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Abstract. The Baily-Borel compactification B̂/Γ of an arithmetic ball quotient

admits projective embeddings by Γ-modular forms of sufficiently large weight. We

are interested in the target and the rank of the projective map Φ, determined by

Γ-modular forms of weight one. This paper concentrates on the finite H-Galois

quotients B/ΓH of a specific B/Γ
(6,8)
−1 , birational to an abelian surface A−1. Any

compactification of B/ΓH has non-positive Kodaira dimension. The rational maps

ΦH of B̂/ΓH are studied by means of the H-invariant abelian functions on A−1.

The modular forms of sufficiently large weight are known to provide projective

embeddings of the arithmetic quotients of the two-ball

B = {z = (z1, z2) ∈ C2 ; |z1|2 + |z2|2 < 1} � SU(2, 1)/S(U2 × U1).

The present work studies the projective maps, given by the modular forms of

weight one on certain Baily-Borel compactifications B̂/ΓH of Kodaira dimension

κ(B̂/ΓH) ≤ 0. More precisely, we start with a fixed smooth Picard modular

surface A′
−1 =

(
B/Γ

(6,8)
−1

)′

with abelian minimal model A−1 = E−1 × E−1,

E−1 = C/Z + Zi. Any automorphism group of A′
−1, preserving the toroidal com-

pactifying divisor T ′ =
(
B/Γ

(6,8)
−1

)′

\
(
B/Γ

(6,8)
−1

)
acts on A−1 and lifts to a ball lat-

tice ΓH , normalizing Γ
(6,8)
−1 . The ball quotient compactification A′

−1/H = B/ΓH

is birational to A−1/H . We study the ΓH -modular forms [ΓH , 1] of weight one

by realizing them as H-invariants of [Γ
(6,8)
−1 , 1]. That allows to transfer [ΓH , 1] to

the H-invariant abelian functions, in order to determine dimC[ΓH , 1] and the tran-

scendence dimension of the graded C-algebra, generated by [ΓH , 1]. The last one

is exactly the rank of the projective map Φ : B̃/ΓH > P([ΓH , 1]).
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1. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let Γ < SU(2, 1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2, 1)/Γ has finite invariant measure. A Γ-modular form of weight n is a
holomorphic function δ : B → C with transformation law

γ(δ)(z) = δ(γ(z)) = [detJac(γ)]−nδ(z) γ ∈ Γ, z ∈ B.

Bearing in mind that a biholomorphism γ ∈ Aut(B) acts on a differential form

dz1∧dz2 of top degree as a multiplication by the Jacobian determinant detJac(γ),
one constructs the linear isomorphism

jn : [Γ, n] −→ H0(B, (Ω2
B)⊗n)Γ

with the Γ-invariant holomorphic sections of the canonical bundle Ω2
B

of B. Thus,

the graded C-algebra of the Γ-modular forms can be viewed as the tensor algebra

of the Γ-invariant volume forms on B. For any δ1, δ2 ∈ [Γ, n] the quotient δ1
δ2

is a

correctly defined holomorphic function on B/Γ. In such a way, [Γ, n] and jn[Γ, n]
determine a projective map

Φn : B/Γ −→ P([Γ, n]) = P(jn[Γ, n]).

The Γ-cusps ∂ΓB/Γ are of complex co-dimension two, so that Φn extends to the

Baily-Borel compactification

Φn : B̂/Γ −→ P([Γ, n]).

If the lattice Γ < SU2,1 is torsion-free then the toroidal compactification X ′ =

(B/Γ)′ is a smooth surface. Denote by ρ : X ′ = (B/Γ)′ → X̂ = B̂/Γ the

contraction of the irreducible components T ′
i of the toroidal compactifying divisor

T ′ to the Γ-cusps κi ∈ ∂ΓB/Γ. The tensor product Ω2
X′(T ′) of the canonical

bundle Ω2
X′ of X ′ with the holomorphic line bundle O(T ′), associated with the

toroidal compactifying divisor T ′ is the logarithmic canonical bundle of X ′. In [2]

Hemperly has observes that

H0(X ′, Ω2
X′(T ′)⊗n) = ρ∗jn[Γ, n] � [Γ, n].

Let KX′ be the canonical divisor of X ′

LX′(nKX′ + nT ′) = {f ∈ Mer(X ′) ; (f) + nKX′ + nT ′ ≥ 0}
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be the linear system of the divisor n(KX′ + T ′) and s be a global meromorphic

section of Ω2
X′(T ′). Then

s⊗n : LX′(nKX′ + nT ′) −→ H0(X ′, Ω2
X′(T ′)⊗n)

is a C-linear isomorphism. Let ξ : X ′ → X be the blow-down of the (−1)-
curves on X ′ = (B/Γ)′ to its minimal model X . The Kobayashi hyperbolicity of

B requires X ′ to be the blow-up of X at the singular locus T sing of T = ξ(T ′).
The canonical divisor KX′ = ξ∗KX + L is the sum of the pull-back of KX with

the exceptional divisor L of ξ. The birational map ξ induces an isomorphism ξ∗ :
Mer(X) → Mer(X ′) of the meromorphic function fields. In order to translate the

condition ξ∗(f) + nKX′ + nT ′ ≥ 0 in terms of f ∈ Mer(X), let us recall the

notion of a multiplicity of a divisor D ⊂ X at a point p ∈ X . If D =
∑
i

niDi is

the decomposition of D into irreducible components then mp(D) =
∑
i

nimp(Di),

where

mp(Di) =

{
1 for p ∈ Di

0 for p �∈ Di.

Let L =
∑

p∈T sing

L(p) for L(p) = ξ−1(p) and f ∈ Mer(X). The condition ξ∗(f)+

nL ≥ 0 is equivalent to mp(f)+n ≥ 0 for all p ∈ T sing. Thus, LX′(nKX′ +nT ′)
turns to be the pull-back of the subspace

LX(nKX + nT, nT sing)

= {f ∈ Mer(X) ; (f) + nKX + nT ≥ 0, mp(f) + n ≥ 0, p ∈ T sing}
of the linear system LX(nKX + nT ). The C-linear isomorphism

Transn := (ξ∗)−1s⊗(−n)jn : [Γ, n] −→ LX(nKX + nT, nT sing)

introduced by Holzapfel in [3], is called transfer of modular forms.

Bearing in mind Hemperly’s result H0(X ′, Ω2
X′(T ′)⊗n) = ρ∗j1[Γ, n] for a fixed

point free Γ, we refer to

ΦH
n : B̂/ΓH −→ P([ΓH , n]) = P(jn[ΓH , n])

as the n-th logarithmic-canonical map of B̂/ΓH , regardless of the ramifications of

B → B/ΓH .

The next lemma explains the transfer of modular forms on finite Galois quotients

B/ΓH of B/Γ to meromorphic functions on X/H . In general, the toroidal com-

pactification X ′
H = (B/ΓH)′ is a normal surface. The logarithmic-canonical bun-

dle is not defined on a singular X ′
H , but there is always a logarithmic-canonical

Weil divisor on X ′
H .
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Lemma 2. Let A′ = (B/Γ)′ be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A, T ) = Aut(A′, T ′). Then

i) the transfer Transn := (ξ∗)−1s⊗(−n)jn : [Γ, n] −→ LA(nT, nT sing) of
Γ-modular forms to abelian functions induces a linear isomorphism

TransH
n : [ΓH , n] −→ LA(nT, nT sing)H

of ΓH -modular forms with rational functions onA/H , called also a transfer

ii) the projective maps

ΦH
n : B̂/ΓH > P([ΓH , n]), ΨH

n : A/H > P(LA(nT, nT sing)H)

coincide on an open Zariski dense subset.

Proof: i) Note that jn[ΓH , n] = jn[Γ, n]H . The inclusion jn[ΓH , n] ⊆ jn[Γ, n]
follows from Γ ≤ ΓH . If ΓH = ∪n

j=1γjΓ is the coset decomposition of ΓH modulo

Γ, then H = {hi = γiΓ; 1 ≤ i ≤ n}. A Γ-modular form ω ∈ jn[Γ, n] is ΓH -

modular exactly when it is invariant under all γi, which amounts to the invariance

under all hi.

One needs a global meromorphic G-invariant section s of Ω2
A′(T ′), in order to

obtain a linear isomorphism

(ξ∗)−1s⊗(−n) = TransH
n j−1

n : jn[ΓH , n] = jn[Γ, n]H → LA(nT, nT sing)H .

The global meromorphic sections of the logarithmic-canonical line bundle Ω2
A′(T ′)

are in a bijective correspondence with the families (fα, Uα)α∈S of local mero-

morphic defining equations fα : Uα → C of the logarithmic-canonical divisor

L + T ′. We construct local meromorphic G-invariant equations gα : Vα → C of

T and pull-back to (fα = ξ∗gα, Uα = ξ−1(Vα))α∈S . Let FA : Ã = C2 → A
be the universal covering map of A. Then for any point p ∈ A choose a lifting

p̃ ∈ F−1
A (p) and a sufficiently small neighborhood W̃ of p̃ on Ã, which is con-

tained in the interior of a π1(A)-fundamental domain on Ã, centered at p̃. The

G-invariant open neighborhood W = ∩g∈GgW̃ of p̃ on Ã intersects F−1
A (T ) in

lines with local equations lj(u, v) = aj(p̃)u + bj(p̃)v + cj(p̃) = 0. The holomor-

phic function g(u, v) =
∏

g∈G

∏
j

(lj(u, v)) on W is G-invariant and can be viewed as

a G-invariant local defining equation of T on V = FA(W ). Note that FA is locally

biholomorphic, so that V ⊂ A is an open subset, after an eventual shrinking of W̃ .

The family (g, V )p∈A of local G-invariant defining equations of T pulls-back to a

family (f = ξ∗g, U = ξ−1(V ))p∈A of local G-invariant sections of Ω2
A(T ′).



Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 73

ii) Towards the coincidence ΨH
n |[(A\T )/H] ≡ ΦH

n |[(B/ΓH)\(L/H)], let us fix a basis

{ωi ; 1 ≤ i ≤ d} of jn[ΓH , n] and apply i), in order to conclude that the set

{fi = TransH
n j−1

n (ωi) ; 1 ≤ i ≤ d} is a basis of LA(nT, nT sing)H . Tensoring by

s⊗(−n) does not alter the ratios ωi

ωj
. The isomorphism ξ : Mer(A) → Mer(A′) is

identical on (A \ T )/H . �

2. Preliminaries

In order to specify A′
−1 =

(
B/Γ

(6,8)
−1

)′

let us note that the blow-down ξ : A′
−1 →

A−1 of the (−1)-curves maps T ′ to a divisor T = ξ(T ′) with smooth elliptic irre-

ducible components Ti. Such T are called multi-elliptic divisors. Any irreducible

component Ti of T lifts to a π1(A−1)-orbit of complex lines on the universal cover

Ã′
−1 = C2. That allows to represent

Tj = {(u(mod Z + Zi), v(mod Z + Zi)) ; aju + bjv + cj = 0}.
If Tj is defined over the field Q(i) of Gauss numbers, there is no loss of generality

in assuming aj , bj ∈ Z[i] to be Gaussian integers.

Theorem 3 (Holzapfel [4]) . Let A−1 = E−1×E−1 be the Cartesian square of the
elliptic curve E−1 = C/Z+Zi, ω1 = 1

2 , ω2 = iω1, ω3 = ω1 +ω2 be half-periods,

Q0 = 0(mod Z + Zi), Q1 = ω1(mod Z + Zi), Q2 = iQ1, Q3 = Q1 + Q2

be the two-torsion points on E−1, Qij = (Qi, Qj) ∈ A2−tor
−1 and

Tk = {(u(mod Z + Zi), v(mod Z + Zi) ; u − ikv = 0} with 1 ≤ k ≤ 4,

T4+m = {u(mod Z + Zi), v(mod Z + Zi) ; u − ωm = 0} for 1 ≤ m ≤ 2 and

T6+m = {u(mod Z + Zi), v(mod Z + Zi) ; v − ωm = 0} for 1 ≤ m ≤ 2.

Then the blow-up of A−1 at the singular locus
(
T

(6,8)
−1

)sing
= Q00 + Q33 +

2∑
i=1

2∑
j=1

Qij of the multi-elliptic divisor T
(6,8)
−1 =

8∑
i=1

Ti is a neat toroidal ball quo-

tient compactification A′
−1 =

(
B/Γ

(6,8)
−1

)′

.

Theorem 4 (Kasparian and Kotzev [6]) . The group G−1 = Aut(A−1, T
(6,8)
−1 ) =

Aut(A′
−1, T

′) of order 64 is generated by the translation τ33 with Q33, the multi-
plications

I =

(
i 0
0 1

)
, respectively, J =

(
1 0
0 i

)
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with i∈Z[i] on the first, respectively, the second factor E−1 of A−1 and the trans-
position

θ =

(
0 1
1 0

)
of these factors.

Throughout, we use the notations from Theorem 3 and Theorem 4, without men-

tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-

Enriques classification type, irregularity and geometric genus of A−1/H , H ≤
G−1, referring actually to a smooth minimal model Y of A−1/H .

Theorem 5 (Kasparian and Nikolova [7]). Let

L : G−1 → GL2(Z[i]) = {g ∈ Z[i]2×2 ; det(g) ∈ Z[i]∗ = 〈i〉}

be the homomorphism, associating to g ∈ G−1 its linear part L and

L1(G−1) = {g ∈ G−1 ; rk(L(g) − I2) = 1}

= {τn
33I

k, τn
33J

k, τn
33I

lJ−lθ ; 0 ≤ n ≤ 1, 1 ≤ k ≤ 3, 0 ≤ l ≤ 3}.
Then:

i) A−1/H is an abelian surface for H = 〈τ33〉

ii) A−1/H is a hyperelliptic surface for H = 〈τ33I
2〉 or H = 〈τ33J

2〉

iii) A−1/H is a ruled surface with an elliptic base for

H = 〈h〉, h ∈ L1(G−1)\{τ33I
2, τ33J

2} or H =〈τ33, ho〉, ho ∈ L(L1(G−1))

iv) A−1/H is a K3 surface for 〈τn
33〉 �= H ≤ K = kerdetL, where

K = {τn
33I

kJ−k, τn
33I

kJ2−kθ ; 0 ≤ n ≤ 1, 0 ≤ k ≤ 3}

v) A−1/H is an Enriques surface for H = 〈I2J2, τ33I
2〉

vi) A−1/H is a rational surface for

〈h〉 ≤ H, h ∈ {τn
33IJ, τn

33I
2J, τn

33IJ2 ; 0 ≤ n ≤ 1} or 〈τn
33I

2J2, h1〉 ≤ H,

h1 ∈ {I2mJ2−2m, τm
33I, τm

33J, τm
33I

lJ−lθ ; 0 ≤ m ≤ 1, 0 ≤ l ≤ 3}, 0 ≤ n ≤ 1.

The following lemma specifies some known properties of Weierstrass σ-function

over Gaussian integers Z[i].
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Lemma 6. Let σ(z) = z
∏

λ∈Z[i]\{0}

(
1 − z

λ

) z
λ
+ 1

2
( z

λ)
2

be the Weierstrass σ-function,

associated with the lattice Z[i] of C. Then:

i) σ(ikz) = ikσ(z), z ∈ C, 0 ≤ k ≤ 3

ii)
σ(z+λ)

σ(z) = ε(λ)e−πλz−π
2
|λ|2 , z ∈ C, λ ∈ Z[i], where

ε(λ) =

{
−1 if λ ∈ Z[i] \ 2Z[i]

1 if λ ∈ 2Z[i].

Proof: i) follows from

∏
λ∈Z[i]\{0}

(
1 − ikz

λ

) i
kz
λ

+ 1

2

i
kz
λ

2

=
∏

μ= λ

ik
∈Z[i]\{0}

(
1 − z

μ

) z
μ

+ 1

2

z
μ

2

.

ii) According to Lang’s book [8]

σ(z + λ)

σ(z)
= ε(λ)eη(λ)(z+ λ

2
), z ∈ C, λ ∈ Z[i]

where η : Z[i] → C is the homomorphism of Z-modules, related to Weierstrass

ζ-function ζ(z) = σ′(z)
σ(z) by the identity ζ(z + λ) = ζ(z) + η(λ). It suffices

to establish that η(λ) = −πλ, λ ∈ Z[i]. Recall from [8] Legendre’s equality

η(i) − iη(1) = 2πi, in order to derive

η(λ) =
λ + λ

2
η(1) +

λ − λ

2i
η(i) = (η(1) + π)λ − πλ, λ ∈ Z[i].

Combining with homogeneity η(iλ) = 1
i η(λ), λ ∈ Z[i] (cf. [8]), one obtains

(η(1) + π)iλ + πiλ = η(iλ) = −iη(λ) = −(η(1) + π)iλ + πiλ, λ ∈ Z[i].

Therefore η(1) = −π and η(λ) = −πλ, λ ∈ Z[i]. �

Corollary 7.
σ(z + ωm)

σ(z − ωm)
= −e2(−1)mωmπz

σ(z + ωm + 2εω3−m)

σ(z − ωm)
= (−1)m+1εie−

π
2
+2(−1)m+1εω3−mπz+2(−1)mωmπz

σ(z − ωm + 2εω3−m)

σ(z − ωm)
= (−1)m+1εie−

π
2
+2(−1)m+1εω3−mπz.

for the half-periods ω1 = 1
2 , ω2 = iω1 and ε = ±1.
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Corollary 8.
σ(z + 2εωm)

σ(z − 1)
= e−πz+(−1)m2επωmz

σ(z + (−1)mωm + ε(−1)mω3−m)

σ(z − (−1)mωm + (−1)mω3−m)
= −i(−1)m (1+ε)

2 e2ωmπz+(1−ε)ω3−mπz.

for the half-periods ω1 = 1
2 , ω2 = iω1 and ε = ±1.

Corollary 7 and Corollary 8 follow from Lemma 6 ii) and ω̄m = (−1)m+1ωm,

ω2
m = (−1)m+1

4 ·

In [5] the map Φ :
˜

B/Γ
(6,8)
−1 → P([Γ

(6,8)
−1 , 1]) is shown to be a regular embedding.

This is done by constructing a C-basis of L = LA−1

(
T

(6,8)
−1 ,

(
T

(6,8)
−1

)sing
)

, con-

sisting of binary parallel or triangular σ-quotients. An abelian function fα,β ∈ L
is binary parallel if the pole divisor (fα,β)∞ = Tα + Tβ consists of two dis-

joint smooth elliptic curves Tα and Tβ . A σ-quotient fi,α,β ∈ L is triangular if

Ti ∩ Tα ∩ Tβ = ∅ and any two of Ti, Tα and Tβ intersect in a single point.

Theorem 9 (Kasparian and Kotzev [5]). Let

Σ12(z) =
σ(z − 1)σ(z + ω1 − ω2)

σ(z − ω1)σ(z − ω2)
, Σ1 =

σ(u − iv + ω3)

σ(u − iv)

Σ2 =
σ(u + v + ω3)

σ(u + v)
, Σ3 =

σ(u + iv + ω3)

σ(u + iv)
, Σ4 =

σ(u − v + ω3)

σ(u − v)

Σ5 =
σ(u − ω2)

σ(u − ω1)
, Σ6 =

σ(u − ω1)

σ(u − ω2)
, Σ7 =

σ(v − ω2)

σ(v − ω1)
, Σ8 =

σ(v − ω1)

σ(v − ω2)
·

Then:

i) the space L = LA−1

(
T

(6,8)
√
−1

,
(
T

(6,8)
√
−1

)sing
)

contains the binary parallel

σ-quotients f56(u, v) = Σ12(u), f78(u, v) = Σ12(v) and the triangular
σ-quotients

f157 = ie−
π
2
+πuΣ1Σ5Σ7, f168 = − e−π−πiu−πv−πivΣ1Σ6Σ8

f357 = − e−π+πu+πv+πivΣ3Σ5Σ7, f368 = − ie−
π
2
−πiuΣ3Σ6Σ8

f258 =e−π+πu−πivΣ2Σ5Σ8, f267 =e−π−πiu+πvΣ2Σ6Σ7

f458 = − ie−
π
2
+πu−πvΣ4Σ5Σ8, f467 = ie−

π
2
−πiu+πivΣ4Σ6Σ7

ii) a C-basis of L is

fo := 1, f1 := f157, f2 := f258, f3 := f368, f4 := f467, f5 := f56, f6 := f78.
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3. Technical Preparation

The group G−1 = Aut
(
A−1, T

(6,8)
−1

)
permutes the eight irreducible components

of T
(6,8)
−1 and the Γ

(6,8)
−1 -cusps. For any subgroup H of G−1, the ΓH -cusps are the

H-orbits of ∂
Γ

(6,8)

−1

B/Γ
(6,8)
−1 = {κi ; 1 ≤ i ≤ 8}.

Lemma 10. If ϕ : G−1 → S8(κ1, . . . , κ8) is the natural representation of G−1 =

Aut
(
A−1, T

(6,8)
−1

)
in the symmetric group of the Γ

(6,8)
−1 -cusps, then

ϕ(τ33) = (κ5, κ6)(κ7, κ8), ϕ(I) = (κ1, κ4, κ3, κ2)(κ5, κ6)

ϕ(J) = (κ1, κ2, κ3, κ4)(κ7, κ8), ϕ(θ) = (κ1, κ3)(κ5, κ7)(κ6, κ8).

Proof: The Γ
(6,8)
−1 -cusps κi are obtained by contraction of the proper transforms

T ′
i of Ti under the blow-up of A−1 at

(
T

(6,8)
−1

)sing
. Therefore the representations

of G−1 in the permutation groups of {Ti ; 1 ≤ i ≤ 8}, {T ′
i ; 1 ≤ i ≤ 8} and

{κi ; 1 ≤ i ≤ 8} coincide.

According to τ33(u − ikv) = u − ikv + (1 − ik)ω3 = u − ikv(mod Z + Zi),
the translation τ33 acts identically on T1, T2, T3, T4. Further, τ33(u − ωm) =
u + ω3−m ≡ u− ω3−m(mod Z + Zi) reveals the permutation (T5, T6)(T7, T8) of

the last four components of T
(6,8)
−1 .

Due to the identity I(u − ikv) = iu − ikv = i(u − ik−1v), the automorphism

I induces the permutation (T1, T4, T3, T2) of the first four components of T
(6,8)
−1 .

Further, I(u − ωm) = i(u ± ω3−m) reveals that I permutes T5 with T6. Note that

I acts identically on v and fixes T7, T8.

In a similar vein, J(u − ikv) = u − ik+1v, J(v − ωm) = i(v ± iω3−m) de-

termine that ϕ(J) = (κ1, κ2, κ3, κ4)(κ7, κ8). According to θ(u − ikv) = v −
iku = −ik(u − i−kv) and θ(u − ωm) = v − ωm, one concludes that ϕ(θ) =
(κ1, κ3)(κ5, κ7)(κ6, κ8). �

The following lemma incorporates several arguments, which will be applied re-

peatedly towards determination of the target P([ΓH , 1]) and the rank of the loga-

rithmic canonical map ΦH .

Lemma 11. In the notations from Theorem 9, for an arbitrary subgroup H of

G−1 = Aut
(
A−1, T

(6,8)
−1

)
and any f ∈ L = LA−1

(
T

(6,8)
−1 ,

(
T

(6,8)
−1

)sing
)

, let

RH(f) =
∑

h∈H

h(f) be the value of Reynolds operator RH of H on f .
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i) The space LH of the H-invariants of L is spanned by {RH(fi) ; 0 ≤ i ≤ 6}.

ii) Let Ti ⊂ (RH(fi,α1,β1
))∞, (RH(fi,α2,β2

))∞ ⊆ OrbH(Ti) +
8∑

α=5
Tα for

some 1 ≤ i ≤ 4, 5 ≤ αj ≤ 6, 7 ≤ βj ≤ 8. Then

RH(fi,α2,β2
) ∈ SpanC(1, RH(f56), RH(f78), RH(fi,α1,β1

)).

iii) Let κ̄i1 , . . . , κ̄ip with 1 ≤ i1 < . . . < ip ≤ 4 be different ΓH -cusps

Tij ⊂ (RH(fij ))∞ ⊆ OrbH(Tij ) +
8∑

α=5

Tα for all 1 ≤ j ≤ p

and B be a C-basis of LH
2 = LA−1

(
8∑

α=5
Tα

)H

. Then the set

{RH(fij ,αj ,βj
) ; 1 ≤ j ≤ p} ∪ B

consists of linearly independent invariants over C.

iv) If Rj = RH(fj,αj ,βj
) �≡ const, Rj |Tj

= ∞ and Ri = RH(fi,αi,βi
) has

Ri|Tj
�≡ const then for any subgroup Ho of H the projective maps

ΨHo : X/Ho > P(LHo), ΦHo : B̂/ΓHo
> P(j1[ΓHo

, 1])

are of rank rkΦHo = rkΨHo = 2.

v) If the group H ′ is obtained from the group H by replacing all τn
33I

kJ lθm ∈
H with τn

33I
lJkθm, then the spaces of modular forms j1[ΓH′ , 1] � j1[ΓH , 1]

are isomorphic and the logarithmic-canonical maps have equal rank rkΦH =
rkΦH′

.

Proof: i) By Theorem 9 ii), L = SpanC(fi ; 0 ≤ 6). Therefore any f ∈ L is a

C-linear combination f =
6∑

i=0
cifi. Due to H-invariance of f and the linearity of

the representation of H in Aut(L), Reynolds operator

|H|f = RH(f) =

6∑
i=0

ciRH(fi).

ii) Let ωs ∈ j1

[
Γ

(6,8)
−1 , 1

]H

are the modular forms, which transfer to RH(fi,αs,βs
),

1 ≤ s ≤ 2. Since ω1(κi) �= 0, there exists ci ∈ C, such that ω′
i = ω2 − ciω1 van-

ishes at κi. By the assumption (RH(fi,αs,βs
))∞ ⊆ OrbH(Ti)+

8∑
α=5

Tα, the transfer

Fi ∈ LH of ω′
i belongs to SpanC(1, f56, f78)

H = SpanC(1, RH(f56), RH(f78)).



Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 79

iii) As far as the transfer TransH
1 : j1[ΓH , 1] → L is a C-linear isomorphism, it

suffices to establish the linear independence of the corresponding modular forms

{ωij ; 1 ≤ j ≤ p}∪{ωb ; b ∈ B}. Evaluating the C-linear combination
p∑

j=1
cijωij+∑

b∈B

cbωb = 0 at κ̄i1 , . . . , κ̄ip , one obtains cij = 0, according to ωij (κ̄is) = δs
j ={

1 for j = s

0 for j �= s
and ωb(κ̄ij ) = 0, b ∈ B, 1 ≤ j ≤ p. Then

∑
b∈B

ωb = 0 requires

the vanishing of all cb, due to the linear independence of B.

iv) If Ho is a subgroup of H then LH is a subspace of LHo , j1[ΓH , 1] is a subspace

of j1[ΓHo
, 1] and ΨH = prLΨHo , ΦH = prΓH ΦHo for the projections prL :

P(LHo) → P(LH), prΓH : P(j1[ΓHo
, 1]) → P(j1[ΓH , 1]). That is why, it suffices

to justify that rkΦH = rkΨH = 2 is maximal. Assume the opposite and consider

Ri, Rj : X/H > P1. The commutative diagram

X/H P1 × P1

P1

�(Ri,Rj)

�

Rj

�
�

�
�

��

pr2

has surjective Rj , as far as Rj �≡ const. If the image C = (Ri, Rj)(X/H) is

a curve, then the projection pr2 : C → P1 has only finite fibers. In particular,

pr−1
2 (∞) = Ri((Rj)∞) × ∞ ⊇ Ri(Tj) × ∞ consists of finitely many points.

However, Ri(Tj) = P1 as an image of the non-constant elliptic function Ri :
Tj > P1. The contradiction implies that dimC C = 2 and rkΨH = 2.

v) The transposition of the holomorphic coordinates (u, v) ∈ C2 affects non-

trivially the constructed σ-quotients. However, one can replace the equations

u − ikv = 0 of Tk, 1 ≤ k ≤ 4 by v − i−ku = 0 and repeat the above con-

siderations with interchanged u, v. The dimension of j1[ΓH , 1] and the rank of

ΦH are invariant under the transposition of the global holomorphic coordinates on

Ã−1 = C2. �

With a slight abuse of notation, we write g(f) instead of g∗(f), for g ∈ G−1,

f ∈ L = LA−1

(
T

(6,8)
−1 ,

(
T

(6,8)
−1

)sing
)

.
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Lemma 12. The generators τ33, I, J, θ of G−1 act on the binary parallel and tri-
angular σ-quotients from Corollary 9 as follows:

3τ33(f56) = − f56, τ33(f78) = − f78

τ33(f157) = − ie
π
2 f168, τ33(f168) = ie−

π
2 f157, τ33(f357) = − ie−

π
2 f368

τ33(f368) = ie
π
2 f357, τ33(f258) = f267, τ33(f267) = f258

τ33(f458) = − f467, τ33(f467) = − f458

I(f56) = − if56, I(f78) =f78

I(f157) = − if467, I(f168) = − e−
π
2 f458, I(f357) = if267

I(f368) = − e
π
2 f258, I(f258) = if168, I(f267) = − e−

π
2 f157

I(f458) = − if368, I(f467) = − e
π
2 f357

J(f56) =f56, J(f78) = − if78

J(f157) = − ie
π
2 f258, J(f168) =f267, J(f357) = ie−

π
2 f458

J(f368) =f467, J(f258) =f357, J(f267) = − ie−
π
2 f368

J(f458) =f157, J(f467) = ie
π
2 f168

θ(f56) =f78, θ(f78) =f56

θ(f157) = − e
π
2 f357, θ(f168) = − e−

π
2 f368, θ(f357) = − e−

π
2 f157

θ(f368) = − e
π
2 f168, θ(f258) =f267, θ(f267) =f258

θ(f458) =f467, θ(f467) =f458.

Proof: Making use of Lemma 6 and Corollary 8, one computes that

τ33σ(u − 1) = −eπu+πiuσ(u + ω1 − ω2), τ33σ(u + ω1 − ω2) = e−2πuσ(u − 1)

τ33σ(u − ω1) = −eπiuσ(u − ω2), τ33σ(u − ω2) = −e−πuσ(u − ω1)

τ33(Σ1) = −ie−
π
2 Σ1, τ33(Σ2) = e−πΣ2, τ33(Σ3) = ie−

π
2 Σ3, τ33(Σ4) = Σ4

τ33(Σ5) = e−πu−πiuΣ6, τ33(Σ6) = eπu+πiuΣ5

τ33(Σ7) = e−πv−πivΣ8, τ33(Σ8) = eπv+πivΣ7

Iσ(u − 1) = ie−πu+πiuσ(u − 1), Iσ(u + ω1 − ω2) = −eπuσ(u + ω1 − ω2)

Iσ(u − ω1) = −ieπiuσ(u − ω2), Iσ(u − ω2) = iσ(u − ω1)

I(Σ1) = ie−πiu+πivΣ4, I(Σ2) = ie−πiu−πvΣ1

I(Σ3) = ie−πiu−πivΣ2, I(Σ4) = ie−πiu+πvΣ3
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I(Σ5) = −e−πiuΣ6, I(Σ6) = −eπiuΣ5, I(Σ7) = Σ7, I(Σ8) = Σ8

Jσ(v + μ) = Iσ(u + μ)|u=v, μ ∈ C

4J(Σ1) = Σ2, J(Σ2) = Σ3, J(Σ3) = Σ4, J(Σ4) = Σ1

J(Σ5) = Σ5, J(Σ6) = Σ6, J(Σ7) = −e−πivΣ8, J(Σ8) = −eπivΣ7

θσ(u + μ) = σ(v + μ), μ ∈ C

θ(Σ1) = −ieπu+πivΣ3, θ(Σ2) = Σ2

θ(Σ3) = ie−πiu−πvΣ1, θ(Σ4) = −eπu−πiu−πv+πivΣ4

θ(Σ5) = Σ7, θ(Σ6) = Σ8, θ(Σ7) = Σ5, θ(Σ8) = Σ6.

�

The following lemma is an immediate consequence of Lemma 6 and Corollary 7.

Lemma 13.
f157

Σ1

∣∣∣
T1

= −ie−
π
2 ,

f168

Σ1

∣∣∣
T1

= e−π,
f258

Σ2

∣∣∣
T2

= e−π,
f267

Σ2

∣∣∣
T2

= e−π

f357

Σ3

∣∣∣
T3

= e−π,
f368

Σ3

∣∣∣
T3

= ie−
π
2 ,

f458

Σ4

∣∣∣
T4

= −ie−
π
2 ,

f467

Σ4

∣∣∣
T4

= ie−
π
2

f157 + ie
π
2 f357

Σ5

∣∣∣
T5

= 0,
f258 − ie−

π
2 f458

Σ5

∣∣∣
T5

= 0.

Lemma 14.

[(f157 − ie
π
2 f168) + c(f357 − ie−

π
2 f368)]|T2

= ie−
π
2
−πv

(
1 + ce−

π
2

)
σ((1 + i)v + ω3)

σ((1 + i)v)

[
e(1+i)πv σ(v − ω2)

2

σ(v − ω1)2
+ e−(1+i)πv σ(v − ω1)

2

σ(v − ω2)2

]
is non-constant for all c ∈ C \ {−e

π
2 }.

Proof: Note that

f(v) = [(f157 − ie
π
2 f168) + c(f357 − ie−

π
2 f368)]|T2

=
[
ie−

π
2
−πvΣ1(−v, v) − ce−π+πivΣ3(−v, v)

]
× [Σ5(−v)Σ7(v) + Σ6(−v)Σ8(v)]

= ie−
π
2
−πv

(
1 + ce−

π
2

) σ((1 + i)v − ω3)

σ((1 + i)v)

×
[
e(1+i)πv σ(v − ω2)

2

σ(v − ω1)2
+ e−(1+i)πv σ(v − ω1)

2

σ(v − ω2)2

]



82 Azniv Kasparian

making use of Lemma 6 and Corollary 7. Obviously, f(v) has no poles outside

Q(i). It suffices to justify that lim
v→0

f(v) = ∞, in order to conclude that f(v) �≡
const. To this end, use σ(ω2) = iσ(ω1) to observe that

f(v)σ((1 + i)v)
∣∣∣
v=0

= 2 ie−
π
2

(
1 + ce−

π
2

)
σ(ω3) �= 0

whenever c �= −e
π
2 , while σ((1 + i)v)|v=0 = 0. �

4. Basic Results

Lemma 15. For H = 〈IJ2, τ33J
2〉, 〈I2J, τ33I

2〉 with rational A−1/H and any

−Id ∈ H ≤ G−1, the map ΦH : B̂/ΓH > P([ΓH , 1]) is constant.

Proof: By Lemma 11 (iv), the assertion for 〈I2J, τ33I
2〉 is a consequence of the

one for 〈IJ2, τ33J
2〉. In the case of H = 〈IJ2, τ33J

2〉, the space LH is spanned

by Reynolds operators

RH(f56) = 0, RH(f78) = 0

RH(f157) = f157 + ie
π
2 f168 + e

π
2 f267 − e

π
2 f258 + ie

π
2 f357 − f368 + if467 + if458.

The ΓH -cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By Lemma 13,
f157+ie

π
2 f168

Σ1

∣∣∣
T1

= 0, so that RH(f157)|T1
�= ∞. Therefore RH(f157) ∈ LH

2 = C

and rkΦH = 0.

It suffices to observe that −Id changes the signs of the C-basis

f56, f78, f157, f258, f368, f467 (1)

of L = LA−1

(
T

(6,8)
−1 ,

(
T

(6,8)
−1

)sing
)

. Then for Ho = 〈−Id 〉 the space LHo is

generated by RHo
(1) = 1. Any subgroup Ho ≤ H ≤ G−1 decomposes into

cosets H = ∪k
i=1hiHo and RH =

k∑
i=1

hiRHo
vanishes on (1). Thus, LH = C and

rkΦH = 0. �

Note that A−1/〈−Id 〉 has 16 double points, whose minimal resolution is the Kum-

mer surface X−1 of A−1. Thus, H � −Id exactly when the minimal resolution Y
of the singularities of A−1/H is covered by a smooth model of X−1. More pre-

cisely, all A−1/H with −Id ∈ H have vanishing irregularity 0 ≤ q(A−1/H) ≤
q(X−1) = 0. These are the Enriques A−1/〈−Id , τ33I

2〉, all K3 quotients A−1/H
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with 〈τn
33〉 �= H ≤ K = kerdetL, except A−1/〈τ33(−Id )〉 and the rational

A−1/H with τ33IJ ∈ H for 0 ≤ n ≤ 1 or 〈−Id , h1〉 ≤ H for

h1 ∈ {I2mJ2−2m, τm
33I, τm

33J, τm
33I

lJ−lθ ; 0 ≤ m ≤ 1, 0 ≤ l ≤ 3}.

Lemma 16. The non-trivial subgroups H �� −Id of G−1 are

i) cyclic of order two

H2(m, l) = 〈τ33I
2mJ2l〉 with 0 ≤ m, l ≤ 1

Hθ
2 (n, k) = 〈τn

33I
kJ−kθ〉 with 0 ≤ n ≤ 1, 0 ≤ k ≤ 3, H ′

2 = 〈I2〉, H ′′
2 = 〈J2〉

ii) cyclic of order four

H ′
4(n, m) = 〈τn

33IJ2m〉 with 0 ≤ n, m ≤ 1

H ′′
4 (n, m) = 〈τn

33I
2mJ〉 with 0 ≤ n, m ≤ 1

iii) isomorphic to Klein group Z2 × Z2

H ′
2×2(m) = 〈τ33J

2m, I2〉 with 0 ≤ m ≤ 1

H ′′
2×2(m) = 〈τ33I

2m, J2〉 with 0 ≤ m ≤ 1

Hθ
2×2(k) = 〈IkJ−kθ, τ33〉 with 0 ≤ k ≤ 1

Hθ
2×2(n, k) = 〈τn

33I
kJ−kθ, τ33I

2J2〉 with 0 ≤ n, k ≤ 1

iv) isomorphic to Z4 × Z2

H ′
4×2(m, l) = 〈IJ2m, τ33J

2l〉 with 0 ≤ m, l ≤ 1

H ′′
4×2(m, l) = 〈I2mJ, τ33I

2l〉 with 0 ≤ m, l ≤ 1.

Proof: If H is a subgroup of G−1, which does not contain −Id , then H ⊆ S =
{g ∈ G−1 ; − Id �∈ 〈g〉}. Decompose G−1 = G′

−1 ∪ G′
−1θ into cosets modulo

the abelian subgroup

G′
−1 = {τn

33I
kJ l ; 0 ≤ n ≤ 1, 0 ≤ k, l ≤ 3} ≤ G−1.

The cyclic group, generated by (τn
33I

kJ lθ)2 = (IJ)k+l does not contain −Id =

(IJ)2 if and only if k + l ≡ 0(mod 4). If S(r) = {g ∈ S ; g is of order r} then

S ∩ G′
−1θ = {τn

33I
kJ−kθ ; 0 ≤ n ≤ 1, 0 ≤ k ≤ 3} = S(2) ∩ G′

−1θ =: S
(2)
1
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and S ∩ G′
−1θ ⊆ S(2) consists of elements of order two. Concerning S ∩ G′

−1,

observe that (τn
33I

kJk+2m)2 = (IJ)2k ∈ S for 0 ≤ n, m ≤ 1, 0 ≤ k ≤ 3 requires

k = 2p to be even. Consequently

{τn
33I

kJ l ; k ≡ l(mod 2)} ∩ S

= {τ33I
2mJ2l, I2, J2 ; 0 ≤ m, l ≤ 1} = S(2) ∩ G′

−1 =: S
(2)
0

{τn
33I

kJ l ; k ≡ l + 1(mod 2)} ∩ S

= {τn
33I

2m+1J2l, τn
33I

2mJ2l+1 ; 0 ≤ n, m, l ≤ 1} = S(4).

In such a way, one obtains S = {Id }∪S
(2)
0 ∪S

(2)
1 ∪S(4) of cardinality |S| = 31. If

a subgroup H of G−1 is contained in S, then |H| ≤ |S| = 31 divides |G−1| = 64,

i.e., |H| = 1, 2, 4, 8 or 16. The only subgroup H < G−1 of |H| = 1 is the

trivial one H = {Id }. The subgroups −Id �∈ H < G−1 of order two are the

cyclic ones, generated by h ∈ S
(2)
0 ∪ S

(2)
1 . We denote H2(m, l) = 〈τ33I

2mJ2l〉
for 0 ≤ m, l ≤ 1, Hθ

2 (n, k) = 〈τn
33I

kJ−kθ〉 for 0 ≤ n ≤ 1, 0 ≤ k ≤ 3 and

H ′
2 = 〈I2〉, H ′′

2 = 〈J2〉.
For any h ∈ S(4) one has 〈h〉 = 〈h3〉, so that the subgroups −Id �∈ H � Z4

of G−1 are depleted by H ′
4(n, m) = 〈τn

33IJ2m〉, H ′′
4 (n, m) = 〈τn

33I
2mJ〉 with

0 ≤ n, m ≤ 1.

The subgroups −Id �∈ H � Z2×Z2 of G−1 are generated by commuting g1, g2 ∈
S(2) = S

(2)
0 ∪ S

(2)
1 . If g1, g2 ∈ S

(2)
1 then g1g2 ∈ G′

−1, so that one can always

assume that g2 ∈ S
(2)
0 . Any g1 �= g2 from S

(2)
0 ⊂ G′

−1 generate a Klein group of

order 4. Moreover, if

S
(2)
0,1 = {τ33I

2mJ2l ; 0 ≤ m, l ≤ 1}, S
(2)
0,0 = {I2, J2}

then for any g1, g2 ∈ S
(2)
0,1 with g1g2 ∈ S there follows g1g2 ∈ S

(2)
0,0 . Thus, any

S
(2)
0 ⊃ H � Z2 × Z2 has at least one generator g2 ∈ S

(2)
0,0 . The requirement

I2J2 = −Id �∈ H specifies that g1 ∈ S
(2)
0,1 . In the case of g2 = I2 there is no loss

of generality to choose g1 = τ33J
2m, in order to form H ′

2×2(m). Similarly, for

g2 = J2 it suffices to take g1 = τ33I
2m, while constructing H ′′

2×2(m). In order to

determine the subgroups −Id �∈ H = 〈g1〉× 〈g2〉 � Z2 ×Z2 with g1 ∈ S
(2)
1 , g2 ∈

S
(2)
0 , note that g1 = τn

33I
kJ−kθ does not commute with I2, J2 and commutes with

g2 = τ33I
2mJ2l if and only if 2m ≡ 2l(mod 4), i.e., 0 ≤ m = l ≤ 1. Bearing

in mind that 〈τn
33I

kJ−kθ, τ33I
2mJ2m〉 = 〈τn+1

33 Ik+2mJ−k+2mθ, τ33I
2mJ2m〉,
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one restricts the values of k to 0 ≤ k ≤ 1. For m = 0 denote H θ
2×2(k) =

〈IkJ−kθ, τ33〉. For m = 1 put Hθ
2×2(n, k) = 〈τn

33I
kJ−kθ, τ33I

2J2〉.
Let −Id �∈ H ⊂ S be a subgroup of order 8. The non-abelian such H are

isomorphic to quaternionic group Q8 = 〈s, t ; s4 = Id, s2 = t2, sts = t〉
or to dihedral group D4 = 〈s, t ; s4 = Id , t2 = Id , sts = t〉. Note that

s ∈ S(4) and sts = t require st �= ts. As far as S(4) ∪ S
(2)
0 ⊂ G′

−1 for the

abelian group G′
−1 = 〈τ33, I, J〉, it suffices to consider t = τn

33I
kJ−kθ ∈ S

(2)
1

and s = τm
33I

pJ2l+1−p ∈ S(4) with 0 ≤ n, m, l ≤ 1, 0 ≤ p, k ≤ 3. However,

sts = τn
33I

k+2l+1Jk+2l+1θ �= t reveals the non-existence of a non-abelian group

−Id �∈ H ≤ G−1 of order 8.

The abelian groups H ⊂ S = {Id } ∪ S(2) ∪ S(4) of order 8 are isomorphic

to Z4 × Z2 or Z2 × Z2 × Z2. Any Z4 × Z2 � H ⊂ S is generated by s =

τm
33I

pJ2l+1−p ∈ S(4) and t ∈ S
(2)
0 , as far as t′ = τn

33I
kJ−kθ ∈ S

(2)
1 has

st′ = τm+n
33 Ip+kJ2l+1−(p+k)θ �= τm+n

33 I2l+1−(p−k)Jp−kθ = t′s.

For s = τn
33I

2m+1J2l ∈ S(4) there holds 〈s, t〉 = 〈s3, t〉 and it suffices to consider

s = τn
33IJ2l. Further, t �∈ 〈s2〉 = 〈I2〉 and s2t �= −Id specify that t = τ33I

2pJ2q

for some 0 ≤ p, q ≤ 1. Replacing eventually t by ts2 = tI2, one attains t =
τ33J

2q. On the other hand, the generator s = τ33IJ2l ∈ S(4) of H = 〈s, t〉
can be restored by st = IJ2(l+q), so that H = H ′

4×2(l, q) = 〈IJ2l, τ33J
2q〉 for

some 0 ≤ l, q ≤ 1. Exchanging I with J , one obtains the remaining groups

H ′′
4×2(l, q) = 〈I2lJ, τ33I

2q〉 � Z4 × Z2, contained in S.

If −Id �∈ H ⊂ S is isomorphic to Z2 × Z2 × Z2 then arbitrary different elements

s, t, r ∈ H of order two commute and generate H . For any x ∈ S and M ⊆ S,

consider the centralizer CM (x) = {y ∈ M ; xy = yx} of x in M . Looking for

s ∈ S(2), t ∈ CS(2)(s) and r ∈ CS(2)(s) ∩ CS(2)(t), one computes that

CS(2)(τn
33I

2) = CS(2)(τn
33J

2) = S
(2)
0

CS(2)(τ33I
2mJ2m) = S(2) = S

(2)
0 ∪ S

(2)
1

CS(2)(τn
33I

2mJ−2mθ) = {τp
33I

2qJ−2qθ, τ33I
2pJ2p ; 0 ≤ p, q ≤ 1}

CS(2)(τn
33I

2m+1J−2m−1θ) = {τp
33I

2q+1J−2q−1θ, τ33I
2pJ2p ; 0 ≤ p, q ≤ 1}.

Any subgroup Z2 × Z2 × Z2 � H ⊂ {Id } ∪ S
(2)
0 ∪ S

(2)
1 intersects S

(2)
1 , due to

|S(2)
0 | = 6. That allows to assume that s ∈ S

(2)
1 and observe that

CS(2)(s) = {s, (−Id )s, τ33s, τ33(−Id )s, τ33, τ33(−Id )}.
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If t = τ33I
2pJ2p ∈ CS(2)(s) then CS(2)(t) = S(2), so that

H \ {Id , s, t} ⊆ [CS(2)(s) ∩ CS(2)(t)] \ {s, t} = CS(2) \ {s, t} (2)

with 5 = |H \{Id , s, t}| ≤ |CS(2)(s)\{s, t}| = 4 is an absurd. For t ∈ CS(2)(s)\
{τ33I

2pJ2p ; 0 ≤ p ≤ 1} one has CS(2)(t) = CS(2)(s), which again leads to (2).

Therefore, there is no subgroup Z2 × Z2 × Z2 � H �� −Id of G−1.

Concerning the non-existence of subgroups −Id �∈ H ⊂ S of order 16, the abelian

−Id �∈ H ⊂ S of order 16 may be isomorphic to Z4 × Z4, Z4 × Z2 × Z2 or

Z2 × Z2 × Z2 × Z2. Any H � Z4 × Z4 is generated by s, t ∈ S(4) with s2 �= t2.

Replacing, eventually, s by s3 and t by t3, one has s = τn
33IJ2m, t = τp

33I
2qJ

with 0 ≤ n, m, p, q ≤ 1. Then s2t2 = I2J2 = −Id ∈ H is an absurd. The

groups H � Z4 × Z2 × Z2 are generated by s ∈ S(4) and t, rinCS(2)(s) with

r ∈ CS(2)(t). In the case of s = τn
33IJ2m, the centralizer CS(2)(s) = S

(2)
0 .

Bearing in mind that s2 = I2, one observes that 〈t, r〉 ∩ {I2, J2} = ∅. Therefore

t, r ∈ {τ33I
2pJ2q ; 0 ≤ p, q ≤ 1}, whereas tr ∈ {Id , I2, J2,−Id }. That reveals

the non-existence of Z4×Z2×Z2 � H �� −Id . The groups H � Z2×Z2×Z2×Z2

contain 15 elements of order two, while |S(2)| = 14. Therefore there is no abelian

group −Id �∈ H ≤ G−1 of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian

subgroup of order 8 and consist of elements of order 1, 2 or 4. If

〈s, t ; s4 = e, t4 = e, st = ts3〉 � H ⊂ S

then s, t ∈ S(4) ⊂ G′
−1 = 〈τ33, I, J〉 commute and imply that s is of order two.

The assumption

〈a, b, c ; a4 = e, b2 = e, c2 = e, cbca2b = e, ba = ab, ca = ac〉 � H ⊂ S

requires b, c ∈ CS(2)(a) = S
(2)
0 = {τ33I

2mJ2l, I2, J2 ; 0 ≤ m, l ≤ 1}. Then b
and c commute and imply that cbca2b = e = a2 = e. Finally, for

G4,4 = 〈s, t ; s4 = e, t4 = e, stst = e, ts3 = st3〉

there follows s, t ∈ S(4) ⊂ G′
−1, whereas st = ts. Consequently, s2 = t2 and

G4,4 = {sitj ; 0 ≤ i ≤ 3, 0 ≤ j ≤ 1} is of order ≤ 8, contrary to |G4,4| = 16.

Thus, there is no subgroup −Id �∈ H ≤ G−1 of order 16. �

Throughout, we use the notations Hβ
α(γ) from Lemma 16 and denote by Γβ

α(γ) the

corresponding lattices with Γβ
α(γ)/Γ

(6,8)
−1 = Hβ

α(γ).

Theorem 17. For the groups H = H ′
4×2(p, q) = 〈IJ2p, τ33J

2q〉, H ′′
4×2(p, q) =

〈I2pJ, τ33I
2q〉, H ′

4(1 − m, m) = 〈τ 1−m
33 IJ2m〉, H ′′

4 (1 − m, m) = 〈τ 1−m
33 I2mJ〉,
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H ′
2×2(1) = 〈τ33J

2, I2〉, H ′′
2×2(1) = 〈τ33I

2, J2〉, Hθ
2×2(n, m) = 〈τn

33I
mJ−mθ,

τ33I
2J2〉 with 0 ≤ p, q ≤ 1, (p, q) �= (1, 1) and 0 ≤ n, m ≤ 1 the logarithmic-

canonical map

ΦH : B̂/ΓH > P([ΓH , 1]) = P1

is dominant and not globally defined. The Baily-Borel compactifications B̂/ΓH

are birational to ruled surfaces with elliptic bases whenever H = H ′
4×2(0, 0),

H ′′
4×2(0, 0), H ′

4(1, 0) or H ′′
4 (1, 0). The remaining ones are rational surfaces.

Proof: According to Lemma 11(v), it suffices to prove the theorem for H ′
4×2(p, q)

with (p, q) �= (1, 1), H ′
4(1 − m, m) H ′

2×2(1) and Hθ
2×2(n, m).

If H = H ′
4(1, 0) = 〈τ33I〉, then LH is generated by 1 ∈ C and Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − e
π
2 f258 + ie

π
2 f357 + if458

RH(f168) = f168 − if267 + ie−
π
2 f368 + e−

π
2 f467 = ie−

π
2 RH(f368).

There are four Γ′
4(1, 0)-cusps : κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5, κ̄6, κ̄7 = κ̄8. Applying

Lemma 11 ii) to T1 ⊂ (RH(f157))∞, RH(f168)∞ ⊆
8∑

i=1
Ti, one concludes that

RH(f168) ∈ SpanC(1, RH(f157). Therefore LH � C2 and ΦH′
4
(1,0) is a dominant

map to P(LH) � P1. Since RH(f157)|T6
�= ∞, the entire [Γ′

4(1, 0), 1] vanishes at

κ̄6 and ΦH′
4
(1,0) is not defined at κ̄6.

The group H = H ′
4×2(0, 0) = 〈I, τ33〉 contains F = H ′

4(1, 0) as a subgroup of

index two with non-trivial coset representative I . Therefore RH(f56) = RF (f56)+

IRF (f56) = 0, RH(f78) = 0 and rkΦH′
4×2

(0,0) ≤ 1. Due to

RH(f157) = f157 − ie
π
2 f168 − e

π
2 f258 − e

π
2 f267 + f368 + ie

π
2 f357 + if458 − if467

LH = SpanC(1, RH(f157)). Lemma 13 provides f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0,

whereas RH(f157)|T1
= ∞. Therefore dimC LH = 2 and ΦH′

4×2
(0,0) is a dominant

map to P1. The Γ4×2(0, 0)-cusps are κ̄1 = κ̄2 = κ3 = κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8.

Again from Lemma 13, f157−e
π
2 f258+ie

π
2 f357+if458

Σ5

∣∣∣
T5

= 0, so that RH(f157) is

regular over T5 + T6. As a result, ΦH′
4×2

(0,0) is not defined at κ̄5 = κ̄6.

For H = H ′
4(0, 1) = 〈IJ2〉, the space LH is spanned by 1 and Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 + e
π
2 f267 + ie

π
2 f357 + if467

RH(f168) = f168 + if258 + ie−
π
2 f368 + e−

π
2 f458 = iRH(f258).
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The Γ′
4(0, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6, κ̄7 and κ̄8. Note that

T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti, in order to conclude that RH(f168) ∈

SpanC(1, RH(f157)) by Lemma 11 ii). Therefore LH = SpanC(1, RH(f157)) �
C2 and ΦH′

4
(0,1) is a dominant map to P1. Lemma 13 supplies f157+ie

π
2 f357

Σ5

∣∣∣
T5

= 0

and justifies that ΦH′
4
(0,1) is not defined at κ̄5.

For H = H ′
4×2(1, 0) = 〈IJ2, τ33〉 note that RH(f56) = 0, RH(f78) = 0, as far as

H ′
4(1, 0) is a subgroup of H ′

4×2(1, 0). Further,

RH(f157) = f157 − ie
π
2 f168 + e

π
2 f267 + e

π
2 f258 + ie

π
2 f357 + f368 + if467 − if458

has a pole over
4∑

i=1
Ti, according to f157−ie

π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0 by Lemma 13

and the transitiveness of the H ′
4(1, 0)-action on {κi ; 1 ≤ i ≤ 4}. Therefore

LH = SpanC(1, RH(f157)) � C2 and ΦH′
4×2

(1,0) is a dominant map to P1. One

computes immediately that the Γ′
4×2(1, 0)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6

and κ̄7 = κ̄8. Again from Lemma 13, f157+e
π
2 f258+ie

π
2 f357−if458

Σ5

∣∣∣
T5

= 0, RH(f157)

has no pole at T5 + T6 and ΦH′
4×2

(1,0) is not defined at κ̄5 = κ̄6.

If H = H ′
2×2(1) = 〈I2, τ33J

2〉 then

RH(f56) = 0, RH(f78) = 4f78, RH(f157) = f157 + ie
π
2 f168 + ie

π
2 f357 − f368

RH(f258) = f258 − f267 − ie−
π
2 f467 − ie−

π
2 f458 and 1 ∈ C

span LH . The Γ′
2×2(1)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6 and κ̄7 =

κ̄8. Lemma 13 reveals that f157+ie
π
2 f168

Σ1

∣∣∣
T1

= ie
π
2 f357−f368

Σ3

∣∣∣
T3

= f258−f267

Σ2

∣∣∣
T2

=

f467+f458

Σ4

∣∣∣
T4

= 0, so that RH(f157), RH(f258) ∈ SpanC(1, f78) and LH � C2.

As a result, ΦH′
2×2

(1) is a dominant map to P1, which is not defined at κ̄1 and κ̄2.

For the group H = H ′
4×2(0, 1) = 〈I, τ33J

2〉, containing H ′
2×2(1) = 〈I2, τ33J

2〉
there follows RH(f56) = 0 and rkΦH′

4×2
(0,1) ≤ 1. Therefore RH(f78) = 8f78,

RH(f157) = f157 + ie
π
2 f168 + e

π
2 f258 − e

π
2 f267 + ie

π
2 f357 − f368 − if458 − if467

and 1 ∈ C span LH . The Γ′
4×2(0, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 =

κ̄6 and κ̄7 = κ̄8. By Lemma 13, f157+ie
π
2 f168

Σ1

∣∣∣
T1

= 0, so that RH(f157) ∈
SpanC(1, f78) � C2. Thus, ΦH′

4×2
(0,1) is a dominant map to P1, which is not

defined at κ̄1.
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If H = Hθ
2×2(0, 0) = 〈θ, τ33I

2J2〉 then LH is spanned by 1 ∈ C,

RH(f56) = 2(f56 + f78), RH(f157) = f157 + ie
π
2 f168 − e

π
2 f357 − if368

and RH(f467) = 2(f467 + f458), due to RH(f258) = 0. The Γθ
2(0, 0)-cusps are

κ̄1 = κ̄3, κ̄2, κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. Lemma 13 provides f157+ie
π
2 f168

Σ1

∣∣∣
T1

= 0,

f467+f458

Σ4

∣∣∣
T4

= 0, whereas RH(f157), RH(f467) ∈ SpanC(1, RH(f56)) � C2.

Therefore ΦHθ
2
(0,0) is a dominant map to P1, which is not defined at κ̄1, κ̄2 and κ̄4.

For H = Hθ
2×2(0, 1) = 〈IJ−1θ, τ33I

2J2〉 one has

RH(f56) = 2(f56 + if78), RH(f157) = 0, RH(f168) = 0

RH(f368) = 2(f368 − ie
π
2 f357), RH(f258) = f258 − f267 − e−

π
2 f458 − e−

π
2 f467.

The Γθ
2×2(0, 1)-cusps are κ̄1, κ3, κ2 = κ4, κ5 = κ6 = κ7 = κ8. Lemma 13

implies that f368−ie
π
2 f357

Σ3

∣∣∣
T3

= 0, f258−f267

Σ2

∣∣∣
T2

= 0, f458+f467

Σ4

∣∣∣
T4

= 0, whereas

RH(f368), RH(f258) ∈ SpanC(1, RH(f56)) � C. Consequently, ΦHθ
2×2

(0,1) is a

dominant map to P1, which is not defined at κ̄1, κ̄2 and κ̄4.

In the case of H = Hθ
2×2(1, 0) = 〈τ33θ, τ33I

2J2〉, the Reynolds operators are

RH(f56) = 2(f56 − f78), RH(f157) = f157 + ie
π
2 f168 + if368 + e

π
2 f357

RH(f258) = 2(f258 − f267), RH(f458) = 0, RH(f467) = 0.

The Γθ
2×2(1, 0)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. Lemma 13

yields f157+ie
π
2 f168

Σ1

∣∣∣
T1

= if368+e
π
2 f357

Σ3
|T3

= f258−f267

Σ2

∣∣∣
T2

= 0. Consequently,

RH(f157), RH(f258) ∈ SpanC(1, RH(f56)). Bearing in mind that RH(f56)|T5
=

∞, one concludes that ΦHθ
2×2

(1,0) is a dominant map to P1, which is not defined at

κ̄1, κ̄2 and κ̄3.

Finally, for H = Hθ
2×2(1, 1) = 〈τ33IJ−1θ, τ33I

2J2〉 one has

RH(f56) = 2(f56 − if78), RH(f157) = 2(f157 + ie
π
2 f168), RH(f357) = 0

RH(f368) = 0 and RH(f258) = f258 − f267 + e−
π
2 f467 + e−

π
2 f458.

The Γθ
2×2(1, 1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ8. Lemma 13

implies that f157+ie
π
2 f168

Σ1

∣∣∣
T1

= f258−f267

Σ2

∣∣∣
T2

= 0, so that RH(f157), RH(f258) ∈

SpanC(1, RH(f56)) � C2. As a result, ΦHθ
2×2

(1,1) is a dominant map to P1, which

is not defined at κ̄1, κ̄3 and κ̄2. �
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Theorem 18. If H = H ′
2×2(0) = 〈τ33, I

2〉, H ′′
2×2(0) = 〈τ33, J

2〉, Hθ
2×2(n) =

〈InJ−nθ, τ33〉 with 0 ≤ n ≤ 1, H ′
4(n, n) = 〈τn

33IJ2n〉, H ′′
4 (n, n) = 〈τn

33I
2nJ〉

with 0 ≤ n ≤ 1 or H2(1, 1) = 〈τ33I
2J2〉 then the logarithmic-canonical map

ΦH : B̂/ΓH > P([ΓH , 1]) = P2

is dominant and not globally defined. The surface B̂/ΓH is K3 for H = H2(1, 1),
rational for H = H ′

4(1, 1), H ′′
4 (1, 1) and ruled with an elliptic base for all the

other aforementioned H .

Proof: By Lemma 11 v), it suffices to consider H ′
2×2(0), Hθ

2×2(n), H ′
4(n, n) and

H2(1, 1).

In the case of H = H ′
2×2(0) = 〈τ33, I

2〉, LH is spanned by

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168 + ie

π
2 f357 + f368

RH(f258) = f258 + f267 − ie−
π
2 f458 + ie−

π
2 f467 and 1 ∈ C.

The Γ′
2×2(0)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. Lemma 13

provides f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0, whereas RH(f157)|T1

= ∞. Simi-

larly, f258+f267

Σ2

∣∣∣
T2

= 2e−π �= 0 suffices for RH(f258)|T2
= ∞. Therefore 1,

RH(f157), RH(f258) are linearly independent, according to Lemma 11 iii) and

constitute a C-basis for LH . In order to assert that rkΦH′
2×2

(0) = 2, we use

that RH(f258)|T2
= ∞ and RH(f157)|T2

�≡ const by Lemma 14 with c = ie
π
2 .

Lemma 13 provides f157+ie
π
2 f357

Σ5

∣∣∣
T5

= 0, in order to conclude that RH(f157)|T5
�=

∞ and the entire [Γ′
2×2(0), 1] vanishes at κ̄5. Therefore ΦH′

2×2
(0) is a dominant

map to P([Γ′
2×2(0), 1]) = P2, which is not defined at κ̄5.

For H = Hθ
2×2(0) = 〈θ, τ33〉, the Reynolds operators are

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168 − e

π
2 f357 + if368

RH(f258) = 2(f258 + f267), RH(f467) = 0

generate LH . The Γθ
2×2(0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8.

According to Lemma 13, f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0, so that RH(f157)|T1

=∞.

Further, f258+f267

Σ2

∣∣∣
T2

= 2e−π �= 0 and the lemma provides RH(f258)|T2
= ∞.

Therefore 1, RH(f157), RH(f258) are linearly independent and LH � C3 by

Lemma 11 iii). We claim that

RH(f258)|T1
= −2e−πiv σ((1 + i)v + ω3)

σ((1 + i)v)

[
σ(v − ω1)

2

σ(v − ω2)2
+ e2π(1+i)v σ(v − ω2)

2

σ(v − ω1)2

]
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is non-constant. On one hand, RH(f258)|T1
has no poles on C \ Q(i). On the

other hand,

[
1
2RH(f258)

∣∣∣
T1

]
σ((1 + i)v)

∣∣∣
v=0

= −σ(ω3)
[

1
i2

+ i2
]
�= 0, so that

lim
v→0

[RH(f258)|T1
] = ∞. According to Lemma 11 iv), RH(f157)|T1

= ∞ and

RH(f258)|T1
�≡ const suffice for ΦHθ

2×2
(0) to be a dominant map to P2. The entire

LH takes finite values on T4, so that ΦHθ
2×2

(0) is not defined at κ̄4.

Concerning H = Hθ
2×2(1) = 〈IJ−1θ, τ33〉, one computes that

RH(f56) = 0, RH(f78) = 0, RH(f157) = 2(f157 − ie
π
2 f168)

RH(f368) = 0, RH(f258) = f258 + f267 − e−
π
2 f458 + e−

π
2 f467.

The Γθ
2×2(1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. By Lemma 13

we have f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0 and f258+f267

Σ2

∣∣∣
T2

= 2e−π �= 0. Therefore

RH(f157)|T1
= ∞, RH(f258)|T2

= ∞ and 1, RH(f157), RH(f258) constitute a

C-basis of LH , according to Lemma 11 iii). Applying Lemma 14 with c = 0, one

concludes that RH(f157)|T2
�≡ const. Then Lemma 11 iv) implies that ΦHθ

2×2
(1) is

a dominant map to P2. The lack of f ∈ LH with f |T3
= ∞ reveals that ΦHθ

2×2
(1)

is not defined at κ̄3.

If H = H ′
4(0, 0) = 〈I〉 then the Reynolds operators are

RH(f56) = 0, RH(f78) = 4f78, RH(f157) = f157 − e
π
2 f267 + ie

π
2 f357 − if467

RH(f168) = f168 − if258 + ie−
π
2 f368 − e−

π
2 f458 and RH(1) = 1 ∈ C

span LH . The Γ′
4(0, 0)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6, κ̄7 and κ̄8.

According to Lemma 11 ii), the inclusions T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti suffice for RH(f168) ∈ SpanC(1, RH(f78), RH(f157). Therefore LH � C3.

Observe that RH(f78)|T1
= 4Σ12(v) �≡ const, in order to apply Lemma 11 iv) and

assert that ΦH′
4
(0,0) is a dominant map to P2. As far as f157+ie

π
2 f357

Σ5

∣∣∣
T5

= 0 by

Lemma 13, the abelian function RH(f157) has no pole on T5. Therefore ΦH′
4
(0,0)

is not defined at κ̄5.

For H ′
4(1, 1) = 〈τ33IJ2〉 the Reynolds operators are

Rh(f56) = 0, RH(f78) = 4f78, RH(f157) = f157 +e
π
2 f258 +ie

π
2 f357− if458

RH(f168) = f168 + if267 + ie−
π
2 f368 − e−

π
2 f467.

The Γ′
4(1, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5, κ̄6 and κ̄7 = κ̄8. Due to

T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti, Lemma 11 ii) applies to provide
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RH(f168) ∈ SpanC(1, RH(f78), RH(f157)). Thus, LH � C3. According to

Lemma 11 iv), RH(f78)|T1
= 4Σ12(v) �≡ const suffices for ΦH′

4
(1,1) to be a

dominant rational map to P2. Further, f157+ie
π
2 f357

Σ5

∣∣∣
T5

= 0 by Lemma 13 implies

that RH(f157) has no pole over T5 and ΦH′
4
(1,1) is not defined at κ̄5.

If H = H2(1, 1) = 〈τ33I
2J2〉 then LH is generated by

1 ∈ C, RH(f56) = 2f56, RH(f78) = 2f78, RH(f157) = f157 + ie
π
2 f168

RH(f368) = f368−ie
π
2 f357, RH(f258) = f258−f267, RH(f467) = f467+f458.

The Γ2(1, 1)-cusps are κ̄1, κ̄2, κ̄3, κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By Lemma 13 one

has f157+ie
π
2 f168

Σ1

∣∣∣
T1

= f368−ie
π
2 f357

Σ3

∣∣∣
T3

= f258−f267

Σ2

∣∣∣
T2

= f467+f458

Σ4

∣∣∣
T4

= 0. Thus,

RH(f157), RH(f368), RH(f258), RH(f467) ∈ SpanC(1, RH(f56), RH(f78)) and

LH � C3. Bearing in mind that RH(f56)|T5
= ∞, RH(f78)|T5

�≡ const, one

applies Lemma 11 iv) and concludes that ΦH2(1,1) is a dominant map to P2. Since

LH has no pole over
4∑

i=1
Ti, the map ΦH2(1,1) is not defined at κ̄1, κ̄2, κ̄3, κ̄4. �

Let us recall from Hacon and Pardini’s [1] that the geometric genus pg(X) =
dimC H0(X, Ω2

X) of a smooth minimal surface X of general type is at most 4.

The next theorem provides a smooth toroidal compactification Y =
(
B/Γ〈τ33〉

)′
with abelian minimal model A−1/〈τ33〉 and dimC H0(Y, Ω2

Y (T ′)) = 5.

Theorem 19. i) For H = H ′
2 = 〈I2〉, H ′′

2 = 〈J2〉, H2(n, 1−n) = 〈τ33I
2nJ2−2n〉

or Hθ
2 (n, k) = 〈τn

33I
kJ−kθ〉 with 0 ≤ n ≤ 1, 0 ≤ k ≤ 3 the logarithmic-

canonical map

ΦH : B̂/ΓH > P([ΓH , 1]) = P3

has maximal rkΦH = 2. For H �= H2(n, 1 − n) the rational map ΦH is not

globally defined and B̂/ΓH are ruled surfaces with elliptic bases. In the case of

H = H2(n, 1 − n) the surface B̂/ΓH is hyperelliptic.

ii) For H = H2(0, 0) = 〈τ33〉 the smooth surface
(
B/Γ〈τ33〉

)′
has abelian minimal

model A−1/〈τ33〉 and the logarithmic-canonical map

Φ〈τ33〉 : ̂B/Γ〈τ33〉 > P([Γ〈τ33〉, 1]) = P4

is of maximal rkΦ〈τ33〉 = 2.

Proof: i) By Lemma 11 v), it suffices to prove the statement for H ′
2, H2(1, 0) and

Hθ
2 (n, k) = 〈τn

33I
kJ−kθ〉 with 0 ≤ n ≤ 1, 0 ≤ k ≤ 2.



Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 93

Note that H ′
2, H2(1, 0) are subgroups of H ′

2×2(0) = 〈τ33, I
2〉 and rkΦH′

2×2
(0) = 2.

By Lemma 11 iv) that suffices for rkΦH′
2 = rkΦH2(1,0) = 2.

In the case of H = H ′
2 = 〈I2〉, the Reynolds operators

RH(f56) = 0, RH(f78) = 2f78

RH(f157) = f157 + ie
π

2
f357, RH(f168) = f168 + ie−

π
2 f368

RH(f258) = f258 − ie−
π
2 f458, RH(f267) = f267 + ie−

π
2 f467.

The Γ′
2-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5, κ̄6, κ̄7 and κ̄8. According to Lemma

11 ii), the inclusions T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα

suffice for RH(f168) ∈ SpanC(1, RH(f78), RH(f157)). Similarly, from T2 ⊂
(RH(f258))∞, (RH(f267))∞ ⊆ T2 + T4 +

8∑
α=5

Tα there follows RH(f267) ∈
SpanC(1, RH(f78), RH(f258)). As a result, one concludes that the space of the

invariants LH = SpanC(1, RH(f78), RH(f157), RH(f258)) � C4. Since LH has

no pole over T6, the rational map ΦH′
2 is not defined at κ̄6.

If H = H2(1, 0) = 〈τ33I
2〉, then LH is spanned by

1 ∈ C, RH(f56) = 2f56, RH(f78) = 0

RH(f157) = f157 + f368, RH(f258) = f258 + ie−
π
2 f467.

The Γ2(1, 0)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6, κ̄7 = κ̄8. According to

Lemma 11 iii), the inclusions T1 + T3 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα and

T2 + T4 ⊂ (RH(f258))∞ ⊆ T2 + T4 +
8∑

α=5
Tα suffice for the linear independence

of 1, RH(f56), RH(f157), RH(f258).

Further, observe that Hθ
2 (n, 0) = 〈τn

33θ〉 are subgroups of Hθ
2×2(0) = 〈τ33, θ〉 with

rkΦHθ
2×2

(0) = 2. Therefore rkΦHθ
2
(n,0) = 2 by Lemma 11 iv).

If H = Hθ
2 (0, 0) = 〈θ〉 then

RH(f56) = f56+f78, RH(f157) = f157−e
π
2 f357, RH(f368) = f368−e

π
2 f168

RH(f258) = f258 + f267, RH(f467) = f467 + f458.

The Γθ
2(0, 0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄7 and κ̄6 = κ̄8. According

to Lemma 11 ii), T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα im-

plies R(f168) ∈ SpanC(1, RH(f56), R(f157)). Lemma 13 supplies f258+f267

Σ2

∣∣∣
T2

=
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2e−π �= 0 and f467+f458

Σ4

∣∣∣
T4

= 0. Therefore RH(f258)|T2
= ∞ and RH(f467) ⊂

SpanC(1, RH(f56)). Thus, LH = SpanC(1, RH(f56), RH(f157), RH(f258)) �
C4. The entire [Γθ

2(0, 0), 1] vanishes at κ̄4 and ΦHθ
2
(0,0) is not globally defined.

For H = Hθ
2 (1, 0) = 〈τ33θ〉 the space LH is generated by

1 ∈ C, RH(f56) = f56 − f78

RH(f157) = f157 + if368, RH(f258) = 2f258, RH(f467) = 0.

The Γθ
2(1, 0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄8 and κ̄6 = κ̄7. Making use of

T1 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα and T2 ⊂ (RH(f258))∞ ⊂ T2 +

8∑
α=5

Tα,

one applies Lemma 11 iii), in order to conclude that

LH = SpanC(1, RH(f56), RH(f157), RH(f258)) � C4.

The abelian functions from LH have no poles along T4, so that ΦHθ
2
(1,0) is not

defined at κ̄4.

Observe that Hθ
2 (n, 1) = 〈τn

33IJ−1θ〉 are subgroups of Hθ
2×2(1) = 〈τ33, IJ−1θ〉

with rkΦHθ
2×2

(1) = 2, so that rkΦHθ
2
(n,1) = 2 as well.

More precisely, Reynolds operators for H = Hθ
2 (0, 1) = 〈IJ−1θ〉 are

RH(f56) = f56+if78, RH(f157) = f157−ie
π
2 f168, RH(f368) = f368−ie

π
2 f357

RH(f258) = f258 − e−
π
2 f458, RH(f267) = f267 + e−

π
2 f467.

The Γθ
2-cusps are κ̄1, κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄8, κ̄6 = κ̄7. By Lemma 13 one has

f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0, f368−ie

π
2 f357

Σ3

∣∣∣
T3

= 0, whereas RH(f157)|T1
= ∞,

RH(f368) ∈ SpanC(1, RH(f56)). Applying Lemma 11 ii) to the inclusions T2 ⊂
(RH(f258))∞, (RH(f267))∞ ⊆ T2 +T4 +

8∑
α=5

Tα, one concludes that RH(f267) ∈
SpanC(1, RH(f56), RH(f258)). Altogether

LH = SpanC(1, RH(f56), RH(f157), RH(f258)) � C4.

Since LH has no pole over T3, the rational map ΦHθ
2
(0,1) is not defined at κ̄3.

If H = Hθ
2 (1, 1) = 〈τ33IJ−1θ〉 then

RH(f56) = f56 − if78, RH(f157) = 2f157

RH(f368) = 0, RH(f258) = f258 + e−
π
2 f467.
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The Γθ
2(1, 1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄7 and κ̄6 = κ̄8. Making use

of RH(f157)|T1
= ∞, TH(f258)|T2

= ∞, one applies Lemma 11 iii), in order to

conclude that LH = SpanC(1, RH(f56), RH(f157), RH(f258)) � C4. Since LH

has no pole over T3, the rational map ΦHθ
2
(1,1) is not defined at κ̄3.

Reynolds operators for H = Hθ
2 (0, 2) = 〈I2J2θ〉 are

RH(f56) = f56−f78, RH(f157) = f157+e
π
2 f357, RH(f168) = f168+e−

π
2 f368

RH(f258) = f258 − f267, RH(f467) = f467 − f458.

The Γθ
2(0, 2)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄7, κ6 = κ8. Lemma 11 ii) applies

to T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα to provide RH(f168) ∈

SpanC(1, RH(f56), RH(f157)). By Lemma 13 one has f258−f267

Σ2

∣∣∣
T2

= 0 and

f467−f458

Σ4

∣∣∣
T4

= 2ie−
π
2 �= 0. As a result, RH(f258) ∈ SpanC(1, RH(f56)) and

RH(f467)|T4
= ∞. Lemma 11 iii) reveals that 1 ∈ C, RH(f56), RH(f157),

RH(f467) form a C-basis of LH . Since LH has no pole over T2, the rational

map ΦHθ
2
(0,2) is not defined over κ̄2.

In the case of H = Hθ
2 (1, 2) = 〈τ33I

2J2θ〉 one has

RH(f56) = f56 + f78, RH(f157) = f157 − if368

RH(f258) = 0, RH(f467) = 2f467.

The Γθ
2(1, 2)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄8 and κ̄6 = κ̄7. Lemma 11

iii) applies to T1 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα, T4 ⊂ (RH(f467))∞ ⊆

T4 +T6 +T7, in order to justify the linear independence of 1, RH(f56), RH(f157),

RH(f467). Since LH � C4 has no pole over T2, the rational map ΦHθ
2
(1,2) is not

defined at κ̄2.

ii) For H = H2(0, 0) = 〈τ33〉 one has the following Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168

RH(f258) = f258+f267, RH(f368) = f368+ie
π
2 f357, RH(f467) = f467−f458.

There are six Γ〈τ33〉-cusps: κ̄1, κ̄2, κ̄3, κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By the means

of Lemma 13 one observes that f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 �= 0, f258+f267

Σ2

∣∣∣
T2

=

2e−π �= 0, f368+ie
π
2 f357

Σ3

∣∣∣
T3

= 2ie−
π
2 �= 0, f467−f458

Σ4

∣∣∣
T4

= 2ie−
π
2 �= 0. Therefore
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Ti ⊂ (RH(fi,αi,βi
))∞ ⊆ Ti +

8∑
δ=5

Tδ for 1 ≤ i ≤ 4, (α1, β1) = (5, 7), (α2, β2) =

(5, 8), (α3, β3) = (6, 8), (α4, β4) = (6, 7). According to Lemma 11 iii), that

suffices for 1, RH(f157), RH(f258), RH(f368), RH(f467) to be a C-basis of LH .

Bearing in mind that H2(0, 0) = 〈τ33〉 is a subgroup of H ′
2×2(0) = 〈τ33, I

2〉 with

rkΦH′
2×2

(0) = 2, one concludes that rkΦ〈τ33〉 = 2. �
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