma_3) = ie^{-\frac{\pi}{2}}\Sigma_3, \ \ \tau_{33}(\Sigma_4) = \Sigma_4 \\ \tau_{33}(\Sigma_5) &= e^{-\pi u - \pi i u}\Sigma_6, \ \ \tau_{33}(\Sigma_6) = e^{\pi u + \pi i u}\Sigma_5 \\ \tau_{33}(\Sigma_7) &= e^{-\pi v - \pi i v}\Sigma_8, \ \ \tau_{33}(\Sigma_8) = e^{\pi v + \pi i v}\Sigma_7 \\ I\sigma(u-1) &= ie^{-\pi u + \pi i u}\sigma(u-1), \ \ I\sigma(u+\omega_1-\omega_2) = -e^{\pi u}\sigma(u+\omega_1-\omega_2) \\ I\sigma(u-\omega_1) &= -ie^{\pi i u}\sigma(u-\omega_2), \ \ I\sigma(u-\omega_2) = i\sigma(u-\omega_1) \\ I(\Sigma_1) &= ie^{-\pi i u + \pi i v}\Sigma_4, \ \ I(\Sigma_2) &= ie^{-\pi i u - \pi v}\Sigma_1 \\ I(\Sigma_3) &= ie^{-\pi i u - \pi i v}\Sigma_2, \ \ I(\Sigma_4) &= ie^{-\pi i u + \pi v}\Sigma_3 \end{aligned}$$

$$\begin{split} I(\Sigma_5) &= -\mathrm{e}^{-\pi\mathrm{i}u}\Sigma_6, \ I(\Sigma_6) = -\mathrm{e}^{\pi\mathrm{i}u}\Sigma_5, \ I(\Sigma_7) = \Sigma_7, \ I(\Sigma_8) = \Sigma_8\\ J\sigma(v+\mu) &= I\sigma(u+\mu)|_{u=v}, \quad \mu \in \mathbb{C}\\ 4J(\Sigma_1) &= \Sigma_2, \quad J(\Sigma_2) = \Sigma_3, \quad J(\Sigma_3) = \Sigma_4, \qquad J(\Sigma_4) = \Sigma_1\\ J(\Sigma_5) &= \Sigma_5, \quad J(\Sigma_6) = \Sigma_6, \quad J(\Sigma_7) = -\mathrm{e}^{-\pi\mathrm{i}v}\Sigma_8, \quad J(\Sigma_8) = -\mathrm{e}^{\pi\mathrm{i}v}\Sigma_7\\ \theta\sigma(u+\mu) &= \sigma(v+\mu), \quad \mu \in \mathbb{C}\\ \theta(\Sigma_1) &= -\mathrm{i}\mathrm{e}^{\pi u+\pi\mathrm{i}v}\Sigma_3, \ \theta(\Sigma_2) = \Sigma_2\\ \theta(\Sigma_3) &= \mathrm{i}\mathrm{e}^{-\pi\mathrm{i}u-\pi v}\Sigma_1, \quad \theta(\Sigma_4) = -\mathrm{e}^{\pi u-\pi\mathrm{i}u-\pi v+\pi\mathrm{i}v}\Sigma_4\\ \theta(\Sigma_5) &= \Sigma_7, \ \theta(\Sigma_6) = \Sigma_8, \ \theta(\Sigma_7) = \Sigma_5, \ \theta(\Sigma_8) = \Sigma_6. \end{split}$$

The following lemma is an immediate consequence of Lemma 6 and Corollary 7.

Lemma 13.

$$\begin{aligned} \frac{f_{157}}{\Sigma_1}\Big|_{T_1} &= -\mathrm{i}\mathrm{e}^{-\frac{\pi}{2}}, \ \frac{f_{168}}{\Sigma_1}\Big|_{T_1} = \mathrm{e}^{-\pi}, \ \frac{f_{258}}{\Sigma_2}\Big|_{T_2} = \mathrm{e}^{-\pi}, \ \frac{f_{267}}{\Sigma_2}\Big|_{T_2} = \mathrm{e}^{-\pi} \\ \frac{f_{357}}{\Sigma_3}\Big|_{T_3} &= \mathrm{e}^{-\pi}, \ \frac{f_{368}}{\Sigma_3}\Big|_{T_3} = \mathrm{i}\mathrm{e}^{-\frac{\pi}{2}}, \ \frac{f_{458}}{\Sigma_4}\Big|_{T_4} = -\mathrm{i}\mathrm{e}^{-\frac{\pi}{2}}, \ \frac{f_{467}}{\Sigma_4}\Big|_{T_4} = \mathrm{i}\mathrm{e}^{-\frac{\pi}{2}} \\ \frac{f_{157} + \mathrm{i}\mathrm{e}^{\frac{\pi}{2}}f_{357}}{\Sigma_5}\Big|_{T_5} = 0, \ \frac{f_{258} - \mathrm{i}\mathrm{e}^{-\frac{\pi}{2}}f_{458}}{\Sigma_5}\Big|_{T_5} = 0. \end{aligned}$$

Lemma 14.

$$[(f_{157} - ie^{\frac{\pi}{2}}f_{168}) + c(f_{357} - ie^{-\frac{\pi}{2}}f_{368})]|_{T_2} = ie^{-\frac{\pi}{2}-\pi v} \left(1 + ce^{-\frac{\pi}{2}}\right)$$
$$\frac{\sigma((1+i)v + \omega_3)}{\sigma((1+i)v)} \left[e^{(1+i)\pi v}\frac{\sigma(v-\omega_2)^2}{\sigma(v-\omega_1)^2} + e^{-(1+i)\pi v}\frac{\sigma(v-\omega_1)^2}{\sigma(v-\omega_2)^2}\right]$$

is non-constant for all $c \in \mathbb{C} \setminus \{-e^{\overline{2}}\}.$

Proof: Note that

$$f(v) = [(f_{157} - ie^{\frac{\pi}{2}} f_{168}) + c(f_{357} - ie^{-\frac{\pi}{2}} f_{368})]|_{T_2}$$

$$= \left[ie^{-\frac{\pi}{2} - \pi v} \Sigma_1(-v, v) - ce^{-\pi + \pi i v} \Sigma_3(-v, v)\right]$$

$$\times [\Sigma_5(-v) \Sigma_7(v) + \Sigma_6(-v) \Sigma_8(v)]$$

$$= ie^{-\frac{\pi}{2} - \pi v} \left(1 + ce^{-\frac{\pi}{2}}\right) \frac{\sigma((1+i)v - \omega_3)}{\sigma((1+i)v)}$$

$$\times \left[e^{(1+i)\pi v} \frac{\sigma(v - \omega_2)^2}{\sigma(v - \omega_1)^2} + e^{-(1+i)\pi v} \frac{\sigma(v - \omega_1)^2}{\sigma(v - \omega_2)^2}\right]$$

making use of Lemma 6 and Corollary 7. Obviously, f(v) has no poles outside $\mathbb{Q}(i)$. It suffices to justify that $\lim_{v \to 0} f(v) = \infty$, in order to conclude that $f(v) \not\equiv$ const. To this end, use $\sigma(\omega_2) = i\sigma(\omega_1)$ to observe that

$$f(v)\sigma((1+i)v)\Big|_{v=0} = 2ie^{-\frac{\pi}{2}}\left(1+ce^{-\frac{\pi}{2}}\right)\sigma(\omega_3) \neq 0$$

whenever $c \neq -e^{\frac{\pi}{2}}$, while $\sigma((1+i)v)|_{v=0} = 0$.

4. Basic Results

Lemma 15. For $H = \langle IJ^2, \tau_{33}J^2 \rangle$, $\langle I^2J, \tau_{33}I^2 \rangle$ with rational A_{-1}/H and any $-\text{Id} \in H \leq G_{-1}$, the map $\Phi^H : \widehat{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1])$ is constant.

Proof: By Lemma 11 (iv), the assertion for $\langle I^2 J, \tau_{33} I^2 \rangle$ is a consequence of the one for $\langle IJ^2, \tau_{33}J^2 \rangle$. In the case of $H = \langle IJ^2, \tau_{33}J^2 \rangle$, the space \mathcal{L}^H is spanned by Reynolds operators

$$R_H(f_{56}) = 0, \qquad R_H(f_{78}) = 0$$

 $\begin{aligned} R_H(f_{157}) &= f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{168} + \mathrm{e}^{\frac{\pi}{2}} f_{267} - \mathrm{e}^{\frac{\pi}{2}} f_{258} + \mathrm{ie}^{\frac{\pi}{2}} f_{357} - f_{368} + \mathrm{i} f_{467} + \mathrm{i} f_{458}. \end{aligned}$ The Γ_H -cusps are $\bar{\kappa}_1 = \bar{\kappa}_2 = \bar{\kappa}_3 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_6$ and $\bar{\kappa}_7 = \bar{\kappa}_8$. By Lemma 13, $\frac{f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{168}}{\Sigma_1} \Big|_{T_1} = 0$, so that $R_H(f_{157})|_{T_1} \neq \infty$. Therefore $R_H(f_{157}) \in \mathcal{L}_2^H = \mathbb{C}$ and $\mathrm{rk}\Phi^H = 0$.

It suffices to observe that -Id changes the signs of the \mathbb{C} -basis

$$f_{56}, f_{78}, f_{157}, f_{258}, f_{368}, f_{467}$$
 (1)

of $\mathcal{L} = \mathcal{L}_{A_{-1}} \left(T_{-1}^{(6,8)}, \left(T_{-1}^{(6,8)} \right)^{\text{sing}} \right)$. Then for $H_o = \langle -\text{Id} \rangle$ the space \mathcal{L}^{H_o} is generated by $R_{H_o}(1) = 1$. Any subgroup $H_o \leq H \leq G_{-1}$ decomposes into cosets $H = \bigcup_{i=1}^k h_i H_o$ and $R_H = \sum_{i=1}^k h_i R_{H_o}$ vanishes on (1). Thus, $\mathcal{L}^H = \mathbb{C}$ and $\mathrm{rk}\Phi^H = 0$.

Note that $A_{-1}/\langle -\text{Id} \rangle$ has 16 double points, whose minimal resolution is the Kummer surface X_{-1} of A_{-1} . Thus, $H \ni -\text{Id}$ exactly when the minimal resolution Y of the singularities of A_{-1}/H is covered by a smooth model of X_{-1} . More precisely, all A_{-1}/H with $-\text{Id} \in H$ have vanishing irregularity $0 \le q(A_{-1}/H) \le q(X_{-1}) = 0$. These are the Enriques $A_{-1}/\langle -\text{Id}, \tau_{33}I^2 \rangle$, all K3 quotients A_{-1}/H

with $\langle \tau_{33}^n \rangle \neq H \leq K = \text{kerdet}\mathcal{L}$, except $A_{-1}/\langle \tau_{33}(-\text{Id}) \rangle$ and the rational A_{-1}/H with $\tau_{33}IJ \in H$ for $0 \leq n \leq 1$ or $\langle -\text{Id}, h_1 \rangle \leq H$ for

$$h_1 \in \{I^{2m}J^{2-2m}, \ \tau^m_{33}I, \ \tau^m_{33}J, \ \tau^m_{33}I^lJ^{-l}\theta; \ 0 \le m \le 1, \ 0 \le l \le 3\}$$

Lemma 16. The non-trivial subgroups $H \not\supseteq -\text{Id } of G_{-1}$ are i) cyclic of order two

$$H_2(m,l) = \langle \tau_{33} I^{2m} J^{2l} \rangle$$
 with $0 \le m, l \le 1$

 $\begin{aligned} H_2^{\theta}(n,k) &= \langle \tau_{33}^n I^k J^{-k} \theta \rangle \quad \text{with} \quad 0 \leq n \leq 1, \ 0 \leq k \leq 3, \ H_2' &= \langle I^2 \rangle, \ H_2'' = \langle J^2 \rangle \\ \text{ii) cyclic of order four} \end{aligned}$

$$\begin{split} H'_4(n,m) &= \langle \tau^n_{33} I J^{2m} \rangle \quad \text{with} \quad 0 \le n, m \le 1 \\ H''_4(n,m) &= \langle \tau^n_{33} I^{2m} J \rangle \quad \text{with} \quad 0 \le n, m \le 1 \end{split}$$

iii) isomorphic to Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$\begin{split} H_{2\times2}'(m) &= \langle \tau_{33}J^{2m}, I^2 \rangle \quad \text{with} \quad 0 \le m \le 1 \\ H_{2\times2}''(m) &= \langle \tau_{33}I^{2m}, J^2 \rangle \quad \text{with} \quad 0 \le m \le 1 \\ H_{2\times2}^{\theta}(k) &= \langle I^k J^{-k} \theta, \tau_{33} \rangle \quad \text{with} \quad 0 \le k \le 1 \\ H_{2\times2}^{\theta}(n,k) &= \langle \tau_{33}^n I^k J^{-k} \theta, \tau_{33} I^2 J^2 \rangle \quad \text{with} \quad 0 \le n, k \le 1 \end{split}$$

iv) isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$

$$\begin{split} H'_{4\times 2}(m,l) &= \langle IJ^{2m},\tau_{33}J^{2l}\rangle \quad \text{with} \quad 0 \leq m,l \leq 1 \\ H''_{4\times 2}(m,l) &= \langle I^{2m}J,\tau_{33}I^{2l}\rangle \quad \text{with} \quad 0 \leq m,l \leq 1. \end{split}$$

Proof: If *H* is a subgroup of G_{-1} , which does not contain -Id, then $H \subseteq S = \{g \in G_{-1}; -\text{Id} \notin \langle g \rangle\}$. Decompose $G_{-1} = G'_{-1} \cup G'_{-1}\theta$ into cosets modulo the abelian subgroup

$$G'_{-1} = \{\tau_{33}^n I^k J^l; 0 \le n \le 1, 0 \le k, l \le 3\} \le G_{-1}.$$

The cyclic group, generated by $(\tau_{33}^n I^k J^l \theta)^2 = (IJ)^{k+l}$ does not contain $-Id = (IJ)^2$ if and only if $k + l \equiv 0 \pmod{4}$. If $S^{(r)} = \{g \in S; g \text{ is of order } r\}$ then

$$S \cap G'_{-1}\theta = \{\tau_{33}^n I^k J^{-k}\theta; \ 0 \le n \le 1, \ 0 \le k \le 3\} = S^{(2)} \cap G'_{-1}\theta =: S_1^{(2)}$$

and $S \cap G'_{-1}\theta \subseteq S^{(2)}$ consists of elements of order two. Concerning $S \cap G'_{-1}$, observe that $(\tau_{33}^n I^k J^{k+2m})^2 = (IJ)^{2k} \in S$ for $0 \le n, m \le 1, 0 \le k \le 3$ requires k = 2p to be even. Consequently

$$\begin{aligned} \{\tau_{33}^n I^k J^l; \, k \equiv l \pmod{2}\} \cap S \\ &= \{\tau_{33} I^{2m} J^{2l}, \ I^2, \ J^2; \, 0 \le m, l \le 1\} = S^{(2)} \cap G'_{-1} =: S_0^{(2)} \end{aligned}$$

$$\begin{aligned} \{\tau_{33}^n I^k J^l; \, k \equiv l+1 (\text{mod } 2)\} \cap S \\ &= \{\tau_{33}^n I^{2m+1} J^{2l}, \tau_{33}^n I^{2m} J^{2l+1}; \, 0 \le n, m, l \le 1\} = S^{(4)}. \end{aligned}$$

In such a way, one obtains $S = \{ \text{Id} \} \cup S_0^{(2)} \cup S_1^{(2)} \cup S^{(4)}$ of cardinality |S| = 31. If a subgroup H of G_{-1} is contained in S, then $|H| \leq |S| = 31$ divides $|G_{-1}| = 64$, i.e., |H| = 1, 2, 4, 8 or 16. The only subgroup $H < G_{-1}$ of |H| = 1 is the trivial one $H = \{ \text{Id} \}$. The subgroups $-\text{Id} \notin H < G_{-1}$ of order two are the cyclic ones, generated by $h \in S_0^{(2)} \cup S_1^{(2)}$. We denote $H_2(m, l) = \langle \tau_{33}I^{2m}J^{2l} \rangle$ for $0 \leq m, l \leq 1$, $H_2^{\theta}(n, k) = \langle \tau_{33}^n I^k J^{-k} \theta \rangle$ for $0 \leq n \leq 1$, $0 \leq k \leq 3$ and $H'_2 = \langle I^2 \rangle, H''_2 = \langle J^2 \rangle.$

For any $h \in S^{(4)}$ one has $\langle h \rangle = \langle h^3 \rangle$, so that the subgroups $-\text{Id} \notin H \simeq \mathbb{Z}_4$ of G_{-1} are depleted by $H'_4(n,m) = \langle \tau^n_{33}IJ^{2m} \rangle$, $H''_4(n,m) = \langle \tau^n_{33}I^{2m}J \rangle$ with $0 \le n, m \le 1$.

The subgroups $-\text{Id} \notin H \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ of G_{-1} are generated by commuting $g_1, g_2 \in S^{(2)} = S^{(2)}_0 \cup S^{(2)}_1$. If $g_1, g_2 \in S^{(2)}_1$ then $g_1g_2 \in G'_{-1}$, so that one can always assume that $g_2 \in S^{(2)}_0$. Any $g_1 \neq g_2$ from $S^{(2)}_0 \subset G'_{-1}$ generate a Klein group of order 4. Moreover, if

$$S_{0,1}^{(2)} = \{\tau_{33}I^{2m}J^{2l}; \ 0 \le m, l \le 1\}, \qquad S_{0,0}^{(2)} = \{I^2, J^2\}$$

then for any $g_1, g_2 \in S_{0,1}^{(2)}$ with $g_1g_2 \in S$ there follows $g_1g_2 \in S_{0,0}^{(2)}$. Thus, any $S_0^{(2)} \supset H \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ has at least one generator $g_2 \in S_{0,0}^{(2)}$. The requirement $I^2J^2 = -\mathrm{Id} \notin H$ specifies that $g_1 \in S_{0,1}^{(2)}$. In the case of $g_2 = I^2$ there is no loss of generality to choose $g_1 = \tau_{33}J^{2m}$, in order to form $H'_{2\times 2}(m)$. Similarly, for $g_2 = J^2$ it suffices to take $g_1 = \tau_{33}I^{2m}$, while constructing $H''_{2\times 2}(m)$. In order to determine the subgroups $-\mathrm{Id} \notin H = \langle g_1 \rangle \times \langle g_2 \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ with $g_1 \in S_1^{(2)}, g_2 \in S_0^{(2)}$, note that $g_1 = \tau_{33}^n I^k J^{-k}\theta$ does not commute with I^2, J^2 and commutes with $g_2 = \tau_{33}I^{2m}J^{2l}$ if and only if $2m \equiv 2l \pmod{4}$, i.e., $0 \leq m = l \leq 1$. Bearing in mind that $\langle \tau_{33}^n I^k J^{-k}\theta, \tau_{33} I^{2m} J^{2m} \rangle = \langle \tau_{33}^{n+1} I^{k+2m} J^{-k+2m}\theta, \tau_{33} I^{2m} J^{2m} \rangle$,

one restricts the values of k to $0 \le k \le 1$. For m = 0 denote $H_{2\times 2}^{\theta}(k) = \langle I^k J^{-k} \theta, \tau_{33} \rangle$. For m = 1 put $H_{2\times 2}^{\theta}(n,k) = \langle \tau_{33}^n I^k J^{-k} \theta, \tau_{33} I^2 J^2 \rangle$.

Let $-\operatorname{Id} \notin H \subset S$ be a subgroup of order 8. The non-abelian such H are isomorphic to quaternionic group $\mathbb{Q}_8 = \langle s, t; s^4 = \operatorname{Id}, s^2 = t^2, sts = t \rangle$ or to dihedral group $\mathbb{D}_4 = \langle s, t; s^4 = \operatorname{Id}, t^2 = \operatorname{Id}, sts = t \rangle$. Note that $s \in S^{(4)}$ and sts = t require $st \neq ts$. As far as $S^{(4)} \cup S_0^{(2)} \subset G'_{-1}$ for the abelian group $G'_{-1} = \langle \tau_{33}, I, J \rangle$, it suffices to consider $t = \tau_{33}^n I^k J^{-k} \theta \in S_1^{(2)}$ and $s = \tau_{33}^n I^p J^{2l+1-p} \in S^{(4)}$ with $0 \leq n, m, l \leq 1, 0 \leq p, k \leq 3$. However, $sts = \tau_{33}^n I^{k+2l+1} J^{k+2l+1} \theta \neq t$ reveals the non-existence of a non-abelian group $-\operatorname{Id} \notin H \leq G_{-1}$ of order 8.

The abelian groups $H \subset S = \{ \text{Id} \} \cup S^{(2)} \cup S^{(4)}$ of order 8 are isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Any $\mathbb{Z}_4 \times \mathbb{Z}_2 \simeq H \subset S$ is generated by $s = \tau_{33}^m I^p J^{2l+1-p} \in S^{(4)}$ and $t \in S_0^{(2)}$, as far as $t' = \tau_{33}^n I^k J^{-k} \theta \in S_1^{(2)}$ has

$$st' = \tau_{33}^{m+n} I^{p+k} J^{2l+1-(p+k)} \theta \neq \tau_{33}^{m+n} I^{2l+1-(p-k)} J^{p-k} \theta = t's.$$

For $s = \tau_{33}^n I^{2m+1} J^{2l} \in S^{(4)}$ there holds $\langle s, t \rangle = \langle s^3, t \rangle$ and it suffices to consider $s = \tau_{33}^n I J^{2l}$. Further, $t \notin \langle s^2 \rangle = \langle I^2 \rangle$ and $s^2 t \neq -\text{Id}$ specify that $t = \tau_{33} I^{2p} J^{2q}$ for some $0 \leq p, q \leq 1$. Replacing eventually t by $ts^2 = tI^2$, one attains $t = \tau_{33} J^{2q}$. On the other hand, the generator $s = \tau_{33} I J^{2l} \in S^{(4)}$ of $H = \langle s, t \rangle$ can be restored by $st = I J^{2(l+q)}$, so that $H = H'_{4\times 2}(l,q) = \langle I J^{2l}, \tau_{33} J^{2q} \rangle$ for some $0 \leq l, q \leq 1$. Exchanging I with J, one obtains the remaining groups $H''_{4\times 2}(l,q) = \langle I^{2l}J, \tau_{33} I^{2q} \rangle \simeq \mathbb{Z}_4 \times \mathbb{Z}_2$, contained in S.

If $-\text{Id} \notin H \subset S$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ then arbitrary different elements $s, t, r \in H$ of order two commute and generate H. For any $x \in S$ and $M \subseteq S$, consider the centralizer $C_M(x) = \{y \in M; xy = yx\}$ of x in M. Looking for $s \in S^{(2)}, t \in C_{S^{(2)}}(s)$ and $r \in C_{S^{(2)}}(s) \cap C_{S^{(2)}}(t)$, one computes that

$$\begin{split} C_{S^{(2)}}(\tau_{33}^n I^2) &= C_{S^{(2)}}(\tau_{33}^n J^2) = S_0^{(2)} \\ C_{S^{(2)}}(\tau_{33} I^{2m} J^{2m}) = S^{(2)} = S_0^{(2)} \cup S_1^{(2)} \\ C_{S^{(2)}}(\tau_{33}^n I^{2m} J^{-2m} \theta) &= \{\tau_{33}^p I^{2q} J^{-2q} \theta, \ \tau_{33} I^{2p} J^{2p}; \ 0 \le p, q \le 1\} \\ C_{S^{(2)}}(\tau_{33}^n I^{2m+1} J^{-2m-1} \theta) &= \{\tau_{33}^p I^{2q+1} J^{-2q-1} \theta, \ \tau_{33} I^{2p} J^{2p}; \ 0 \le p, q \le 1\}. \end{split}$$

Any subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq H \subset {\text{Id}} \cup S_0^{(2)} \cup S_1^{(2)}$ intersects $S_1^{(2)}$, due to $|S_0^{(2)}| = 6$. That allows to assume that $s \in S_1^{(2)}$ and observe that

$$C_{S^{(2)}}(s) = \{s, \ (-\mathrm{Id}\,)s, \ \tau_{33}s, \ \tau_{33}(-\mathrm{Id}\,)s, \ \tau_{33}, \ \tau_{33}(-\mathrm{Id}\,)\}.$$

If $t = \tau_{33} I^{2p} J^{2p} \in C_{S^{(2)}}(s)$ then $C_{S^{(2)}}(t) = S^{(2)}$, so that

$$H \setminus \{ \mathrm{Id}\,, s, t \} \subseteq [C_{S^{(2)}}(s) \cap C_{S^{(2)}}(t)] \setminus \{ s, t \} = C_{S^{(2)}} \setminus \{ s, t \}$$
(2)

with $5 = |H \setminus {\mathrm{Id}, s, t}| \le |C_{S^{(2)}}(s) \setminus {s, t}| = 4$ is an absurd. For $t \in C_{S^{(2)}}(s) \setminus {\tau_{33}I^{2p}J^{2p}; 0 \le p \le 1}$ one has $C_{S^{(2)}}(t) = C_{S^{(2)}}(s)$, which again leads to (2). Therefore, there is no subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq H \not\supseteq -\mathrm{Id}$ of G_{-1} .

Concerning the non-existence of subgroups $-\operatorname{Id} \not\in H \subset S$ of order 16, the abelian $-\operatorname{Id} \not\in H \subset S$ of order 16 may be isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Any $H \simeq \mathbb{Z}_4 \times \mathbb{Z}_4$ is generated by $s, t \in S^{(4)}$ with $s^2 \neq t^2$. Replacing, eventually, s by s^3 and t by t^3 , one has $s = \tau_{33}^n I J^{2m}$, $t = \tau_{33}^p I^{2q} J$ with $0 \leq n, m, p, q \leq 1$. Then $s^2 t^2 = I^2 J^2 = -\operatorname{Id} \in H$ is an absurd. The groups $H \simeq \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are generated by $s \in S^{(4)}$ and $t, \operatorname{rin} C_{S^{(2)}}(s)$ with $r \in C_{S^{(2)}}(t)$. In the case of $s = \tau_{33}^n I J^{2m}$, the centralizer $C_{S^{(2)}}(s) = S_0^{(2)}$. Bearing in mind that $s^2 = I^2$, one observes that $\langle t, r \rangle \cap \{I^2, J^2\} = \emptyset$. Therefore $t, r \in \{\tau_{33} I^{2p} J^{2q}; 0 \leq p, q \leq 1\}$, whereas $tr \in \{\operatorname{Id}, I^2, J^2, -\operatorname{Id}\}$. That reveals the non-existence of $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq H \not \cong -\operatorname{Id}$. The groups $H \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ contain 15 elements of order two, while $|S^{(2)}| = 14$. Therefore there is no abelian group $-\operatorname{Id} \notin H \leq G_{-1}$ of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian subgroup of order 8 and consist of elements of order 1, 2 or 4. If

$$\langle s,t; s^4 = e, t^4 = e, st = ts^3 \rangle \simeq H \subset S$$

then $s,t\in S^{(4)}\subset G'_{-1}=\langle \tau_{33},I,J\rangle$ commute and imply that s is of order two. The assumption

$$\langle a, b, c; a^4 = e, b^2 = e, c^2 = e, cbca^2b = e, ba = ab, ca = ac \rangle \simeq H \subset S$$

requires $b, c \in C_{S^{(2)}}(a) = S_0^{(2)} = \{\tau_{33}I^{2m}J^{2l}, I^2, J^2; 0 \le m, l \le 1\}$. Then b and c commute and imply that $cbca^2b = e = a^2 = e$. Finally, for

$$G_{4,4} = \langle s, t; s^4 = e, t^4 = e, stst = e, ts^3 = st^3 \rangle$$

there follows $s, t \in S^{(4)} \subset G'_{-1}$, whereas st = ts. Consequently, $s^2 = t^2$ and $G_{4,4} = \{s^i t^j; 0 \le i \le 3, 0 \le j \le 1\}$ is of order ≤ 8 , contrary to $|G_{4,4}| = 16$. Thus, there is no subgroup $-\text{Id} \notin H \le G_{-1}$ of order 16.

Throughout, we use the notations $H_{\alpha}^{\beta}(\gamma)$ from Lemma 16 and denote by $\Gamma_{\alpha}^{\beta}(\gamma)$ the corresponding lattices with $\Gamma_{\alpha}^{\beta}(\gamma)/\Gamma_{-1}^{(6,8)} = H_{\alpha}^{\beta}(\gamma)$.

Theorem 17. For the groups $H = H'_{4\times 2}(p,q) = \langle IJ^{2p}, \tau_{33}J^{2q} \rangle$, $H''_{4\times 2}(p,q) = \langle I^{2p}J, \tau_{33}I^{2q} \rangle$, $H'_4(1-m,m) = \langle \tau_{33}^{1-m}IJ^{2m} \rangle$, $H''_4(1-m,m) = \langle \tau_{33}^{1-m}I^{2m}J \rangle$,

 $H'_{2\times 2}(1) = \langle \tau_{33}J^2, I^2 \rangle, \ H''_{2\times 2}(1) = \langle \tau_{33}I^2, J^2 \rangle, \ H^{\theta}_{2\times 2}(n,m) = \langle \tau^n_{33}I^m J^{-m}\theta, \tau_{33}I^2 J^2 \rangle$ with $0 \le p, q \le 1$, $(p,q) \ne (1,1)$ and $0 \le n, m \le 1$ the logarithmic-canonical map

$$\Phi^H: \widehat{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1]) = \mathbb{P}^1$$

is dominant and not globally defined. The Baily-Borel compactifications \mathbb{B}/Γ_H are birational to ruled surfaces with elliptic bases whenever $H = H'_{4\times 2}(0,0)$, $H''_{4\times 2}(0,0)$, $H''_{4}(1,0)$ or $H''_{4}(1,0)$. The remaining ones are rational surfaces.

Proof: According to Lemma 11(v), it suffices to prove the theorem for $H'_{4\times 2}(p,q)$ with $(p,q) \neq (1,1)$, $H'_4(1-m,m)$ $H'_{2\times 2}(1)$ and $H^{\theta}_{2\times 2}(n,m)$. If $H = H'_4(1,0) = \langle \tau_{33}I \rangle$, then \mathcal{L}^H is generated by $1 \in \mathbb{C}$ and Reynolds operators

$$R_H(f_{56}) = 0, \ R_H(f_{78}) = 0, \ R_H(f_{157}) = f_{157} - e^{\frac{\pi}{2}} f_{258} + ie^{\frac{\pi}{2}} f_{357} + if_{458}$$
$$R_H(f_{168}) = f_{168} - if_{267} + ie^{-\frac{\pi}{2}} f_{368} + e^{-\frac{\pi}{2}} f_{467} = ie^{-\frac{\pi}{2}} R_H(f_{368}).$$

There are four $\Gamma'_4(1,0)$ -cusps : $\bar{\kappa}_1 = \bar{\kappa}_2 = \bar{\kappa}_3 = \bar{\kappa}_4$, $\bar{\kappa}_5$, $\bar{\kappa}_6$, $\bar{\kappa}_7 = \bar{\kappa}_8$. Applying Lemma 11 ii) to $T_1 \subset (R_H(f_{157}))_{\infty}, R_H(f_{168})_{\infty} \subseteq \sum_{i=1}^8 T_i$, one concludes that $R_H(f_{168}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{157}))$. Therefore $\mathcal{L}^H \simeq \mathbb{C}^2$ and $\Phi^{H'_4(1,0)}$ is a dominant map to $\mathbb{P}(\mathcal{L}^H) \simeq \mathbb{P}^1$. Since $R_H(f_{157})|_{T_6} \neq \infty$, the entire $[\Gamma'_4(1,0), 1]$ vanishes at $\bar{\kappa}_6$ and $\Phi^{H'_4(1,0)}$ is not defined at $\bar{\kappa}_6$.

The group $H = H'_{4\times 2}(0,0) = \langle I, \tau_{33} \rangle$ contains $F = H'_4(1,0)$ as a subgroup of index two with non-trivial coset representative *I*. Therefore $R_H(f_{56}) = R_F(f_{56}) + IR_F(f_{56}) = 0$, $R_H(f_{78}) = 0$ and $\mathrm{rk}\Phi^{H'_{4\times 2}(0,0)} \leq 1$. Due to

$$R_H(f_{157}) = f_{157} - \mathrm{ie}^{\frac{\pi}{2}} f_{168} - \mathrm{e}^{\frac{\pi}{2}} f_{258} - \mathrm{e}^{\frac{\pi}{2}} f_{267} + f_{368} + \mathrm{ie}^{\frac{\pi}{2}} f_{357} + \mathrm{i} f_{458} - \mathrm{i} f_{467}$$

 $\mathcal{L}^{H} = \operatorname{Span}_{\mathbb{C}}(1, R_{H}(f_{157})). \text{ Lemma 13 provides } \frac{f_{157} - \operatorname{ie}^{\frac{\pi}{2}} f_{168}}{\Sigma_{1}} \Big|_{T_{1}} = -2\operatorname{ie}^{-\frac{\pi}{2}} \neq 0,$ whereas $R_{H}(f_{157})|_{T_{1}} = \infty$. Therefore $\dim_{\mathbb{C}} \mathcal{L}^{H} = 2$ and $\Phi^{H'_{4\times 2}(0,0)}$ is a dominant map to \mathbb{P}^{1} . The $\Gamma_{4\times 2}(0,0)$ -cusps are $\bar{\kappa}_{1} = \bar{\kappa}_{2} = \overline{\kappa_{3}} = \bar{\kappa}_{4}, \bar{\kappa}_{5} = \bar{\kappa}_{6}$ and $\bar{\kappa}_{7} = \bar{\kappa}_{8}.$ Again from Lemma 13, $\frac{f_{157} - \operatorname{e}^{\frac{\pi}{2}} f_{258} + \operatorname{ie}^{\frac{\pi}{2}} f_{357} + \operatorname{i} f_{458}}{\Sigma_{5}} \Big|_{T_{5}} = 0$, so that $R_{H}(f_{157})$ is regular over $T_{5} + T_{6}$. As a result, $\Phi^{H'_{4\times 2}(0,0)}$ is not defined at $\bar{\kappa}_{5} = \bar{\kappa}_{6}.$

For
$$H = H'_4(0,1) = \langle IJ^2 \rangle$$
, the space \mathcal{L}^H is spanned by 1 and Reynolds operators

$$R_H(f_{56}) = 0, \ R_H(f_{78}) = 0, \ R_H(f_{157}) = f_{157} + e^{\frac{\pi}{2}} f_{267} + ie^{\frac{\pi}{2}} f_{357} + if_{467}$$
$$R_H(f_{168}) = f_{168} + if_{258} + ie^{-\frac{\pi}{2}} f_{368} + e^{-\frac{\pi}{2}} f_{458} = iR_H(f_{258}).$$

The $\Gamma'_4(0,1)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_2 = \bar{\kappa}_3 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_6$, $\bar{\kappa}_7$ and $\bar{\kappa}_8$. Note that $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq \sum_{i=1}^8 T_i$, in order to conclude that $R_H(f_{168}) \in \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{157}))$ by Lemma 11 ii). Therefore $\mathcal{L}^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{157})) \simeq \mathbb{C}^2$ and $\Phi^{H'_4(0,1)}$ is a dominant map to \mathbb{P}^1 . Lemma 13 supplies $\frac{f_{157} + \operatorname{ie}^{\frac{\pi}{2}} f_{357}}{\Sigma_5} \Big|_{T_5} = 0$ and justifies that $\Phi^{H'_4(0,1)}$ is not defined at $\bar{\kappa}_5$.

For $H = H'_{4\times 2}(1,0) = \langle IJ^2, \tau_{33} \rangle$ note that $R_H(f_{56}) = 0$, $R_H(f_{78}) = 0$, as far as $H'_4(1,0)$ is a subgroup of $H'_{4\times 2}(1,0)$. Further,

$$R_H(f_{157}) = f_{157} - ie^{\frac{\pi}{2}} f_{168} + e^{\frac{\pi}{2}} f_{267} + e^{\frac{\pi}{2}} f_{258} + ie^{\frac{\pi}{2}} f_{357} + f_{368} + if_{467} - if_{458}$$

has a pole over $\sum_{i=1}^{4} T_i$, according to $\frac{f_{157}-ie^{\frac{\pi}{2}}f_{168}}{\Sigma_1}\Big|_{T_1} = -2ie^{-\frac{\pi}{2}} \neq 0$ by Lemma 13 and the transitiveness of the $H'_4(1,0)$ -action on $\{\kappa_i; 1 \leq i \leq 4\}$. Therefore $\mathcal{L}^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{157})) \simeq \mathbb{C}^2$ and $\Phi^{H'_{4\times 2}(1,0)}$ is a dominant map to \mathbb{P}^1 . One computes immediately that the $\Gamma'_{4\times 2}(1,0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_2 = \bar{\kappa}_3 = \bar{\kappa}_4, \bar{\kappa}_5 = \bar{\kappa}_6$ and $\bar{\kappa}_7 = \bar{\kappa}_8$. Again from Lemma 13, $\frac{f_{157}+e^{\frac{\pi}{2}}f_{258}+ie^{\frac{\pi}{2}}f_{357}-if_{458}}{\Sigma_5}\Big|_{T_5} = 0, R_H(f_{157})$ has no pole at $T_5 + T_6$ and $\Phi^{H'_{4\times 2}(1,0)}$ is not defined at $\bar{\kappa}_5 = \bar{\kappa}_6$. If $H = H'_{2\times 2}(1) = \langle I^2, \tau_{33}J^2 \rangle$ then

$$R_{H}(f_{56}) = 0, \quad R_{H}(f_{78}) = 4f_{78}, \quad R_{H}(f_{157}) = f_{157} + ie^{\frac{\pi}{2}}f_{168} + ie^{\frac{\pi}{2}}f_{357} - f_{368}$$
$$R_{H}(f_{258}) = f_{258} - f_{267} - ie^{-\frac{\pi}{2}}f_{467} - ie^{-\frac{\pi}{2}}f_{458} \quad \text{and} \quad 1 \in \mathbb{C}$$

span \mathcal{L}^{H} . The $\Gamma'_{2\times 2}(1)$ -cusps are $\bar{\kappa}_{1} = \bar{\kappa}_{3}$, $\bar{\kappa}_{2} = \bar{\kappa}_{4}$, $\bar{\kappa}_{5} = \bar{\kappa}_{6}$ and $\bar{\kappa}_{7} = \bar{\kappa}_{8}$. Lemma 13 reveals that $\frac{f_{157} + ie^{\frac{\pi}{2}} f_{168}}{\Sigma_{1}} \Big|_{T_{1}} = \frac{ie^{\frac{\pi}{2}} f_{357} - f_{368}}{\Sigma_{3}} \Big|_{T_{3}} = \frac{f_{258} - f_{267}}{\Sigma_{2}} \Big|_{T_{2}} = \frac{f_{467} + f_{458}}{\Sigma_{4}} \Big|_{T_{4}} = 0$, so that $R_{H}(f_{157})$, $R_{H}(f_{258}) \in \text{Span}_{\mathbb{C}}(1, f_{78})$ and $\mathcal{L}^{H} \simeq \mathbb{C}^{2}$. As a result, $\Phi^{H'_{2\times2}(1)}$ is a dominant map to \mathbb{P}^{1} , which is not defined at $\bar{\kappa}_{1}$ and $\bar{\kappa}_{2}$. For the group $H = H'_{4\times2}(0, 1) = \langle I, \tau_{33}J^{2} \rangle$, containing $H'_{2\times2}(1) = \langle I^{2}, \tau_{33}J^{2} \rangle$ there follows $R_{H}(f_{56}) = 0$ and $\mathrm{rk}\Phi^{H'_{4\times2}(0,1)} \leq 1$. Therefore $R_{H}(f_{78}) = 8f_{78}$, $R_{H}(f_{157}) = f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{168} + \mathrm{e}^{\frac{\pi}{2}} f_{258} - \mathrm{e}^{\frac{\pi}{2}} f_{267} + \mathrm{ie}^{\frac{\pi}{2}} f_{357} - f_{368} - \mathrm{i}f_{458} - \mathrm{i}f_{467}$ and $1 \in \mathbb{C}$ span \mathcal{L}^{H} . The $\Gamma'_{4\times2}(0, 1)$ -cusps are $\bar{\kappa}_{1} = \bar{\kappa}_{2} = \bar{\kappa}_{3} = \bar{\kappa}_{4}, \bar{\kappa}_{5} = \bar{\kappa}_{6}$ and $\bar{\kappa}_{7} = \bar{\kappa}_{8}$. By Lemma 13, $\frac{f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{168}}{\Sigma_{1}}\Big|_{T_{1}} = 0$, so that $R_{H}(f_{157}) \in \mathrm{Span}_{\mathbb{C}}(1, f_{78}) \simeq \mathbb{C}^{2}$. Thus, $\Phi^{H'_{4\times2}(0,1)}$ is a dominant map to \mathbb{P}^{1} , which is not defined at $\bar{\kappa}_{1}$. If $H = H^{\theta}_{2 \times 2}(0,0) = \langle \theta, \tau_{33}I^2J^2 \rangle$ then \mathcal{L}^H is spanned by $1 \in \mathbb{C}$,

$$R_H(f_{56}) = 2(f_{56} + f_{78}), \ R_H(f_{157}) = f_{157} + ie^{\frac{\pi}{2}} f_{168} - e^{\frac{\pi}{2}} f_{357} - if_{368}$$

and $R_H(f_{467}) = 2(f_{467} + f_{458})$, due to $R_H(f_{258}) = 0$. The $\Gamma_2^{\theta}(0, 0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3, \bar{\kappa}_2, \bar{\kappa}_4$ and $\bar{\kappa}_5 = \bar{\kappa}_6 = \bar{\kappa}_7 = \bar{\kappa}_8$. Lemma 13 provides $\frac{f_{157} + ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1}\Big|_{T_1} = 0$, $\frac{f_{467} + f_{458}}{\Sigma_4}\Big|_{T_4} = 0$, whereas $R_H(f_{157}), R_H(f_{467}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56})) \simeq \mathbb{C}^2$. Therefore $\Phi^{H_2^{\theta}(0,0)}$ is a dominant map to \mathbb{P}^1 , which is not defined at $\bar{\kappa}_1, \bar{\kappa}_2$ and $\bar{\kappa}_4$. For $H = H_{2\times 2}^{\theta}(0,1) = \langle IJ^{-1}\theta, \tau_{33}I^2J^2 \rangle$ one has

$$R_H(f_{56}) = 2(f_{56} + if_{78}), \qquad R_H(f_{157}) = 0, \qquad R_H(f_{168}) = 0$$

$$\begin{split} R_{H}(f_{368}) &= 2(f_{368} - \mathrm{ie}^{\frac{\pi}{2}}f_{357}), \ R_{H}(f_{258}) = f_{258} - f_{267} - \mathrm{e}^{-\frac{\pi}{2}}f_{458} - \mathrm{e}^{-\frac{\pi}{2}}f_{467}.\\ \text{The } \Gamma_{2\times2}^{\theta}(0,1)\text{-cusps are }\bar{\kappa}_{1}, \ \overline{\kappa_{3}}, \ \overline{\kappa_{2}} &= \overline{\kappa_{4}}, \ \overline{\kappa_{5}} &= \overline{\kappa_{6}} &= \overline{\kappa_{7}} &= \overline{\kappa_{8}}. \ \text{Lemma 13}\\ \text{implies that } \frac{f_{368} - \mathrm{ie}^{\frac{\pi}{2}}f_{357}}{\Sigma_{3}}\Big|_{T_{3}} &= 0, \ \frac{f_{258} - f_{267}}{\Sigma_{2}}\Big|_{T_{2}} &= 0, \ \frac{f_{458} + f_{467}}{\Sigma_{4}}\Big|_{T_{4}} &= 0, \ \text{whereas}\\ R_{H}(f_{368}), R_{H}(f_{258}) \in \mathrm{Span}_{\mathbb{C}}(1, R_{H}(f_{56})) \simeq \mathbb{C}. \ \text{Consequently, } \Phi^{H_{2\times2}^{\theta}(0,1)} \ \text{is a}\\ \text{dominant map to } \mathbb{P}^{1}, \ \text{which is not defined at } \bar{\kappa}_{1}, \ \bar{\kappa}_{2} \ \text{and } \ \bar{\kappa}_{4}. \end{split}$$

In the case of $H = H^{\theta}_{2 \times 2}(1,0) = \langle \tau_{33}\theta, \tau_{33}I^2J^2 \rangle$, the Reynolds operators are

$$R_H(f_{56}) = 2(f_{56} - f_{78}), \qquad R_H(f_{157}) = f_{157} + ie^{\frac{\pi}{2}} f_{168} + if_{368} + e^{\frac{\pi}{2}} f_{357}$$
$$R_H(f_{258}) = 2(f_{258} - f_{267}), \qquad R_H(f_{458}) = 0, \quad R_H(f_{467}) = 0.$$

The $\Gamma_{2\times2}^{\theta}(1,0)$ -cusps are $\bar{\kappa}_1, \bar{\kappa}_3, \bar{\kappa}_2 = \bar{\kappa}_4$ and $\bar{\kappa}_5 = \bar{\kappa}_6 = \bar{\kappa}_7 = \bar{\kappa}_8$. Lemma 13 yields $\frac{f_{157} + ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1}\Big|_{T_1} = \frac{if_{368} + e^{\frac{\pi}{2}} f_{357}}{\Sigma_3}\Big|_{T_3} = \frac{f_{258} - f_{267}}{\Sigma_2}\Big|_{T_2} = 0$. Consequently, $R_H(f_{157}), R_H(f_{258}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56}))$. Bearing in mind that $R_H(f_{56})\Big|_{T_5} = \infty$, one concludes that $\Phi^{H_{2\times2}^{\theta}(1,0)}$ is a dominant map to \mathbb{P}^1 , which is not defined at $\bar{\kappa}_1, \bar{\kappa}_2$ and $\bar{\kappa}_3$.

Finally, for $H=H^{\theta}_{2\times 2}(1,1)=\langle \tau_{33}IJ^{-1}\theta,\tau_{33}I^2J^2\rangle$ one has

$$R_H(f_{56}) = 2(f_{56} - if_{78}), \quad R_H(f_{157}) = 2(f_{157} + ie^{\frac{\pi}{2}}f_{168}), \quad R_H(f_{357}) = 0$$
$$R_H(f_{368}) = 0 \quad \text{and} \quad R_H(f_{258}) = f_{258} - f_{267} + e^{-\frac{\pi}{2}}f_{467} + e^{-\frac{\pi}{2}}f_{458}.$$

The $\Gamma_{2\times2}^{\theta}(1,1)$ -cusps are $\bar{\kappa}_1, \bar{\kappa}_3, \bar{\kappa}_2 = \bar{\kappa}_4$ and $\bar{\kappa}_5 = \bar{\kappa}_6 = \bar{\kappa}_7 = \bar{\kappa}_8$. Lemma 13 implies that $\frac{f_{157} + ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1} \Big|_{T_1} = \frac{f_{258} - f_{267}}{\Sigma_2} \Big|_{T_2} = 0$, so that $R_H(f_{157}), R_H(f_{258}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56})) \simeq \mathbb{C}^2$. As a result, $\Phi^{H_{2\times2}^{\theta}(1,1)}$ is a dominant map to \mathbb{P}^1 , which is not defined at $\bar{\kappa}_1, \bar{\kappa}_3$ and $\bar{\kappa}_2$.

Theorem 18. If $H = H'_{2\times 2}(0) = \langle \tau_{33}, I^2 \rangle$, $H''_{2\times 2}(0) = \langle \tau_{33}, J^2 \rangle$, $H^{\theta}_{2\times 2}(n) = \langle I^n J^{-n}\theta, \tau_{33} \rangle$ with $0 \le n \le 1$, $H'_4(n, n) = \langle \tau^n_{33} I J^{2n} \rangle$, $H''_4(n, n) = \langle \tau^n_{33} I^{2n} J \rangle$ with $0 \le n \le 1$ or $H_2(1, 1) = \langle \tau_{33} I^2 J^2 \rangle$ then the logarithmic-canonical map

$$\Phi^H: \widehat{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1]) = \mathbb{P}^2$$

is dominant and not globally defined. The surface $\widehat{\mathbb{B}}/\Gamma_H$ is K3 for $H = H_2(1, 1)$, rational for $H = H'_4(1, 1)$, $H''_4(1, 1)$ and ruled with an elliptic base for all the other aforementioned H.

Proof: By Lemma 11 v), it suffices to consider $H'_{2\times 2}(0)$, $H^{\theta}_{2\times 2}(n)$, $H'_4(n, n)$ and $H_2(1, 1)$.

In the case of $H=H_{2\times 2}'(0)=\langle \tau_{33},I^2\rangle,$ \mathcal{L}^H is spanned by

$$R_H(f_{56}) = 0, \quad R_H(f_{78}) = 0, \quad R_H(f_{157}) = f_{157} - ie^{\frac{\pi}{2}} f_{168} + ie^{\frac{\pi}{2}} f_{357} + f_{368}$$
$$R_H(f_{258}) = f_{258} + f_{267} - ie^{-\frac{\pi}{2}} f_{458} + ie^{-\frac{\pi}{2}} f_{467} \text{ and } 1 \in \mathbb{C}.$$

The $\Gamma'_{2\times2}(0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_6$ and $\bar{\kappa}_7 = \bar{\kappa}_8$. Lemma 13 provides $\frac{f_{157}-ie^{\frac{\pi}{2}}f_{168}}{\Sigma_1}\Big|_{T_1} = -2ie^{-\frac{\pi}{2}} \neq 0$, whereas $R_H(f_{157})|_{T_1} = \infty$. Similarly, $\frac{f_{258}+f_{267}}{\Sigma_2}\Big|_{T_2} = 2e^{-\pi} \neq 0$ suffices for $R_H(f_{258})|_{T_2} = \infty$. Therefore 1, $R_H(f_{157})$, $R_H(f_{258})$ are linearly independent, according to Lemma 11 iii) and constitute a \mathbb{C} -basis for \mathcal{L}^H . In order to assert that $rk\Phi^{H'_{2\times2}(0)} = 2$, we use that $R_H(f_{258})|_{T_2} = \infty$ and $R_H(f_{157})|_{T_2} \neq \text{const}$ by Lemma 14 with $c = ie^{\frac{\pi}{2}}$. Lemma 13 provides $\frac{f_{157}+ie^{\frac{\pi}{2}}f_{357}}{\Sigma_5}\Big|_{T_5} = 0$, in order to conclude that $R_H(f_{157})|_{T_5} \neq \infty$ and the entire $[\Gamma'_{2\times2}(0), 1]$ vanishes at $\bar{\kappa}_5$. Therefore $\Phi^{H'_{2\times2}(0)}$ is a dominant map to $\mathbb{P}([\Gamma'_{2\times2}(0), 1]) = \mathbb{P}^2$, which is not defined at $\bar{\kappa}_5$.

$$R_H(f_{56}) = 0, \quad R_H(f_{78}) = 0, \quad R_H(f_{157}) = f_{157} - ie^{\frac{\pi}{2}} f_{168} - e^{\frac{\pi}{2}} f_{357} + if_{368}$$
$$R_H(f_{258}) = 2(f_{258} + f_{267}), \qquad R_H(f_{467}) = 0$$

generate \mathcal{L}^{H} . The $\Gamma_{2\times 2}^{\theta}(0)$ -cusps are $\bar{\kappa}_{1} = \bar{\kappa}_{3}$, $\bar{\kappa}_{2}$, $\bar{\kappa}_{4}$ and $\bar{\kappa}_{5} = \bar{\kappa}_{6} = \bar{\kappa}_{7} = \bar{\kappa}_{8}$. According to Lemma 13, $\frac{f_{157} - ie^{\frac{\pi}{2}} f_{168}}{\Sigma_{1}}\Big|_{T_{1}} = -2ie^{-\frac{\pi}{2}} \neq 0$, so that $R_{H}(f_{157})|_{T_{1}} = \infty$. Further, $\frac{f_{258} + f_{267}}{\Sigma_{2}}\Big|_{T_{2}} = 2e^{-\pi} \neq 0$ and the lemma provides $R_{H}(f_{258})|_{T_{2}} = \infty$. Therefore 1, $R_{H}(f_{157})$, $R_{H}(f_{258})$ are linearly independent and $\mathcal{L}^{H} \simeq \mathbb{C}^{3}$ by Lemma 11 iii). We claim that

$$R_H(f_{258})|_{T_1} = -2e^{-\pi iv} \frac{\sigma((1+i)v + \omega_3)}{\sigma((1+i)v)} \left[\frac{\sigma(v-\omega_1)^2}{\sigma(v-\omega_2)^2} + e^{2\pi(1+i)v} \frac{\sigma(v-\omega_2)^2}{\sigma(v-\omega_1)^2} \right]$$

is non-constant. On one hand, $R_H(f_{258})|_{T_1}$ has no poles on $\mathbb{C} \setminus \mathbb{Q}(i)$. On the other hand, $\left| \frac{1}{2} R_H(f_{258}) \right|_{T_1} \sigma((1+i)v) \right|_{v=0} = -\sigma(\omega_3) \left[\frac{1}{i^2} + i^2 \right] \neq 0$, so that $\lim_{T \to 0} [R_H(f_{258})|_{T_1}] = \infty$. According to Lemma 11 iv), $R_H(f_{157})|_{T_1} = \infty$ and $R_H(f_{258})|_{T_1} \neq \text{const}$ suffice for $\Phi^{H_{2\times 2}^{\theta}(0)}$ to be a dominant map to \mathbb{P}^2 . The entire \mathcal{L}^{H} takes finite values on T_{4} , so that $\Phi^{H_{2\times 2}^{\theta}(0)}$ is not defined at $\bar{\kappa}_{4}$.

Concerning $H = H^{\theta}_{2\times 2}(1) = \langle IJ^{-1}\theta, \tau_{33} \rangle$, one computes that

$$R_H(f_{56}) = 0, \qquad R_H(f_{78}) = 0, \qquad R_H(f_{157}) = 2(f_{157} - ie^{\frac{\pi}{2}}f_{168})$$
$$R_H(f_{368}) = 0, \qquad R_H(f_{258}) = f_{258} + f_{267} - e^{-\frac{\pi}{2}}f_{458} + e^{-\frac{\pi}{2}}f_{467}.$$

The $\Gamma_{2\times 2}^{\theta}(1)$ -cusps are $\bar{\kappa}_1, \bar{\kappa}_3, \bar{\kappa}_2 = \bar{\kappa}_4$ and $\bar{\kappa}_5 = \bar{\kappa}_6 = \bar{\kappa}_7 = \bar{\kappa}_8$. By Lemma 13 we have $\frac{f_{157} - ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1}\Big|_{T_1} = -2ie^{-\frac{\pi}{2}} \neq 0$ and $\frac{f_{258} + f_{267}}{\Sigma_2}\Big|_{T_2} = 2e^{-\pi} \neq 0$. Therefore $R_H(f_{157})|_{T_1} = \infty, R_H(f_{258})|_{T_2} = \infty$ and 1, $R_H(f_{157}), R_H(f_{258})$ constitute a \mathbb{C} -basis of \mathcal{L}^H , according to Lemma 11 iii). Applying Lemma 14 with c = 0, one concludes that $R_H(f_{157})|_{T_2} \neq \text{const.}$ Then Lemma 11 iv) implies that $\Phi^{H_{2\times 2}^{\theta}(1)}$ is a dominant map to \mathbb{P}^2 . The lack of $f \in \mathcal{L}^H$ with $f|_{T_3} = \infty$ reveals that $\Phi^{H_{2\times 2}^{\theta}(1)}$ is not defined at $\bar{\kappa}_3$.

If $H = H_4'(0,0) = \langle I \rangle$ then the Reynolds operators are

1

$$R_{H}(f_{56}) = 0, \quad R_{H}(f_{78}) = 4f_{78}, \quad R_{H}(f_{157}) = f_{157} - e^{\frac{\pi}{2}} f_{267} + ie^{\frac{\pi}{2}} f_{357} - if_{467}$$
$$R_{H}(f_{168}) = f_{168} - if_{258} + ie^{-\frac{\pi}{2}} f_{368} - e^{-\frac{\pi}{2}} f_{458} \quad \text{and} \quad R_{H}(1) = 1 \in \mathbb{C}$$
span \mathcal{L}^{H} . The $\Gamma'_{4}(0, 0)$ -cusps are $\bar{\kappa}_{1} = \bar{\kappa}_{2} = \bar{\kappa}_{3} = \bar{\kappa}_{4}, \quad \bar{\kappa}_{5} = \bar{\kappa}_{6}, \quad \bar{\kappa}_{7} \text{ and} \quad \bar{\kappa}_{8}$

According to Lemma 11 ii), the inclusions $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq$ $\sum_{i=1}^{8} T_{i} \text{ suffice for } R_{H}(f_{168}) \in \text{Span}_{\mathbb{C}}(1, R_{H}(f_{78}), R_{H}(f_{157}). \text{ Therefore } \mathcal{L}^{H} \simeq \mathbb{C}^{3}.$ Observe that $R_H(f_{78})|_{T_1} = 4\Sigma_{12}(v) \neq \text{const}$, in order to apply Lemma 11 iv) and assert that $\Phi^{H'_4(0,0)}$ is a dominant map to \mathbb{P}^2 . As far as $\frac{f_{157} + ie^{\frac{\pi}{2}} f_{357}}{\Sigma_5}\Big|_{T_5} = 0$ by Lemma 13, the abelian function $R_H(f_{157})$ has no pole on T_5 . Therefore $\Phi^{H'_4(0,0)}$ is not defined at $\bar{\kappa}_5$.

For
$$H'_4(1,1) = \langle \tau_{33}IJ^2 \rangle$$
 the Reynolds operators are
 $R_h(f_{56}) = 0, \quad R_H(f_{78}) = 4f_{78}, \quad R_H(f_{157}) = f_{157} + e^{\frac{\pi}{2}}f_{258} + ie^{\frac{\pi}{2}}f_{357} - if_{458}$
 $R_H(f_{168}) = f_{168} + if_{267} + ie^{-\frac{\pi}{2}}f_{368} - e^{-\frac{\pi}{2}}f_{467}.$

The $\Gamma'_4(1,1)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_2 = \bar{\kappa}_3 = \bar{\kappa}_4$, $\bar{\kappa}_5$, $\bar{\kappa}_6$ and $\bar{\kappa}_7 = \bar{\kappa}_8$. Due to $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq \sum_{i=1}^{\circ} T_i$, Lemma 11 ii) applies to provide $R_H(f_{168}) \in \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{78}), R_H(f_{157}))$. Thus, $\mathcal{L}^H \simeq \mathbb{C}^3$. According to Lemma 11 iv), $R_H(f_{78})|_{T_1} = 4\Sigma_{12}(v) \neq \operatorname{const}$ suffices for $\Phi^{H'_4(1,1)}$ to be a dominant rational map to \mathbb{P}^2 . Further, $\frac{f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{357}}{\Sigma_5}\Big|_{T_5} = 0$ by Lemma 13 implies that $R_H(f_{157})$ has no pole over T_5 and $\Phi^{H'_4(1,1)}$ is not defined at $\bar{\kappa}_5$. If $H = H_2(1, 1) = \langle \tau_{33} I^2 J^2 \rangle$ then \mathcal{L}^H is generated by

$$1 \in \mathbb{C}, \quad R_H(f_{56}) = 2f_{56}, \quad R_H(f_{78}) = 2f_{78}, \quad R_H(f_{157}) = f_{157} + ie^{\frac{\pi}{2}}f_{168}$$

$$\begin{split} R_{H}(f_{368}) &= f_{368} - \mathrm{ie}^{\frac{\pi}{2}} f_{357}, \quad R_{H}(f_{258}) = f_{258} - f_{267}, \quad R_{H}(f_{467}) = f_{467} + f_{458}. \\ \text{The } \Gamma_{2}(1,1) \text{-cusps are } \bar{\kappa}_{1}, \bar{\kappa}_{2}, \bar{\kappa}_{3}, \bar{\kappa}_{4}, \bar{\kappa}_{5} = \bar{\kappa}_{6} \text{ and } \bar{\kappa}_{7} = \bar{\kappa}_{8}. \text{ By Lemma 13 one} \\ & \text{has } \frac{f_{157} + \mathrm{ie}^{\frac{\pi}{2}} f_{168}}{\Sigma_{1}} \Big|_{T_{1}} = \frac{f_{368} - \mathrm{ie}^{\frac{\pi}{2}} f_{357}}{\Sigma_{3}} \Big|_{T_{3}} = \frac{f_{258} - f_{267}}{\Sigma_{2}} \Big|_{T_{2}} = \frac{f_{467} + f_{458}}{\Sigma_{4}} \Big|_{T_{4}} = 0. \text{ Thus,} \\ & R_{H}(f_{157}), R_{H}(f_{368}), R_{H}(f_{258}), R_{H}(f_{467}) \in \mathrm{Span}_{\mathbb{C}}(1, R_{H}(f_{56}), R_{H}(f_{78})) \text{ and} \\ & \mathcal{L}^{H} \simeq \mathbb{C}^{3}. \text{ Bearing in mind that } R_{H}(f_{56})|_{T_{5}} = \infty, R_{H}(f_{78})|_{T_{5}} \not\equiv \text{ const, one} \\ & \text{applies Lemma 11 iv) \text{ and concludes that } \Phi^{H_{2}(1,1)} \text{ is a dominant map to } \mathbb{P}^{2}. \text{ Since} \\ & \mathcal{L}^{H} \text{ has no pole over } \sum_{i=1}^{4} T_{i}, \text{ the map } \Phi^{H_{2}(1,1)} \text{ is not defined at } \bar{\kappa}_{1}, \bar{\kappa}_{2}, \bar{\kappa}_{3}, \bar{\kappa}_{4}. \end{split}$$

Let us recall from Hacon and Pardini's [1] that the geometric genus $p_g(X) = \dim_{\mathbb{C}} H^0(X, \Omega_X^2)$ of a smooth minimal surface X of general type is at most 4. The next theorem provides a smooth toroidal compactification $Y = (\mathbb{B}/\Gamma_{\langle \tau_{33} \rangle})'$ with abelian minimal model $A_{-1}/\langle \tau_{33} \rangle$ and $\dim_{\mathbb{C}} H^0(Y, \Omega_Y^2(T')) = 5$.

Theorem 19. i) For $H = H'_2 = \langle I^2 \rangle$, $H''_2 = \langle J^2 \rangle$, $H_2(n, 1-n) = \langle \tau_{33}I^{2n}J^{2-2n} \rangle$ or $H^{\theta}_2(n,k) = \langle \tau^n_{33}I^kJ^{-k}\theta \rangle$ with $0 \le n \le 1$, $0 \le k \le 3$ the logarithmiccanonical map

$$\Phi^H: \widehat{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1]) = \mathbb{P}^3$$

has maximal $\operatorname{rk}\Phi^H = 2$. For $H \neq H_2(n, 1 - n)$ the rational map Φ^H is not globally defined and $\widehat{\mathbb{B}}/\Gamma_H$ are ruled surfaces with elliptic bases. In the case of $H = H_2(n, 1 - n)$ the surface $\widehat{\mathbb{B}}/\Gamma_H$ is hyperelliptic.

ii) For $H = H_2(0,0) = \langle \tau_{33} \rangle$ the smooth surface $(\mathbb{B}/\Gamma_{\langle \tau_{33} \rangle})'$ has abelian minimal model $A_{-1}/\langle \tau_{33} \rangle$ and the logarithmic-canonical map

$$\Phi^{\langle \tau_{33} \rangle} : \widehat{\mathbb{B}/\Gamma_{\langle \tau_{33} \rangle}} \longrightarrow \mathbb{P}([\Gamma_{\langle \tau_{33} \rangle}, 1]) = \mathbb{P}^4$$

is of maximal $\operatorname{rk}\Phi^{\langle \tau_{33} \rangle} = 2$.

Proof: i) By Lemma 11 v), it suffices to prove the statement for H'_2 , $H_2(1,0)$ and $H^{\theta}_2(n,k) = \langle \tau^n_{33} I^k J^{-k} \theta \rangle$ with $0 \le n \le 1, 0 \le k \le 2$.

Note that H'_2 , $H_2(1,0)$ are subgroups of $H'_{2\times 2}(0) = \langle \tau_{33}, I^2 \rangle$ and $\operatorname{rk} \Phi^{H'_{2\times 2}(0)} = 2$. By Lemma 11 iv) that suffices for $\operatorname{rk} \Phi^{H'_2} = \operatorname{rk} \Phi^{H_2(1,0)} = 2$. In the case of $H = H'_2 = \langle I^2 \rangle$, the Reynolds operators

$$R_H(f_{56}) = 0, \qquad R_H(f_{78}) = 2f_{78}$$
$$R_H(f_{157}) = f_{157} + ie\frac{\pi}{2}f_{357}, \qquad R_H(f_{168}) = f_{168} + ie^{-\frac{\pi}{2}}f_{368}$$
$$R_H(f_{258}) = f_{258} - ie^{-\frac{\pi}{2}}f_{458}, \qquad R_H(f_{267}) = f_{267} + ie^{-\frac{\pi}{2}}f_{467}.$$

The Γ'_2 -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2 = \bar{\kappa}_4$, $\bar{\kappa}_5$, $\bar{\kappa}_6$, $\bar{\kappa}_7$ and $\bar{\kappa}_8$. According to Lemma 11 ii), the inclusions $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^{8} T_{\alpha}$ suffice for $R_H(f_{168}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{78}), R_H(f_{157}))$. Similarly, from $T_2 \subset (R_H(f_{258}))_{\infty}, (R_H(f_{267}))_{\infty} \subseteq T_2 + T_4 + \sum_{\alpha=5}^{8} T_{\alpha}$ there follows $R_H(f_{267}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{78}), R_H(f_{258}))$. As a result, one concludes that the space of the invariants $\mathcal{L}^H = \text{Span}_{\mathbb{C}}(1, R_H(f_{78}), R_H(f_{157}), R_H(f_{258})) \simeq \mathbb{C}^4$. Since \mathcal{L}^H has no pole over T_6 , the rational map $\Phi^{H'_2}$ is not defined at $\bar{\kappa}_6$. If $H = H_2(1, 0) = \langle \tau_{33} I^2 \rangle$, then \mathcal{L}^H is spanned by

$$1 \in \mathbb{C}, \qquad R_H(f_{56}) = 2f_{56}, \qquad R_H(f_{78}) = 0$$
$$R_H(f_{157}) = f_{157} + f_{368}, \qquad R_H(f_{258}) = f_{258} + \mathrm{ie}^{-\frac{\pi}{2}} f_{467}$$

The $\Gamma_2(1,0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_6$, $\bar{\kappa}_7 = \bar{\kappa}_8$. According to Lemma 11 iii), the inclusions $T_1 + T_3 \subset (R_H(f_{157}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^8 T_{\alpha}$ and

 $T_2 + T_4 \subset (R_H(f_{258}))_{\infty} \subseteq T_2 + T_4 + \sum_{\alpha=5}^{8} T_{\alpha}$ suffice for the linear independence of 1, $R_H(f_{56})$, $R_H(f_{157})$, $R_H(f_{258})$.

Further, observe that $H_2^{\theta}(n,0) = \langle \tau_{33}^n \theta \rangle$ are subgroups of $H_{2\times 2}^{\theta}(0) = \langle \tau_{33}, \theta \rangle$ with $\operatorname{rk} \Phi^{H_{2\times 2}^{\theta}(0)} = 2$. Therefore $\operatorname{rk} \Phi^{H_2^{\theta}(n,0)} = 2$ by Lemma 11 iv). If $H = H_2^{\theta}(0,0) = \langle \theta \rangle$ then

$$R_H(f_{56}) = f_{56} + f_{78}, \quad R_H(f_{157}) = f_{157} - e^{\frac{\pi}{2}} f_{357}, \quad R_H(f_{368}) = f_{368} - e^{\frac{\pi}{2}} f_{168}$$
$$R_H(f_{258}) = f_{258} + f_{267}, \qquad R_H(f_{467}) = f_{467} + f_{458}.$$

The $\Gamma_2^{\theta}(0,0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2$, $\bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_7$ and $\bar{\kappa}_6 = \bar{\kappa}_8$. According to Lemma 11 ii), $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^{8} T_{\alpha}$ implies $R(f_{168}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56}), R(f_{157}))$. Lemma 13 supplies $\frac{f_{258} + f_{267}}{\Sigma_2}\Big|_{T_2} =$

 $2e^{-\pi} \neq 0$ and $\frac{f_{467}+f_{458}}{\Sigma_4}\Big|_{T_4} = 0$. Therefore $R_H(f_{258})|_{T_2} = \infty$ and $R_H(f_{467}) \subset$ $\operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}))$. Thus, $\mathcal{L}^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{157}), R_H(f_{258})) \simeq \mathbb{C}^4$. The entire $[\Gamma_2^{\theta}(0, 0), 1]$ vanishes at $\bar{\kappa}_4$ and $\Phi^{H_2^{\theta}(0, 0)}$ is not globally defined. For $H = H_2^{\theta}(1, 0) = \langle \tau_{33}\theta \rangle$ the space \mathcal{L}^H is generated by

 $1 \in \mathbb{C}, \qquad R_H(f_{56}) = f_{56} - f_{78}$

 $R_H(f_{157}) = f_{157} + if_{368}, \quad R_H(f_{258}) = 2f_{258}, \quad R_H(f_{467}) = 0.$

The $\Gamma_2^{\theta}(1,0)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2$, $\bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_8$ and $\bar{\kappa}_6 = \bar{\kappa}_7$. Making use of $T_1 \subset (R_H(f_{157}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^{8} T_{\alpha}$ and $T_2 \subset (R_H(f_{258}))_{\infty} \subset T_2 + \sum_{\alpha=5}^{8} T_{\alpha}$, one applies Lemma 11 iii), in order to conclude that

$$\mathcal{L}^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{157}), R_H(f_{258})) \simeq \mathbb{C}^4.$$

The abelian functions from \mathcal{L}^H have no poles along T_4 , so that $\Phi^{H_2^{\theta}(1,0)}$ is not defined at $\bar{\kappa}_4$.

Observe that $H_2^{\theta}(n,1) = \langle \tau_{33}^n I J^{-1} \theta \rangle$ are subgroups of $H_{2\times 2}^{\theta}(1) = \langle \tau_{33}, I J^{-1} \theta \rangle$ with $\mathrm{rk} \Phi^{H_{2\times 2}^{\theta}(1)} = 2$, so that $\mathrm{rk} \Phi^{H_2^{\theta}(n,1)} = 2$ as well.

More precisely, Reynolds operators for $H = H_2^{\theta}(0, 1) = \langle IJ^{-1}\theta \rangle$ are

$$R_{H}(f_{56}) = f_{56} + if_{78}, \quad R_{H}(f_{157}) = f_{157} - ie^{\frac{\pi}{2}} f_{168}, \quad R_{H}(f_{368}) = f_{368} - ie^{\frac{\pi}{2}} f_{357}$$
$$R_{H}(f_{258}) = f_{258} - e^{-\frac{\pi}{2}} f_{458}, \qquad R_{H}(f_{267}) = f_{267} + e^{-\frac{\pi}{2}} f_{467}.$$

The Γ_2^{θ} -cusps are $\bar{\kappa}_1$, $\bar{\kappa}_3$, $\bar{\kappa}_2 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_8$, $\bar{\kappa}_6 = \bar{\kappa}_7$. By Lemma 13 one has $\frac{f_{157} - ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1}\Big|_{T_1} = -2ie^{-\frac{\pi}{2}} \neq 0$, $\frac{f_{368} - ie^{\frac{\pi}{2}} f_{357}}{\Sigma_3}\Big|_{T_3} = 0$, whereas $R_H(f_{157})|_{T_1} = \infty$, $R_H(f_{368}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56}))$. Applying Lemma 11 ii) to the inclusions $T_2 \subset (R_H(f_{258}))_{\infty}, (R_H(f_{267}))_{\infty} \subseteq T_2 + T_4 + \sum_{\alpha=5}^{8} T_{\alpha}$, one concludes that $R_H(f_{267}) \in \text{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{258}))$. Altogether

$$\mathcal{L}^H = \text{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{157}), R_H(f_{258})) \simeq \mathbb{C}^4.$$

Since \mathcal{L}^H has no pole over T_3 , the rational map $\Phi^{H_2^{\theta}(0,1)}$ is not defined at $\bar{\kappa}_3$. If $H = H_2^{\theta}(1,1) = \langle \tau_{33}IJ^{-1}\theta \rangle$ then

$$R_H(f_{56}) = f_{56} - if_{78}, \qquad R_H(f_{157}) = 2f_{157}$$

 $R_H(f_{368}) = 0, \qquad R_H(f_{258}) = f_{258} + e^{-\frac{\pi}{2}}f_{467}.$

The $\Gamma_2^{\theta}(1,1)$ -cusps are $\bar{\kappa}_1$, $\bar{\kappa}_3$, $\bar{\kappa}_2 = \bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_7$ and $\bar{\kappa}_6 = \bar{\kappa}_8$. Making use of $R_H(f_{157})|_{T_1} = \infty$, $T_H(f_{258})|_{T_2} = \infty$, one applies Lemma 11 iii), in order to conclude that $\mathcal{L}^H = \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{157}), R_H(f_{258})) \simeq \mathbb{C}^4$. Since \mathcal{L}^H has no pole over T_3 , the rational map $\Phi^{H_2^{\theta}(1,1)}$ is not defined at $\bar{\kappa}_3$.

Reynolds operators for $H = H_2^{\theta}(0,2) = \langle I^2 J^2 \theta \rangle$ are

$$R_H(f_{56}) = f_{56} - f_{78}, \quad R_H(f_{157}) = f_{157} + e^{\frac{\pi}{2}} f_{357}, \quad R_H(f_{168}) = f_{168} + e^{-\frac{\pi}{2}} f_{368}$$
$$R_H(f_{258}) = f_{258} - f_{267}, \qquad R_H(f_{467}) = f_{467} - f_{458}.$$

The $\Gamma_2^{\theta}(0,2)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2$, $\bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_7$, $\overline{\kappa_6} = \overline{\kappa_8}$. Lemma 11 ii) applies to $T_1 \subset (R_H(f_{157}))_{\infty}, (R_H(f_{168}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^{8} T_{\alpha}$ to provide $R_H(f_{168}) \in$ $\operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}), R_H(f_{157}))$. By Lemma 13 one has $\frac{f_{258} - f_{267}}{\Sigma_2}\Big|_{T_2} = 0$ and $\frac{f_{467} - f_{458}}{\Sigma_4}\Big|_{T_4} = 2ie^{-\frac{\pi}{2}} \neq 0$. As a result, $R_H(f_{258}) \in \operatorname{Span}_{\mathbb{C}}(1, R_H(f_{56}))$ and $R_H(f_{467})|_{T_4} = \infty$. Lemma 11 iii) reveals that $1 \in \mathbb{C}$, $R_H(f_{56})$, $R_H(f_{157})$, $R_H(f_{467})$ form a \mathbb{C} -basis of \mathcal{L}^H . Since \mathcal{L}^H has no pole over T_2 , the rational map $\Phi^{H_2^{\theta}(0,2)}$ is not defined over $\bar{\kappa}_2$.

In the case of $H = H_2^{\theta}(1,2) = \langle \tau_{33} I^2 J^2 \theta \rangle$ one has

$$R_H(f_{56}) = f_{56} + f_{78},$$
 $R_H(f_{157}) = f_{157} - if_{368}$
 $R_H(f_{258}) = 0,$ $R_H(f_{467}) = 2f_{467}.$

The $\Gamma_2^{\theta}(1,2)$ -cusps are $\bar{\kappa}_1 = \bar{\kappa}_3$, $\bar{\kappa}_2$, $\bar{\kappa}_4$, $\bar{\kappa}_5 = \bar{\kappa}_8$ and $\bar{\kappa}_6 = \bar{\kappa}_7$. Lemma 11 iii) applies to $T_1 \subset (R_H(f_{157}))_{\infty} \subseteq T_1 + T_3 + \sum_{\alpha=5}^{8} T_{\alpha}, T_4 \subset (R_H(f_{467}))_{\infty} \subseteq T_4 + T_6 + T_7$, in order to justify the linear independence of 1, $R_H(f_{56}), R_H(f_{157}), R_H(f_{467})$. Since $\mathcal{L}^H \simeq \mathbb{C}^4$ has no pole over T_2 , the rational map $\Phi^{H_2^{\theta}(1,2)}$ is not defined at $\bar{\kappa}_2$.

ii) For $H = H_2(0,0) = \langle \tau_{33} \rangle$ one has the following Reynolds operators

$$R_H(f_{56}) = 0,$$
 $R_H(f_{78}) = 0,$ $R_H(f_{157}) = f_{157} - ie^{\frac{\pi}{2}} f_{168}$

 $\begin{aligned} R_H(f_{258}) &= f_{258} + f_{267}, \quad R_H(f_{368}) = f_{368} + ie^{\frac{\pi}{2}} f_{357}, \quad R_H(f_{467}) = f_{467} - f_{458}. \end{aligned}$ There are six $\Gamma_{\langle \tau_{33} \rangle}$ -cusps: $\bar{\kappa}_1, \bar{\kappa}_2, \bar{\kappa}_3, \bar{\kappa}_4, \bar{\kappa}_5 = \bar{\kappa}_6$ and $\bar{\kappa}_7 = \bar{\kappa}_8$. By the means of Lemma 13 one observes that $\frac{f_{157} - ie^{\frac{\pi}{2}} f_{168}}{\Sigma_1}\Big|_{T_1} = -2ie^{-\frac{\pi}{2}} \neq 0, \frac{f_{258} + f_{267}}{\Sigma_2}\Big|_{T_2} = 2e^{-\pi} \neq 0, \frac{f_{368} + ie^{\frac{\pi}{2}} f_{357}}{\Sigma_3}\Big|_{T_3} = 2ie^{-\frac{\pi}{2}} \neq 0, \frac{f_{467} - f_{458}}{\Sigma_4}\Big|_{T_4} = 2ie^{-\frac{\pi}{2}} \neq 0. \end{aligned}$ Therefore
$$\begin{split} T_i &\subset (R_H(f_{i,\alpha_i,\beta_i}))_{\infty} \subseteq T_i + \sum_{\delta=5}^8 T_{\delta} \text{ for } 1 \leq i \leq 4, \, (\alpha_1,\beta_1) = (5,7), \, (\alpha_2,\beta_2) = \\ (5,8), \, (\alpha_3,\beta_3) = (6,8), \, (\alpha_4,\beta_4) = (6,7). \text{ According to Lemma 11 iii), that} \\ \text{suffices for } 1, \, R_H(f_{157}), \, R_H(f_{258}), \, R_H(f_{368}), \, R_H(f_{467}) \text{ to be a } \mathbb{C}\text{-basis of } \mathcal{L}^H. \\ \text{Bearing in mind that } H_2(0,0) = \langle \tau_{33} \rangle \text{ is a subgroup of } H'_{2\times 2}(0) = \langle \tau_{33}, I^2 \rangle \text{ with} \\ \text{rk}\Phi^{H'_{2\times 2}(0)} = 2, \text{ one concludes that } \text{rk}\Phi^{\langle \tau_{33} \rangle} = 2. \end{split}$$

References

- [1] Hacon Ch. and Pardini R., *Surfaces with* $p_g = q = 3$, Trans. Amer. Math. Soc. **354** (2002) 2631–1638.
- [2] Hemperly J., The Parabolic Contribution to the Number of Independent Automorphic Forms on a Certain Bounded Domain, Amer. J. Math. 94 (1972) 1078–1100.
- [3] Holzapfel R.-P., Jacobi Theta Embedding of a Hyperbolic 4-space with Cusps, In: Geometry, Integrability and Quantization IV, I. Mladenov and G. Naber (Eds), Coral Press, Sofia 2002, pp 11–63.
- [4] Holzapfel R.-P., Complex Hyperbolic Surfaces of Abelian Type, Serdica Math. J. 30 (2004) 207–238.
- [5] Kasparian A. and Kotzev B., *Normally Generated Subspaces of Logarithmic Canonical Sections*, to appear in Ann. Univ. Sofia.
- [6] Kasparian A. and Kotzev B., Weak Form of Holzapfel's Conjecture, J. Geom. Symm. Phys. 19 (2010) 29–42.
- [7] Kasparian A. and Nikolova L., *Ball Quotients of Non-Positive Kodaira Dimension*, submitted to CRAS (Sofia).
- [8] Lang S., *Elliptic Functions*, Addison-Wesley, London 1973, pp 233–237.
- [9] Momot A., Irregular Ball-Quotient Surfaces with Non-Positive Kodaira Dimension, Math. Res. Lett. 15 (2008) 1187–1195.

Azniv Kasparian Department of Mathematics and Informatics Sofia University "Kliment Ohridski" Sofia 1164, BULGARIA *E-mail address*: kasparia@fmi.uni-sofia.bg