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Abstract. The Baily-Borel compactification B/I" of an arithmetic ball quotient
admits projective embeddings by I'-modular forms of sufficiently large weight. We
are interested in the target and the rank of the projective map ®, determined by
I'-modular forms of weight one. This paper concentrates on the finite H-Galois
quotients B/T" g of a specific B/ F@ig), birational to an abelian surface A_;. Any
compactification of B/I"; has non-positive Kodaira dimension. The rational maps

o of IWF\H are studied by means of the H-invariant abelian functions on A_;.

The modular forms of sufficiently large weight are known to provide projective
embeddings of the arithmetic quotients of the two-ball

B = {z=(21,2) € C?; |21)? + |2|? < 1} ~ SU(2,1)/S(Uy x Uy).

The present work studies the projective maps, given by the modular forms of
weight one on certain Baily-Borel compactifications IWIE of Kodaira dimension
H(m) < 0. More precisely, we start with a fixed smooth Picard modular
surface A’ | = (IBS/F(_GiS)), with abelian minimal model A_; = E_; x E_q,
E_y = C/Z+ Zi. Any automorphism group of A’ |, preserving the toroidal com-
pactifying divisor 7”7 = (IBS / F(_Gis)) ,\ <IB% / F(_6i8)> acts on A_ and lifts to a ball lat-

tice I'y, normalizing F£618). The ball quotient compactification A’ ;/H = B/T'y

is birational to A_;/H. We study the I'7-modular forms [I'f7, 1] of weight one

by realizing them as H-invariants of [F(fig), 1]. That allows to transfer [['f7, 1] to
the H-invariant abelian functions, in order to determine dim¢[I'f7, 1] and the tran-
scendence dimension of the graded C-algebra, generated by [I"7, 1]. The last one

is exactly the rank of the projective map ® : B/I' gy > P([I'g, 1]).
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1. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let I' < SU(2,1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2,1) /T has finite invariant measure. A I'-modular form of weight n is a
holomorphic function 6 : B — C with transformation law

1(0)(2) = 6(7(2)) = [detJac(7)]™6(z)  ~v€T, z€B.

Bearing in mind that a biholomorphism v € Aut(B) acts on a differential form
dz1 Adz9 of top degree as a multiplication by the Jacobian determinant detJac(y),
one constructs the linear isomorphism

gn + [0,n] — HO(B, (25)°")"

with the I'-invariant holomorphic sections of the canonical bundle Q2 of B. Thus,
the graded C-algebra of the ['-modular forms can be viewed as the tensor algebra
of the I'-invariant volume forms on B. For any d1, 2 € [I', n] the quotient g—; isa
correctly defined holomorphic function on B/T. In such a way, [, n] and j, [, n]
determine a projective map

o, : B/T — P([T,n]) = P(jn|T,n)).

The I'-cusps OrB/I" are of complex co-dimension two, so that ®,, extends to the
Baily-Borel compactification

@, : B/T — P([T, n)).

If the lattice I' < SUg; is torsion-free then the toroidal compactification X' =
(B/T")" is a smooth surface. Denote by p : X’ = (B/T') — X = I@/\F the
contraction of the irreducible components 77 of the toroidal compactifying divisor
T’ to the T'-cusps x; € OrB/I. The tensor product Q%,(7") of the canonical
bundle ng, of X’ with the holomorphic line bundle O(T"), associated with the
toroidal compactifying divisor 7" is the logarithmic canonical bundle of X"’. In [2]
Hemperly has observes that

HO(X', Q%/(T)®") = p*ju[T,n] ~ [T, n).
Let K ' be the canonical divisor of X’

Lx (nKX/ + TLT/) = {f € Qﬁet(X/); (f) +nKx + nT’ > 0}
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be the linear system of the divisor n(Kxs + T”) and s be a global meromorphic
section of Q3 (T"). Then

s Ly (nKxr +nT") — HO(X', Q% (T")®™)

is a C-linear isomorphism. Let £ : X’ — X be the blow-down of the (—1)-
curves on X’ = (B/T)’ to its minimal model X. The Kobayashi hyperbolicity of
B requires X’ to be the blow-up of X at the singular locus 75" of T' = £(T").
The canonical divisor K x» = £*Kx + L is the sum of the pull-back of K x with
the exceptional divisor L of &. The birational map £ induces an isomorphism &* :
Mer(X) — Mer(X') of the meromorphic function fields. In order to translate the
condition £*(f) + nKxs +nT" > 0 in terms of f € Mer(X), let us recall the
notion of a multiplicity of a divisor D C X atapointp € X. If D = Y n;D; is

7
the decomposition of D into irreducible components then m (D) = > n;m,(D;),
i

where
1 forpe D;
my(D;) =
0 forp¢ D;.
Let L= Y L(p)for L(p) = £ (p)and f € Mer(X). The condition £*(f) +

pETSing
nL > 0is equivalent to m,(f) +n > 0 forall p € T8, Thus, Lx:(nKx/ +nT")
turns to be the pull-back of the subspace

Lx(nKx 4 nT,nT®"8)
={feMer(X); (f)+nKx +nT >0, my(f)+n=>0, pe Tsing}
of the linear system £ x (nKx + nT'). The C-linear isomorphism
Trans, := (5*)_13®(_n)jn :[0,n] — Lx(nKx +nT,nT™"8)
introduced by Holzapfel in [3], is called transfer of modular forms.

Bearing in mind Hemperly’s result HO(X’,Q3,(T")®") = p*ji[L, n] for a fixed
point free I', we refer to

®H : B/Tyy — P([Ty,n]) = P(ju[Ts,n])

as the n-th logarithmic-canonical map of ]?/E{, regardless of the ramifications of
B— B/T'y.

The next lemma explains the transfer of modular forms on finite Galois quotients
B/I'y of B/T" to meromorphic functions on X/H. In general, the toroidal com-
pactification X, = (B/T's)’ is a normal surface. The logarithmic-canonical bun-
dle is not defined on a singular X/;, but there is always a logarithmic-canonical
Weil divisor on X7;.
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Lemma 2. Let A’ = (B/T") be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A,T) = Aut(A’,T"). Then

i) the transfer Trans,, := (€)~'s®C"j, ¢ [[.n] — La(nT,nT%) of
T'-modular forms to abelian functions induces a linear isomorphism

Trans : [Dg,n] — La(nT,nT5m8)"
of Ty-modular forms with rational functions on A/ H, called also a transfer
ii) the projective maps
OH BTy > P(Ty,n)), U AJH > P(LsnT, nT5")H)
coincide on an open Zariski dense subset.

Proof: i) Note that j,[['z,n] = j,[',n]?. The inclusion j,[['z,n| C j,[T,n]
follows fromI' < I'gy. If 'y = U’_;y;T"is the coset decomposition of Iy modulo
T, then H = {h; = v;['; 1 < i < n}. A T'-modular form w € j,[I',n] is T'g-
modular exactly when it is invariant under all ~y;, which amounts to the invariance
under all h;.

One needs a global meromorphic G-invariant section s of 2%,(7"), in order to
obtain a linear isomorphism

(5*)*13®(7n) = Transfjgl ]n[Fan] = jn[F,n]H N EA(TZT, nTsing)H.

The global meromorphic sections of the logarithmic-canonical line bundle 22, (7")
are in a bijective correspondence with the families (fn, Uy )aes of local mero-
morphic defining equations f, : U, — C of the logarithmic-canonical divisor
L + T'. We construct local meromorphic G-invariant equations g, : V, — C of
T and pull-back to (fo = £*gasUa = £ 1(Va))aes. Let Fy : A = C2 — A
be the universal covering map of A. Then for any point p € A choose a lifting
D€ Fgl(p) and a sufficiently small neighborhood W of p on ﬁ, which is con-
tained in the interior of a 7 (A)-fundamental domain on A, centered at p. The
G-invariant open neighborhood W = ﬂgeggw of p on A intersects Fgl(T) in
lines with local equations /;(u,v) = a;j(p)u + b;(p)v + ¢j(p) = 0. The holomor-
phic function g(u,v) = [] [[(/;(u,v)) on W is G-invariant and can be viewed as
g€G j

a G-invariant local defining equation of 7on V' = F4(W). Note that F'4 is locally
biholomorphic, so that V' C A is an open subset, after an eventual shrinking of w.
The family (g, V')pec 4 of local G-invariant defining equations of 7" pulls-back to a
family (f = £*g,U = £71(V))pea of local G-invariant sections of Q% (T").
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ii) Towards the coincidence \I/,If\[(A\T)/H] = oH| (B/T s )\(L/H)]> let us fix a basis
{wi; 1 < i < d} of j,[I'y,n| and apply i), in order to conclude that the set
{fi = Transj N (w;); 1 <i < d} is a basis of £4(nT,nT"&)H  Tensoring by
s2(=™) does not alter the ratios % o>+ The isomorphism & : Mer(A) — Mer(A') is
identical on (A\ T")/H. [ |

2. Preliminaries

In order to specify A’ | = (IB% / F(ﬁ 8 ) let us note that the blow-down & : A” | —

A_ of the (—1)-curves maps 7" to a divisor 7' = &(T”) with smooth elliptic irre-
ducible components 7;. Such 7" are called multi-elliptic divisors. Any irreducible
component T; of T lifts to a 71 (A_1)-orbit of complex lines on the universal cover

A 1= C2. That allows to represent
Tj; = {(u(mod Z + Zi),v(mod Z + Zi)); aju+ bjv + ¢; = 0}.
If T is defined over the field Q(i) of Gauss numbers, there is no loss of generality

in assuming a;, b; € Z[i] to be Gaussian integers.

Theorem 3 (Holzapfel [4]). Let A_1 = E_1 X E_1 be the Cartesian square of the
elliptic curve E_1 = C/Z+7Zi, wy = % wo = W1, W3 = w1 + ws be half-periods,
Qo =0(mod Z + Zi), Q1 =wi(mod Z+Zi), Q2 =1iQ1, Q3 = Q1+ Q2

be the two-torsion points on E_1, Q;j = (Qi, Q) € Az:ltor and
Ti = {(u(mod Z + Zi),v(mod Z+ Zi); u —i*v =0} with 1<k <4,
Thim = {u(mod Z + Zi),v(mod Z + Zi); u — wy, =0} for 1 <m <2 and
To+m = {u(mod Z + Zi), v(mod Z + Zi); v — wy, = 0} for 1 <m < 2.
Then the blow-up of A_1 at the singular locus (T£61’8)>Sing = Qoo + Q33 +
‘22:1 ‘22:1 Q;j of the multi-elliptic divisor T£61’8) = Zglei is a neat toroidal ball quo-
i=1j= i=
tient compactification A’ | = <IB3/F(f)18)>/.

Theorem 4 (Kasparian and Kotzev [6]). The group G_1 = Aut(A_1, Tfﬁl’s)) =
Aut(A’ |, T") of order 64 is generated by the translation 733 with Q33, the multi-

plications
i0 . 10
I = (O 1 > ,  respectively, J = (O ; >
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with 1 € Z[i] on the first, respectively, the second factor E_ of A_; and the trans-
position
01
=(%0)

Throughout, we use the notations from Theorem 3 and Theorem 4, without men-
tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-
Enriques classification type, irregularity and geometric genus of A_;/H, H <
G _1, referring actually to a smooth minimal model Y of A_; /H.

of these factors.

Theorem 5 (Kasparian and Nikolova [7]). Let
LGy — GLy(Z[i)) = {g € Zlilaxo: det(g) € Z[i)* = ()}
be the homomorphism, associating to g € G _1 its linear part L and
Li(G1) ={g € G1;7k(L(g) — I2) = 1}
— (i I*, TR TR I 0, 0<n <1, 1<k<3, 0<1<3}.
Then:
i) A_1/H is an abelian surface for H = (733)
ii) A_1/H is a hyperelliptic surface for H = (1331%) or H = (733.J?)
iii) A_1/H is a ruled surface with an elliptic base for
H = (h), h & Li(G_1)\{rs3I? 733J°} or H={(r33,he), ho € L(L1(G_1))
iv) A_1/H is a K3 surface for (t35) # H < K = kerdetL, where
K= {1t g% kg%, 0<n <1, 0<k<3}
v) A_1/H is an Enriques surface for H = (I>.J? 1331%)
vi) A_1/H is a rational surface for
(RY < H, h e {rihIJ,mI*J, 7 IJ*; 0 <n<1} or (r%I*J* h) < H,
hy € {I*™ g2 sl rn g g9, 0<m <1, 0<1<3}, 0<n<l1.

The following lemma specifies some known properties of Weierstrass o-function
over Gaussian integers Z[i].
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+

>ln
[N

N2
Lemma6. Leto(z) =z [] (1-%) (%) be the Weierstrass o-function,
AEZ[]\{0}

associated with the lattice Z[i| of C. Then:
i) o(if2) =ifo(z), 2€C, 0<k<3

ii) GE:(JZF))\) —e(N)e ™3 2 eC, A e Z[i), where

N E R Z[i] \ 2Z[i]
Sl 1 i Ae2zfi).

Proof: 1) follows from

ikz ikz 2 z z 2
H <1 i’%) TJF%(T) - H <1 z>u+é(u)
: A a '
ACZ[i\{0} =2 €Z[\{0}
ii) According to Lang’s book [8]
TEHN e sec,  Aez)
()
where 7 : Z[i] — C is the homomorphism of Z-modules, related to Weierstrass
(-function ¢(z) = (;(ZZ)) by the identity ((z + \) = ((z) + n(A\). It suffices
to establish that n(\) = —mA, A € Z[i]. Recall from [8] Legendre’s equality
n(i) —in(1) = 21, in order to derive
A4 A=A

n(\) TU(1)+ 9

Combining with homogeneity n(i\) = In(X), A € Z[i] (cf. [8]), one obtains
(n(1) + m)iX + miX = n(i\) = —in(\) = —(n(1) + m)iX + 7wX, X € Z[i].

n(i) = (n(1) + M)A —7X, X € Z[i].

Therefore (1) = —m and n(\) = —7\, A € Z[i]. [
Corollary 7.

U(Z + wm) _ _62(—1)mwm7rz

o(z — wm)

o(z+wm + 2ews—m)
o(z —wm)

Mt lews pmz4+2(—1)"w, Tz

= (—1)m+1eie_%+2(_1)

o0(z — wm + 2ews_pm)

= (=1)"Hlgie 3 T2 ews e
o(z —wm)

for the half-periods w1 = %, wy = iwy and ¢ = £1.
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Corollary 8.
U(Z + 25wm) _ efﬂz+(71)m2£7rwmz
o(z—1)
U(Z + (71)mwm + 8(71)mw3*m) _ _i(fl)m@e&umwz+(lfe)<u3,m7rz

o(z — (=1)"wp, + (=D)™w3_m)
1

Jor the half-periods wi = 5, wy = iwy and e = £1.

Corollary 7 and Corollary 8 follow from Lemma 6 ii) and @,, = (—1)""lw,,,
2 (=pm+t
1

Wy, =

P

(6,8) (6,8)

In [5] the map ® : B/T;" — P([I';”, 1]) is shown to be a regular embedding.

sing
This is done by constructing a C-basis of £L = L4 (Tﬁﬁ ) (T(ﬁ 8)) ) con-

sisting of binary parallel or triangular o-quotients. An abelian function f, 3 € £
is binary parallel if the pole divisor (fo 3)oc = To + T3 consists of two dis-
joint smooth elliptic curves T, and Tj3. A o-quotient f; , g3 € L is triangular if
TiNT,NTg = () and any two of T}, T,, and T} intersect in a single point.

Theorem 9 (Kasparian and Kotzev [5]). Let

o(z—1)o(z + w1 —ws) o(u—1iv 4 ws)

Fiz(z) = o(z—wr)o(z —ws) 1= o(u—1iv)
5 :0(u—|—v—|—w3) :J(u—i—iv—l—wg) :U(u—v—i—wg)
2 olutv) = olutiv) = o(u—v)
~ o(u—w) ~ o(u—wr) ~o(v—w2) B U(U—wl)‘
25 = o(u—wy)’ 26 = o(u—ws)’ 7 = o(v—wip)’ 25 = (v —ws)
Then:

ing
i) the space L = L4 _, <T\(ﬁ, T \(/Gﬁl))s contains the binary parallel

o-quotients fs6(u,v) Yia(u), frs(u,v) = X12(v) and the triangular

o-quotients

. o
fisr =ie"2TTE 555y, fieg = — e T THTTUTTIVE 36 Yg
. .
fasy = — e THTUTTUATIVS S S, f3es = —ie 27 33 %6Ng
fass =€ THTUTTIVS ) TN, faer =€ T MUV, V6N,
. T _ e T 3 H
fass = —ie 2 TTUTTVS TN, fag7 =ie 2 TUATVE, M6,

ii) a C-basis of L is
Jo =1, f1:= fi57, fo := foss, [3 := f36s, fa := fae7, [5 = [56, fo := frs.
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3. Technical Preparation

The group G_1 = Aut (A_l, T£61’8)> permutes the eight irreducible components

of T£61’8) and the F(_Gig) -cusps. For any subgroup H of G_1, the I'f7-cusps are the

H-orbits of argg)IB%/P(_“f) ={k;i; 1 <i<8}.

Lemma 10. If o : G_1 — Sg(K1,. .., Ks) is the natural representation of G_1 =
Aut (A_l, Tg’g)) in the symmetric group of the F(fig) -cusps, then

¢(733) = (K5, ki6) (K7, Kis), o(I) = (K1, K4, K3, K2) (K5, K6)

o(J) = (K1, ke, K3, k4) (K7, Kg), ©(0) = (k1, k3) (K5, k7)(Ke, K8)-

Proof: The F(6i8)

-cusps k; are obtained by contraction of the proper transforms
sing

T/ of T; under the blow-up of A_; at (T£61’8)> . Therefore the representations
of G_; in the permutation groups of {7;; 1 < ¢ < 8}, {T/; 1 < i < 8} and
{ki; 1 < i < 8} coincide.

According to 733(u — i*v) = u — i*v + (1 — iF)ws = u — i*v(mod Z + Zi),
the translation 733 acts identically on T3, T5, T3, Ty. Further, 133(u — wy,) =
U+ W3—m = U — wi_m(mod Z + Zi) reveals the permutation (15, T5) (7%, Tg) of
the last four components of Tfﬁl’g).

k sk—1

Due to the identity I(u — i*v) = iu — i*v = i(u — i*~'v), the automorphism
I induces the permutation (7%, Ty, T35, T5) of the first four components of T£61’8).
Further, I(u — wy,) = i(u &+ w3_,, ) reveals that I permutes 75 with 7. Note that

I acts identically on v and fixes 7%, T5.

In a similar vein, J(u — i*v) = u — i*Tlo, J(v — wy) = i(v £ iws_m) de-
termine that ¢(J) = (k1, k2, K3, k1) (K7, Kg). According to O(u — iFv) = v —
i*o, = —i*(u — i7*v) and O(u — w,,) = v — Wy, one concludes that p(#) =
(K1, k3) (K5, K7) (K6, Ks)- u

The following lemma incorporates several arguments, which will be applied re-
peatedly towards determination of the target P([I"z7, 1]) and the rank of the loga-
rithmic canonical map ®%.

Lemma 11. In the notations from Theorem 9, for an arbitrary subgroup H of
sing
G_1 = Aut (A_l,TSGfg)) andany f € L = L4, (Tﬁﬁl’S), <T£61’8)) ) let

Ry(f) = hZH h(f) be the value of Reynolds operator Ry of H on f.
€
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i) The space L of the H-invariants of L is spanned by { Ry (f;); 0 < i < 6}.

8
i) Let T; C (RH<fi,041ﬁ1))007 (RH(fi,Oéz,ﬁ2))OO - OrbH(Tl) + Z Ty for
a=>H

somel <i<4,5<a; <6,7<3; <8 Then
RH(fi,Otz,ﬁz) € Span(C(17 RH(f56)7 RH(f78)7 RH(fi,a1,51))'

i) Let Ky, ..., K, with1 < iy <... <1y <4 be different I j-cusps

8

a=>5
S H
and B be a C-basis of LI = La, < > Ta) . Then the set
a=>5

{Ru(fijo;p); 1<j<ptUB
consists of linearly independent invariants over C.
iv) If Rj = Ru(fja,p,) # const, Rj|lr, = oo and R; = Ry(fia,p;) has
Ri\Tj Z% const then for any subgroup H, of H the projective maps
o . X/H, > P(LHe),  ®Ho BTy, > P(j1[Ty,, 1))
are of rank rk®He = rkWwHo = 2,

n

v) If the group H' is obtained from the group H by replacing all 551 kjlgm e
H with 351 J*0™, then the spaces of modular forms j1[Ugr, 1] ~ 51T g, 1]
are isomorphic and the logarithmic-canonical maps have equal rank Tk®H =
k!,

Proof: i) By Theorem 9 ii), £ = Spanc(fi; 0 < 6). Therefore any f € Lisa
6

C-linear combination f = ) ¢; f;. Due to H-invariance of f and the linearity of
i=0
the representation of H in Aut(L), Reynolds operator

6
|H|f = Ru(f) =) ciRu(fi).
=0

H
i) Let wg € j1 [F(_()‘ig), 1] are the modular forms, which transfer to Ry (f; o, .3, )

1 < s < 2. Since wi(k;) # 0, there exists ¢; € C, such that w, = wy — ¢;w; van-

8
ishes at x;. By the assumption (R (fi a.,8.))o0 © Orbg(T;)+ > Ty, the transfer
a=>5

F,erH of wj belongs to Spanc(l,f56,f7g)H = Spanc (1, Ry (fs6), Ru(frs))-
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iii) As far as the transfer Trans! : j;[['z,1] — L is a C-linear isomorphism, it
suffices to establish the linear independence of the corresponding modular forms
P
{wi;; 1 < j < pyU{wy; b € B}. Evaluating the C-linear combination '21 ciwi;+
]:
bZB cywp = 0 at K;y, . . ., Ki,, one obtains ¢;; = 0, according to wj; (ki,) = 65 =
€

0 forj+#s beB
the vanishing of all ¢;, due to the linear independence of B.

1 forj =
{ ory=s and wb(Rij) =0,b€ B,1 <j <p. Then > w, = 0 requires

iv) If H, is a subgroup of H then £ is a subspace of £, j;[I'y, 1] is a subspace
of j1[T'g,,1] and U7 = prfwHe ®H — prl'a®Ho for the projections pr’
P(LHe) — P(LH), prt# : P(j1[Cy,,1]) — P(j1[Cm, 1]). That is why, it suffices
to justify that rk®” = rk¥# = 2 is maximal. Assume the opposite and consider
Ri,R; : X/H > PL. The commutative diagram

RZ,R)
X/H — p! x P!

R .
’ pro

]P)l

has surjective R;, as far as R; # const. If the image C' = (R;, R;)(X/H) is
a curve, then the projection pr, : C' — P! has only finite fibers. In particular,
pryt(00) = Ri((Rj)a0) X 00 2 R;(Tj) x oo consists of finitely many points.
However, R;(T;) = P! as an image of the non-constant elliptic function R; :
T; > PL. The contradiction implies that dim¢ C' = 2 and k¥ = 2.

v) The transposition of the holomorphic coordinates (u,v) € C? affects non-
trivially the constructed o-quotients. However, one can replace the equations
u—1i*v = 00of T}, 1 < k < 4by v —i*u = 0 and repeat the above con-
siderations with interchanged u,v. The dimension of j;[I'f, 1] and the rank of
djﬁ are invariant under the transposition of the global holomorphic coordinates on
A1 =C2% |

With a slight abuse of notation, we write g(f) instead of ¢*(f), for g € G_1,

felL=rCa ((68) <T(68)>Smg>'
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Lemma 12. The generators 733, 1, J, 0 of G_1 act on the binary parallel and tri-
angular o-quotients from Corollary 9 as follows:

3733(f56) = — [f565

733(fi57) = — ie? fies,
T33(f368) = ie? fas7,
733(fa58) = — fae7,
I(fs6) = — 1f56,
I(fi57) = — ifaer,
I(fag8) = — €2 fass,
I(fass) = — 1f36s
J(fs6) =56,
J(fis7) = —ie? foss,
J(f368) =faer,
J(f58) =157,
0(fs56) =f7s,
0(f157) = — €2 fasr,
0(f368) = — e%f168a
0(f158) =fa67,

733(f78) = — frs

733(fi6s) = ie” 2 fis7,
733(f2s8) = fo67,
733(fa67) = — fass
I(frs) =frs
I(fies) = — €2 fass,

733(f357) = — i€ 2 faes

7—33(]0267) = f258

I(f357) = ifaer

I(fae7) = — €2 fis7

0(fs57) = — e 2 fisr
0(fa67) =f258

Proof: Making use of Lemma 6 and Corollary 8, one computes that

T330(u —1) = —e

T330 (U — wy) =

133(X1) = _ie_gzb

7ru+7riu0_(u +wy — w2)7

(u - w2)7

T33(X2) = e "X, T33(X3)

Ty30 (U — wy) =

T330(u+ wi — ws) = e o (u— 1)

—e ™o(u —wr)

=ie 2%, m3(X4) =

7_33(25) — e*ﬂ"U,*ﬂ'iUZG, 733(26) — e7ru+7riu25

7_33(27) _ e—wv—wivzg, 7’33(28) — e7rv+7rivz7

Io(u— 1) = je~mutmiu
Io(u—wy) =

I(3) =ie

I(33) =1ie

o(u—

_somiu

o(u— ws),

, I(Xy) =ie

1), Io(u+wi —ws) =
Io(u —ws)
_7riu+7rivz4’ 1(22) —ie

77riu77riv2

—e™o(u+ w; — wo)

=io(u —wy)

—Wiu—wvzl

—miu+mv 23
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I(X5) = —e ™%, I(Xg) = —e™US5, I[(87) = Xy, I(Xg) = U
Jo(v+p) = Io(u+ p)|u=v, peC
4J(31) = Xo, J(32) =33, J(E3) = X, J(X4) =3
J(35) =35, J(X6) =226, J(X7)= Y J(g) = —emVR
0o(u+p)=o(w+p), peC
0(31) = —ie™ TV, 0(3) = Xy

9(23) — ie_ﬂ—lu_ﬂ—vzl, 9(24) 7Tu 7r1u 7r/1)+7r17)2
7, 0(X6) = Zs, 9(27) = Y5, 0(3s) = Xe.

>
—~

™
ot
—

Il

The following lemma is an immediate consequence of Lemma 6 and Corollary 7.

Lemma 13.
fis7 . _= fies _x Jfoss —x foer o
_— = —1e 2 s _— = e s _— = e s _— frg
21 T 21 Ty 22 Ts 22 Ts
f357 _x [368 _x  fass . fae7 =
IR0 — e IR Ty 120 — jemz, L2 — e
23 T3 23 T3 24 Ty 24 Ty
. T PR
fis7 +ie2 f357 fosg —ie” 2 fys
JisT TICJT) —0.
25 T5 X5 Ts
Lemma 14.

[(fis7 — i€ fies) + c(fasr — 172 f368)]|7, = ie™2 ™ (1 + Ce*g)

o((I+i)v+ws) [ i Uo(v—wg) e_(1+i)ma(v—w1)2
o((1+1)v) [ o —w)? o(v—w}

is non-constant for all ¢ € C\ {—e? }.

Proof: Note that
fv) = [(fis7 — ie? figs) + c(fasr — i 2 faes)]|m,

= [ie*%*’wﬁl(—v,v) — ce*”Jr”i“Eg(—v,v)}
X [25(—1))27(1)) -+ 26(—1))28(1))]
" x o((1+1i)v—ws)
(1+ee?) o(L+D)0)

% e(1+i)ﬂva(v — 0.)2)2 + e—(1+i)wva(v — w1)2
o(v—wp)? o(v—wsy)?

s
= je 5"
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making use of Lemma 6 and Corollary 7. Obviously, f(v) has no poles outside
Q(i). It suffices to justify that lir% f(v) = oo, in order to conclude that f(v) #
v—>

const. To this end, use o(ws) = io(w1) to observe that

F@)o((1+ 1)) 4;:%56(1+af%)dmg¢o
whenever ¢ # —e?2, while o((1 4 1)v)|y—o = 0. [
4. Basic Results

Lemma 15. For H = (IJ? 133J%), (I*J, 1331?) with rational A_1/H and any
—Id € H < G_4, the map &7 : B/T' g > P([T'y, 1]) is constant.

Proof: By Lemma 11 (iv), the assertion for (I 2], 1331 2> is a consequence of the
one for (I.J%,733.J2). In the case of H = (I.J? 133.J2), the space L is spanned
by Reynolds operators

Rp(fse) =0, Ru(frs) =0

Ry (fi57) = fis7 +1e2 fies + €2 fagr — €2 foss +ie2 fas7 — fags + if1e7 + ifass.
The I'y-cusps are K1 = ko = K3 = R4, k5 = kg and k7 = kg. By Lemma 13,
Jisrtie? fes - = 0, so that Ry (fi57)|m, # oo. Therefore Ry (fi57) € Céf =C

P
and tk®H = 0.
It suffices to observe that —Id changes the signs of the C-basis

f56, [f78, fi57, fosss f368, [fae7 (D)

sing
of L = Ly, <T£61’8), (T£61’8)> . Then for H, = (—Id) the space £ is

generated by Ry, (1) = 1. Any subgroup H, < H < G_; decomposes into
k

cosets H = UlehiHo and Ry = Y hiRp, vanishes on (1). Thus, L7 = C and
i=1

rk®f = 0. [

Note that A_; /(—Id ) has 16 double points, whose minimal resolution is the Kum-
mer surface X _1 of A_;. Thus, H 5 —Id exactly when the minimal resolution Y
of the singularities of A_;/H is covered by a smooth model of X_;. More pre-
cisely, all A_,/H with —Id € H have vanishing irregularity 0 < gq(A_;/H) <
q(X_1) = 0. These are the Enriques A_1/(—1d, 7331?), all K3 quotients A_/H
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with (734) # H < K = kerdetl, except A_;/(m33(—Id)) and the rational
A_1/H with t331J € H for0 <n < 1lor(-Id,h;) < H for

hy € {I*mJ?=2m  mmp g Rty Tle; 0<m <1, 0<1<3}.

Lemma 16. The non-trivial subgroups H # —1d of G_1 are
1) cyclic of order two

Hy(m, 1) = (r33I*™J%") with 0<m,l<1
HY(n, k) = (T 18 J7%0) with 0<n <1, 0<k <3, Hy= (%, Hf =(J?
ii) cyclic of order four
H)(n,m) = (55 IJ*™) with 0 <n,m <1
HY(n,m) = (55I°™J) with 0 <n,m <1
iii) isomorphic to Klein group Zo X 7o
Hboo(m) = (133J*™ I%) with 0 <m <1
2 o(m) = (133I*™, J?) with 0 <m <1
HY o(k) = (I*J7%0,733) with 0<k <1
HY o(n, k) = (51" T 750, 73312 T%) with 0<n,k<1
iv) isomorphic to 7.4 X 7o
Hoo(m,1) = (IJ*™ 133J%) with 0 <m,l <1
oo(my ) = (I*™J, 73311 with 0 <m,l<1.

Proof: If H is a subgroup of G_1, which does not contain —Id, then H C S =
{9 € G_1; —1d ¢ (g)}. Decompose G_; = G"_; U G’_,6 into cosets modulo
the abelian subgroup

Gy ={mI" ] 0<n<1,0<k1<3}<G_y.

The cyclic group, generated by (724 1%J'9)% = (1.J)¥*! does not contain —Id =
(IJ)?if and only if k + [ = O(mod 4). If ") = {g € S; g is of order 7} then

SNG 0= {myl*J ™ 9;0<n <1, 0<k<3}=5@nG 0= 5
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and S NG’ 0 € S@ consists of elements of order two. Concerning S N G’_,
observe that (7'3?3.711“J"‘“'Hm)2 = (IJ)?* € Sfor0 <n,m < 1,0 < k < 3 requires
k = 2p to be even. Consequently

{risI*J' k= I(mod 2)} N S
= {mal?"J%, 1%, % 0<mi<1} =506, = s

{rI* gt k =1+ 1(mod 2)} NS

= {rp P P p PP 0 < nym, 1 < 1) = SW.

In such a way, one obtains S = {Id}US(()Q) USEQ) US®™ of cardinality |S| = 31. If
a subgroup H of G_; is contained in S, then |H| < |S| = 31 divides |G_1| = 64,
ie., |[H| = 1,2,4,8 or 16. The only subgroup H < G_; of |H| = 1 is the
trivial one H = {Id }. The subgroups —Id ¢ H < G_; of order two are the
cyclic ones, generated by h € S(()z) U S§2). We denote Ha(m,l) = (1331>™J?)
for 0 < m,l < 1, HY(n, k) = (t}I*J7%0) for0 < n < 1,0 < k < 3 and
Hy = (I?), Hy = (J?).

For any h € S™ one has (h) = (h3), so that the subgroups —Id ¢ H ~ 7,
of G_; are depleted by Hj(n,m) = (r51J*™), H}(n,m) = (riI1*™J) with
0<nm<1.

The subgroups —Id & H =~ Zs X Z3 of G_; are generated by commuting g1, g2 €

52 — S(()Q) U SP. If g1,92 € 552) then g1g2 € G’_4, so that one can always

assume that go € Séz)

order 4. Moreover, if

. Any g1 # g9 from S(()Q) C G’ generate a Klein group of

S = {2 0 <mi <1}, 8§ = {12, J%)
21) with g1go € S there follows g1g2 € S(()

582) D H =~ 7Zs X 75 has at least one generator g, € S(()?)

then for any g1, go € S(() 28 Thus, any

. The requirement

I?J? = —1d ¢ H specifies that g1 € S((fl). In the case of go = I? there is no loss
of generality to choose g1 = 733.J2™, in order to form H}, ,(m). Similarly, for
g2 = J? it suffices to take g1 = 7331°™, while constructing HY. ,(m). In order to
determine the subgroups —Id & H = (g1) X (g2) ~ Za X Za with g1 € SP, go €
S$. note that g; = 734,7%.J=%6 does not commute with 12, J? and commutes with
go = 7331?™J% if and only if 2m = 2l(mod 4),1i.e.,0 < m =1 < 1. Bearing

in mind that (r31%J %0, 7s5 12 J2m) = (gpetl[kt2m j=kt2mg o, p2m g2m)
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one restricts the values of k to 0 < k < 1. For m = 0 denote HY, ,(k) =
(I*J7%0, 733). For m = 1 put HY, o(n, k) = (551 J %0, 73312J?).

Let —Id ¢ H C S be a subgroup of order 8. The non-abelian such H are
isomorphic to quaternionic group Qg = (s,t; s* = Id, s? = 2, sts = t)
or to dihedral group Dy = (s,t; s* = Id, t?> = Id, sts = t). Note that
s € SW and sts = t require st # ts. As far as S® U 562) C G’ for the
abelian group G’ | = (733, 1,J), it suffices to consider t = 75 I*¥J %0 € S%Q)
and s = nglpﬂ”l_p € S@W with 0 < n,m,l < 1,0 < p,k < 3. However,
sts = i, [FH2IH1 JRH+2410 o + reveals the non-existence of a non-abelian group
—Id ¢ H < G_; of order 8.

The abelian groups H € S = {Id} U S 2) U 8™ of order 8 are isomorphic
to Zy X Zo or Zg X Zio X Zo. Any Zg X Zo ~ H C S is generated by s =
TRIPJAHIP € S and t € S\ as far as ' = Ik ko € SF) has

st — Tg§+n1p+kj21+1—(p+k)9 75 T§g+n121+1—(p—k) Jp—k9 — s

For s = T}, 1?1 J% ¢ S there holds (s, t) = (s, t) and it suffices to consider
s = T IJ?. Further, t € (s%) = (I?) and s*t # —1Id specify that t = 7331%P ]2
for some 0 < p,q < 1. Replacing eventually ¢ by ts> = ¢I2, one attains t =
733.J%4. On the other hand, the generator s = 7331.J% € S@W of H = (s,1)
can be restored by st = [.J2!+9) 5o that H = H}, (1, q) = (IJ*, 133.J%) for
some 0 < [,q < 1. Exchanging I with J, one obtains the remaining groups
HY o(1,q) = (I*'J, 1331%1) ~ 74 x Z, contained in S.

If —Id ¢ H C S is isomorphic to Zo X Zs X Zo then arbitrary different elements
s,t,r € H of order two commute and generate H. For any x € S and M C S,
consider the centralizer Cps(x) = {y € M; zy = ya} of x in M. Looking for
s € S@ t e Cypo(s)andr € Cgr(s) N Oy (t), one computes that

Cy) (TI%) = Cy) (T35 J?) = 5(()2)
Cga (3P J*M) = §&) = S(()Q) U 5?)
Oy (TR TP T 72M0) = {15, 1%9T 240, 13317 J*; 0 < p,q < 1}
Ca (T3P 721 710) = {7l P9 729710, 73 I*PJ?; 0 < p,q < 1}.

Any subgroup Zg X Zo X Zo ~ H C {Id} U 582) U S§2) intersects S{Q), due to
|S((]2)| = 6. That allows to assume that s € S §2) and observe that

05(2)(8):{8, (—Id)s, T33S, ng(—Id)S, 733, T33(—Id)}.
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Ift = 7_33]2pJ2p € 05(2) (S) then 05(2) (t) = 5(2), so that

HAA{Id, 5,1} C [Cg@ (s) N Caen (O] \ {5, 1} = Cg) \ {5, 1} 2)

with5 = |[H\{Id, s,t}| < |Cg (s)\{s,t}| = 4isanabsurd. Fort € Cg2)(s)\
{r33I*J%; 0 < p < 1} one has Cg2)(t) = Cg2 (s), which again leads to (2).
Therefore, there is no subgroup Zs X Zo X Zo ~ H F —Id of G_1.

Concerning the non-existence of subgroups —Id ¢ H C S of order 16, the abelian
—Id ¢ H C S of order 16 may be isomorphic to Zy X Z4, Zy X Zg X Zo Or
Zo X Ly X Ly X Ly. Any H ~ Z4 x 74 is generated by s, ¢t € S@) with s2 £ ¢2.
Replacing, eventually, s by s and ¢ by ¢3, one has s = TaalJ m ot = Tasl 2a g
with 0 < n,m,p,q < 1. Then s*t> = I[?J? = —Id € H is an absurd. The
groups H ~ Zy x Zy x Zy are generated by s € S®) and t,rinCgw)(s) with
r € Cgw(t). In the case of s = 7{1J?™, the centralizer Cg2)(s) = Sé2).
Bearing in mind that s> = I2, one observes that (¢,7) N {I?, J2} = (). Therefore
t,r € {733I*J%; 0 < p,q < 1}, whereas tr € {Id, I?, J? —Id }. That reveals
the non-existence of Z4 x Zo xZo ~ H # —1d . The groups H =~ Zo X Zo X Zia X Lo
contain 15 elements of order two, while |S (2)\ = 14. Therefore there is no abelian
group —Id ¢ H < G_; of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian
subgroup of order 8 and consist of elements of order 1, 2 or 4. If

(s,t;s'=e, tt=¢, st=ts3\~HCS
then s,t € S G’ = (733,1,J) commute and imply that s is of order two.

The assumption

4 2

(a,b,c; a” = e, V¥=e, ?=ce, cbea’b=c¢, ba = ab, ca=ac)~HCS

requires b, c € Cy2)(a) = 562) = {r33I?"J?%, 12, J?;0<m,l <1}. Thenb
and ¢ commute and imply that cbca?b = e = a? = e. Finally, for

Gus= (s,t; 8T =e, th=c¢, stst=ce, ts>=st3)

there follows s,t € S® < G’ 1» whereas st = ts. Consequently, s> = t* and
Gyg = {sit7;0<i<3, 0<j<1}isoforder < 8, contrary to |G4,4| = 16.
Thus, there is no subgroup —Id ¢ H < G_1 of order 16. |

Throughout, we use the notations H, 5 ~v) from Lemma 16 and denote by Fg(’y) the
corresponding lattices with T'> (v)/ F(fis) = HY (7).

Theorem 17. For the groups H = H}, o(p,q) = (IJ?P,133J%9), HY, 5(p,q) =
(I ], 7331%9), Hy(1 — m,m) = (133 "IJ*™), H}(1 —m,m) = (133 "I*™J),
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Hé><2(1) = <T33J27]2>’ Hé/><2(1) = <T33IQ7J2>’ H20><2(n7m) = <T§L3Im‘]_m97
733I2J?) with 0 < p,q < 1, (p,q) # (1,1) and 0 < n,m < 1 the logarithmic-
canonical map

o . B/Ty —>P([Tg,1]) = P!

is dominant and not globally defined. The Baily-Borel compactifications ﬁ{
are birational to ruled surfaces with elliptic bases whenever H = H). 5(0,0),
HY.5(0,0), Hj(1,0) or H}(1,0). The remaining ones are rational surfaces.

Proof: According to Lemma 11(v), it suffices to prove the theorem for H}, ,(p, q)
with (p, ¢) # (1,1), Hz’i(l —m,m) Hé><2(1) and H20><2(n’m)'
If H = H}(1,0) = (133]), then L is generated by 1 € C and Reynolds operators

R (fs6) =0, Ru(fs) =0, Ru(fist) = fist — €2 fass + ie? fas7 + ifuss

Ry (fies) = fies — ifasr + i€ 2 fags + e 2 fagy = ie” 2 Ry ( f368)-

There are four I (1,0)-cusps : &1 = ke = k3 = Rd, k5, k6, k7 = Rs. Applying
8
Lemma 11ii) to 77 C (R (f157))oos Ru(f168)00c S > T;, one concludes that
i=1

R (fi68) € Spanc(1, R (fis7). Therefore £ ~ C2 and H4(19) is a dominant
map to P(LH) ~ PL. Since Ry (f157)|1, # 0o, the entire [[(1,0), 1] vanishes at
ke and ®1(1.0) is not defined at &g.

The group H = H),,(0,0) = (I, 733) contains F' = H)(1,0) as a subgroup of
index two with non-trivial coset representative I. Therefore Ry (f56) = Rr(fs6)+
IRp(f56) =0, Rp(f7s) = 0and rk®1x2(00) < 1. Due to

Ry (fis7) = fist —ie? figs — €2 fosg — €2 fagr + faes + 102 fasy + ifuss — ifaer

L7 = Spanc(1, Ry (fi57)). Lemma 13 provides m%effws - —ie” 2 #0,

1
whereas Ry (f157)|7, = oo. Therefore dimc £ = 2 and dH1x2(00) j5 2 dominant
map to P1. The I'yx2(0,0)-cusps are &1 = ko = K3 = R4, k5 = kg and Ry = Rg.

3, f157_e§f258'£i:§f357+if458 = 0, so that Ry (fi57) is

Again from Lemma 1
Ts

regular over Ty + T5. As a result, ®Mix2(0:0) jg not defined at K5 = Rg.
For H = H(0,1) = (I.J?), the space L is spanned by 1 and Reynolds operators

R (fss) =0, Ru(fs) =0, Ru(fisr) = fis7 + €2 fogy + ie? fasr + ifaer

R (fi68) = fies + ifoss +ie ™2 fags + € 2 fass = iRp(foss)-
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The I(0,1)-cusps are &1 = Ro = /?;3 = K4, k5 = kg, k7 and Kg. Note that
C (Ru(f157))o0s (R (f168))o0 © Z T;, in order to conclude that Ry (fi63) €
Spanc (1, Ry (f157)) by Lemma 11 11) Therefore LH = Spanc(1, RH(f157))

C2? and ®4(01) i a dominant map to P!. Lemma 13 supplies % =0

5 T5
and justifies that ®H1(0:1) js not defined at &s.
For H = H}.,5(1,0) = (IJ?% 733) note that Ry (f56) = 0, Ry (fzs) = 0, as far as
H)(1,0) is a subgroup of H}, ,(1,0). Further,

Ry (fis7) = fist — ie2 fies + €2 fogr + €2 foss + 12 fasy + faes + ifae7 — ifase

4 e .
has a pole over ) T;, according to fls%efflﬁs = —2ie”2 # 0 by Lemma 13
i=1 1

and the transitiveness of the H)(1,0)-action on {x;; 1 < i < 4}. Therefore
£ = Spanc(1, Ry (fi57)) ~ C2 and ®74x2(1:0) is a dominant map to P!. One
computes immediately that the I, ,(1,0)-cusps are k1 = ko = k3 = R4, k5 = K¢

and k7 = Kg. Again from Lemma 13, f157+67f258;ie7f357_if458 . 0, R (fi57)

5

5

has no pole at T5 + Ty and ®Mix2(10) i5 not defined at K5 = Kg.
If H= H},,(1) = (I?,133J?) then
Ry (fs6) =0, Ru(frs) = 4fr, Ru(fist) = fis7 +ie? fies +ie? fasr — f3es

Ry (fass) = foss — fagr — i€ 2 fagy —ie™ 2 fisg and 1€ C

span £H. The I, 5(1)-cusps are k1 = R3, Ra = K4, k5 = kg and Ry =
w w

_ ie2 ieZ fas7— -

ks. Lemma 13 reveals that f157+§:e f1e8 _ e f3§7 f368 — f258Z fa67
1 Ty 3 Ts 2 T

hf}%‘lf%s T, = 0, so that RH(f157), RH(f258) S Span(c(l,f78) and ﬁH >~ Cz.
As aresult, ®H2x2(1) i 2 dominant map to P!, which is not defined at & and &o.
For the group H = H}.,5(0,1) = (I, 733.J%), containing H}, (1) = (I?,733.J%)

there follows Ry (fs6) = 0 and rk®ax2(O1) < 1. Therefore Ry (frs) = 8f7s.

Ry (fis7) = fist +ie2 fies + €2 fosg — €7 fogr + 1€ fas7 — f368 — ifass — ifa67

and 1 € C span £¥. The Iy 5(0,1)-cusps are ki1 = Ko = k3 = R4, Ry =

kg and k7 = Kg. By Lemma 13, fls%effmg _— 0, so that Ry (fis7) €
1

Spang(1, frs) ~ C2. Thus, ®Mix2(01) i a dominant map to P!, which is not

defined at k.
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If H = HY 5(0,0) = (0, 7331%J?) then £ is spanned by 1 € C,

Ru(fs6) = 2(fs6 + frs), Ru(fisr) = fis7 +ie2 fies — 2 fas — ifaes

and RH(f467) = 2(f467 + f458), due to RH(f258) = 0. The 1“3(0, 0)—cusps are
fisrtie? fies | _ 0
3 T1 ’

f‘“’%{““ . 0, whereas Ry (fis7), Ru(fi67r) € Spanc(1, Ry (fse)) ~ C2.

Therefore &2 (0:0) is a dominant map to P1, which is not defined at &1, &2 and 4.
For H = HY 5(0,1) = (IJ710, 73312 J?) one has

Ry (fs6) = 2(fs6 + 1f7s). Ry (fis7) =0, Ry (fies) =0

Ry (fz68) = 2(faes — 12 f357), R (foss) = foss — fao1 — € 2 fass — € 2 fagr.
The ngQ(O, 1)-cusps are k1, k3, k2 = ka4, k5 = Rg = Ry = kg. Lemma 13

jus

. . —je?2 —

implies that f368 ge f3s7 -0, f2582 fae7 -0, f458§f467 — 0, whereas
3 T3 2 T 4 Ty

Ry (fses), Ru(foss) € Spanc (1, R(fs6)) ~ C. Consequently, dHIx2(0)) g 5
dominant map to P!, which is not defined at &1, 72 and Ry4.

In the case of H = HY, ,(1,0) = (7330, T331%J2), the Reynolds operators are

K1 = K3, Re, k4 and K5 = K¢ = K7 = RKg. Lemma 13 provides

Ry (fs6) = 2(fs6 — fr8)s Ry (fis7) = fis7 +1i€2 figs + if3es + €2 fas7
Ry (fass) = 2(fass — fa67); Ru(fiss) =0, Rp(faer) = 0.

The ngQ(l,O)—cusps are K1, k3, ko = kg and kK5 = Kg = K7 = kg. Lemma 13

f157+2i:e%f168 — if368‘;:e%f357 I, = f258£f267
Ty 3 2 T

RH(f157), RH(f258) € Span(c(l, RH(fSﬁ)) Bearing in mind that RH(f56)’T5 =

00, one concludes that <I>H2‘9 «2(1.0) is 4 dominant map to P!, which is not defined at

K1, ko and R3.

Finally, for H = HY ,(1,1) = (r331J 16, 7331%J?) one has
Ru(fs6) = 2(fs6 — ifrs), Ru(fisr) = 2(fis7 +1ie? figs), Ru(fasr) =0

Rp(fses) =0 and Rp(foss) = fass — fa67 +€ 2 fagr + e 2 fass.
The 9,5 (1, 1)-cusps are &1, K3, k2 = K4 and k5 = Rg = k7 = Fg. Lemma 13

implies that 7fl57+i§fh68 . sz;fm = 0, so that Ry (f157), R (fass) €
1 2

Spang(1, Ry (fs6)) ~ C2. As aresult, $H3x2(1:1) is a dominant map to P!, which

is not defined at K1, kK3 and Ko. |

yields = 0. Consequently,
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Theorem 18. If H = H},,(0) = (733, 12), HY ,(0) = (733, J%), HY 5(n) =

(I"J "0, 733) with 0 < n < 1, Hj(n,n) = (755 1J?"), H](n,n) = (t3,1*"J)

with 0 < n < 1or Hy(1,1) = (13312J?) then the logarithmic-canonical map
oH . BTy > P([Ty,1]) = P2

is dominant and not globally defined. The surface m is K3 for H = Hs(1,1),
rational for H = H}(1,1), H}(1,1) and ruled with an elliptic base for all the
other aforementioned H.

Proof: By Lemma 11 v), it suffices to consider Hj. 5(0), HY, 5(n), Hj(n,n) and

Hy(1,1).

In the case of H = H}. ,(0) = (733, %), £ is spanned by

Ri(fs6) =0, Ru(fs) =0, Ru(fis7) = fist —ie? fies +ie? fasr + fes
Ry (foss) = foss + fosr — i€ 2 fasg +ie” 2 figr and 1€ C.

The T, ,(0)-cusps are Ky = K3, ko = R4, k5 = ke and Ry = Rg. Lemma 13

provides L‘fﬁ“ = —2ie"2 £ 0, whereas Ry (fi57)|m, = oo. Simi-
1
larly, f%%f‘” = 2e™ ™ # 0 suffices for Ry (fas8)|7, = oo. Therefore 1,

Ry (fi57), Ru(fass) are linearly independent, according to Lemma 11 iii) and
constitute a C-basis for £H7. TIn order to assert that tk®H2x2(0) — 2, wWe use
that Ry (fass)|7, = oo and Ry (fi57)|r, # const by Lemma 14 with ¢ = ie?.

Lemma 13 provides %‘fh” ‘T = 0, in order to conclude that R ( fi57)|1y #
5

oo and the entire [I',,5(0), 1] vanishes at <5. Therefore ®M2x2() is a dominant
map to P([T,.5(0), 1]) = P2, which is not defined at &5.

For H = HY,,(0) = (0, 733), the Reynolds operators are

Rp(fss) =0, Ru(frs) =0, Ry(fisr) = fisr — i€ fies — €2 fas57 + if36s
R (fos8) = 2(fos8 + f267), Ry (fae7) =0
generate L. The T, ,(0)-cusps are & = &3, R, k4 and i3 = kg = Ay = Rs.

According to Lemma 13, m%eff“’s - —2ie” % # 0, so that Ry ( f157) |1, = oc.
1

Further, f%%?f?m . 2e™™ # 0 and the lemma provides Ry (fass)|m, = 0.
2

Therefore 1, Ry (fi57), Ru(foss) are linearly independent and £ ~ C3 by
Lemma 11 iii). We claim that

o((1+1)v+ ws) [U(U —wi)? e27r(1+i)v0<” — wo)?

Ru(foss)lm = =207 = o S o —an? T (v —w)?
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is non-constant. On one hand, Ry (f258)|7, has no poles on C \ Q(i). On the
other hand, |:5RH(f258))T1] o((1 + i)v)’vzo = —o(ws) [ +i2] # 0, so that
11}136 [Rir(f258)|1y] = o00. According to Lemma 11 iv), Ry (fi57)|y = oo and
Ry (fass)|r, # const suffice for $H2:2(0) (o be a dominant map to P2. The entire

i 9 . _
L takes finite values on T}, so that dH2x2(9) g not defined at Ra.

Concerning H = HY, ,(1) = (IJ7'0, 733), one computes that

Ru(fs6) =0, Ry (frs) =0, Ry (fis7) = 2(fi57 — ie? fies)
Rp(fass) =0, Rp(fass) = foss + fasr — € 2 fass + ¢ 2 fagr.

The T%..,(1)-cusps are &1, k3, ko = K4 and k5 = kg = K7 = Kg. By Lemma 13

we have m%effms - = —2ie"2 #0and f258+f267 _— 2e™™ # 0. Therefore

2
Ry (fis7)lm, = oo, RH(f258)|T2 = oo and 1, RH(f157) Rp(fa5s) constitute a
C-basis of £, according to Lemma 11 iii). Applying Lemma 14 with ¢ = 0, one

concludes that Ry ( fi57)|7, # const. Then Lemma 11 iv) implies that pHx2(D) i

a dominant map to P2. The lack of f € £ with f|7, = oo reveals that PH2x2(1)
is not defined at k3.

If H = H}(0,0) = (I) then the Reynolds operators are
Rp(fs6) =0, Ru(frs) =4frs, Ru(fist) = fisr — €2 fagr +ie? fasr — ifuer
Ry (fi6s) = fies — ifoss +ie 2 fagg —e 2 fysg and Rp(1)=1€C

span L. The I,(0,0)-cusps are k1 = ke = R3 = R4, k5 = K¢, k7 and Rg.
According to Lemma 11 ii), the inclusions 77 C (R (f157))c0, (RH(f168))c0 C
Z T; suffice for Ry (fi6s) € Spanc(1, Ry (f7s), Re(fis7). Therefore £ ~ C3.

Observe that Ry (f7s)|, = 4X12(v) # const, in order to apply Lemma 11 iv) and
assert that ®4(%:0) js a dominant map to P2. As far as %‘fﬁ”” . 0 by

5
Lemma 13, the abelian function Ry (f157) has no pole on T5. Therefore HH1(0,0)
is not defined at k5.

For H}(1,1) = (7331.J?) the Reynolds operators are

Ru(fs6) =0, Ru(frs) =4frs, Ru(fist) = fisr+e? foss+ie? fasr —ifuss
Ri(fi6s) = fies + ifogr 4+ i€ 2 fags — €2 fagr.

The I')(1,1)-cusps are k1 = Ry = K3 = R4, ks, k¢ and Ry = Rg. Due to

8
Ty C (Ru(f157))00, (RE(f168))00 € > T;, Lemma 11 ii) applies to provide
i=1
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Rr(fies) € Spanc(1, Rg(frs), Re(fis7)). Thus, L7 ~ C3. According to
Lemma 11 iv), Ry (frs)|, = 4¥i12(v) # const suffices for S®Hi(LD) 6 be a

dominant rational map to P2. Further, fl"%efm o= 0 by Lemma 13 implies
5
that Ry ( f157) has no pole over Tx and ®#1(1-1) is not defined at 7s.

If H = Hy(1,1) = (13312J?) then L is generated by
1e€C, Ru(fss) =2fs6, Ru(fs) =2fws, Rulfisr) = fis7 +1e? figg

Rp(faes) = faes—ie? fasr, Ru(foss) = foss—fosr, Ru(faer) = faer+Fuss.

The I'y(1, 1)-cusps are k1, ko, k3, k4, k5 = kg and K7 = Kg. By Lemma 13 one

has fisr+ie? figs — fass—ie? fasy _ Jfass—faer _ Jfaer+fas8 — 0. Thus

Y1 i E Ty Yo T, Y4 Ty : ’

Ry (fi57), Ru(fses), R (foss), Ru(fae7) € Spanc(l, Ru(fs6), Ru(frs)) and

LH ~ C3. Bearing in mind that Ry (fs6)|7; = oo, Ry (frs)|ry # const, one

applies Lemma 11 iv) and concludes that ®#2(1:1) js a dominant map to P2. Since
4

L has no pole over S Tj, the map ®72(L1) is not defined at &1, &g, 3, 5y. M
i=1

Let us recall from Hacon and Pardini’s [1] that the geometric genus py(X) =

dime HO(X, Q3 %) of a smooth minimal surface X of general type is at most 4.

The next theorem provides a smooth toroidal compactification ¥ = (B /T (23 )/

with abelian minimal model A_;/(733) and dim¢c H(Y, Q2.(T")) = 5.

Theorem 19. i) For H = H) = (I?), HY = (J?), Ha(n, 1—n) (T33[2n J2=2n)
or Hg(n, k) = <T§L3IkJ_k9> with)0 < n <1, 0 < k < 3 the logarithmic-
canonical map

oH . B/Ty > P([Ty, 1)) = P?

has maximal tk®" = 2. For H # Hs(n,1 — n) the rational map ®" is not
globally defined and I@F\H are ruled surfaces with elliptic bases. In the case of
H = Hs(n,1 — n) the surface IB%//_E{ is hyperelliptic.
ii) For H = Hj(0,0) = (733) the smooth surface (B/T
model A_1/(T33) and the logarithmic-canonical map

(r33) ) has abelian minimal

O78) : BIT () 3 P(Dryy), 1) = P

7'33 733)7

is of maximal rk®{73) = 2.

Proof: i) By Lemma 11 v), it suffices to prove the statement for H), Ho(1,0) and
HY(n,k) = (R I*J7*0) with0 <n < 1,0 < k < 2.



Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 93

Note that H}, Ho(1,0) are subgroups of Hb. ,(0) = (733, I2) and rk®T2x2(0) = 2,
By Lemma 11 iv) that suffices for rk®M2 = rk@H2(10) = 9,
In the case of H = H} = (I?), the Reynolds operators

Ru(fs6) =0, Ry (frs) =2
Ru(fis7) = fist + ie%f%?, Ry (fies) = fies + i 2 faes

Rir(foss) = foss — i€ 2 fuss, Ry (fo67) = foor +ie” 2 faer.
The T'-cusps are ki1 = K3, ke = R4, K5, R, Ry and RKg. According to Lemma
8
11 ii), the inclusions 71 C (Rp(f157))oc, (R (f168))oc € Th + T3 + > Ty

a=>

suffice for Ry (fies) € Spanc(l, Ry(f7s), Ru(fis7)). Similarly, from 175 C
8
(Ru(f258))ocs (Ru(f267))0c © To + Ty + 3 Ty there follows Ry(fae7) €

a=5H

Spang(1, Ri(f78), R (foss)). As a result, one concludes that the space of the
invariants £ = Spanc(1, Ry (frs), R (fi57), Ru(fass)) ~ C*. Since £ has
no pole over T, the rational map ®*2 is not defined at &g.

If H= Hy(1,0) = (r331?), then £ is spanned by
1eC, Ry (fs6) = 2f56, Ry (fs) =0
Ru(fis7) = fis7 + f36s, Ry (foss) = foss +1ie7 2 fagr.

The I'y(1,0)-cusps are k1 = K3, ke = K4, k5 = kg, ky = kg. According to
8
Lemma 11 iii), the inclusions T + T35 C (Ru(f157))oc € Th + 15 + > Ty, and

a=>5

8
To+ Ty C (Ru(f258))o0 C To + Ty + > Ty suffice for the linear independence
a=5
of 1, Ru(fs6), Ru(fi57), Ru(f2ss).
Further, observe that H§(n,0) = (7540) are subgroups of HS, ,(0) = (733, 0) with
rk®H2x2(0) = 2. Therefore rk®H%(0) = 2 by Lemma 11 iv).

If H= HY(0,0) = (0) then

Ry (fs6) = fs6+frs,  Ru(fist) = fist—e? fssz,  Ru(faes) = faes—e? fios
Ry (f258) = fass + faer, Ry (fa67) = fa67 + fass-

The Fg(o,())—CUSpS are k1 = K3, Ko, R4, k5 = K7 and kg = Kg. According

8
to Lemma 11 ii), 71 C (Ru(fi57))oc: (RH(f168))0c € T1 + T3 + > T, im-
a=>5

plies R(fi6s) € Spanc(1, Ru(fs6), R(f157)). Lemma 13 supplies 7f258$f267 =
2
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2e~™ #£ 0 and f‘*ﬁ%f‘“s - 0. Therefore Ry ( fos8)|7, = 0o and Ry(fier) C

4

Spanc (1, R (fs6)). Thus, L7 = Spanc(1, Ru(fs6), R (fis7), Ru(fass)) =
C*. The entire [I'%(0,0), 1] vanishes at 74 and $H3(0.0) ig not globally defined.

For H = HY(1,0) = (7330) the space L is generated by
1eC, Ru(fs6) = fs6 — frs
Ru(fis7) = fis7 +1fses, Ru(fess) = 2f2ss,  Ru(faer) = 0.
The Fg(l,())—cusps are k1 = K3, Rg, R4, k5 = Rg and kg = Ry. Making use of
C (Ru(f157))o0 € T1 +T5 + E Toand To C (Ru(f258))oc C T2 + a§:5 Ta,

one applies Lemma 11 iii), in order to conclude that

£ = Spanc (1, Ry (fs6), Ru(fis7), Ru(fass)) ~ C*.

The abelian functions from £ have no poles along T, so that H3(1.0) g not
defined at k4.

Observe that HY(n,1) = (r351J16) are subgroups of HY (1) = (733, [J6)
with tk®8x2(1) = 2, 50 that rk®#2 (1) = 2 as well.
More precisely, Reynolds operators for H = HS(0,1) = (IJ~'6) are

Ry (fs6) = fso+ifrs, Ru(fist) = fisr—ie? fies, Ru(fses) = faes—ie? fazr

Ry (fass) = fass — e 2 fuss, Ry (fa67) = faer +€ 2 faer.
The I‘g;cusps are K1, K3, K9 = K4, K5 = Kg, kg = R7. By Lemma 13 one has
—ieZ .« —ieZ f. - -
fuat o fros _ —2ie™3 # 0, fose? fssr e _ 0, whereas Ry ( fi57)|7, = oo,

Ry (fs68) € Spang(1, R (fs6)). Applying Lemma 11 ii) to the inclusions T» C
8

(RH(f25g))oo, (RH(f%?))oo CTo+Ty+ Z T,,one concludes that RH(f267) €
a=>H

Spanc(1, Ru(fs6), Ru(f2ss)). Altogether
" = Spanc (1, Ru(fs6), R (f157), Ru(fss)) ~ C.

Since £ has no pole over T3, the rational map &3 (0.1) g not defined at R3.
If H=HY(1,1) = (13317 716) then

Ry (fs6) = fs6 — ifrs, Ru(fis7) = 2f157

Ry (f363) =0, Ry (foss) = foss + € 2 fagr.
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The Fg(l, 1)-cusps are ki, k3, ke = R4, k5 = k7 and kg = kg. Making use
of R (fis7)|m, = 00, Tr(fas8)|1, = 00, one applies Lemma 11 iii), in order to
conclude that £ = Spanc (1, Ry (fs6), Re(fi57), Re(fass)) ~ C*. Since £H

has no pole over T}, the rational map ®2(1:1) is not defined at &s.
Reynolds operators for H = HY(0,2) = (I2.J%0) are

Ry (fs6) = fsoe—frss  Ru(fist) = fist+e? fasr,  Ru(fies) = fies+e 2 faos

Ry (fas8) = foss — faers Ry (fae7) = faer — fass-
The T%(0, 2)-cusps are &y = A3, ko, R4, k5 = A7, fig = Ra. Lemma 11 ii) applies
8
to T C (Ru(f157))o0, (RE(f168))0c € 11+ T3+ Y T, to provide Ry (fies) €
a=>5

Spanc(1, Ru(fs6), Ru(fis7)). By Lemma 13 one has 15582;2]0267 _ 0 and

f‘“”%ﬁ““ = 2ie”2 # 0. As a result, Ry (foss) € Spanc(1, Ry (fs6)) and
4

RH(f467)‘T4 = o00. Lemma 11 iii) reveals that 1 € C, RH(f56), RH(f157),

Ry (fie7) form a C-basis of L. Since £ has no pole over T5, the rational

map ®H3(02) is not defined over Ko.

In the case of H = H§(1,2) = (r331%J26) one has
Ru(fs6) = fs6 + frs, Ry (fis57) = fis7 — ifses
Rp(f2s8) =0, Ry (fie7) = 2fa67-
The Fg(l,2)—cusps are K1 = Rs, ko, R4, kK5 = /?;8 and kg = k7. Lemma 11

iil) applies to 771 C (Ru(fi57))00 € Th + 15 + Z To, Ty C (Ru(f167))00 €

Ty + Tg + T7, in order to justify the linear 1ndependence of 1, Ry (fs6), Ru(fis7),
Ry (f67). Since £LH ~ C* has no pole over Ty, the rational map PH3(1,2)
defined at Ko.

is not

ii) For H = H»(0,0) = (733) one has the following Reynolds operators
Ry(fss) =0,  Ru(fw)=0,  Ru(fis7) = fis7 —ie? fues

Ry (foss) = foss+fa6r, Ru(faes) = faes+ie? fasr, Ru(fasr) = fasr— fass-

There are six F<

733)"CUSPS! K1, R2, K3, K4, K5 = K and k7 = Kg. By the means

— —%je" % £ 0, f258£‘2f267

of Lemma 13 one observes that m

e
= 2ie”2 # 0. Therefore
Ty

2e™T £ 0, faes+ied fzs7 — i~ % £ 0, Ja67—f458
s T =
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8
T; € (Ru(fia.))o0 € Ti + Z_: Tsfor1 <i <4, (ay,p1)=(57), (az,2) =

6=
(5,8), (a3, 83) = (6,8), (oa;,ﬂi) = (6,7). According to Lemma 11 iii), that
suffices for 1, RH(f157>, RH(f258), RH(fgﬁg), RH(f467> to be a C-basis of ﬁH.
Bearing in mind that Hs(0,0) = (733) is a subgroup of Hb. ,(0) = (733, I?) with
rkd2x2(0) — 2, one concludes that rk®(ms) — 2 |
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