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Abstract. The submanifold quantum mechanics was opened by Jensen and
Koppe and has been studied for more than three decades. This article gives its
more algebraic definition and show the essential aspects of the submanifold quan-
tum mechanics from an algebraic viewpoint.

1. Introduction

The submanifold quantum mechanics was initiated by Jensen and Koppe [18] and
da Costa [8] and has been developed further by Duclos, Exner, Krej˘cir̆ík, S̆eba
and S̆̆tov́ic̆ek [11, 10, 13, 19], Ikegami, Nagaoka, Takagi and Tanzawa [16, 17,
33], Clark and Bracken [6, 7], Goldstone and Jaffe [14], Burgess and Jensen [5],
Encinosa and Etemadi [12], Mladenov [29], Suzuki, Tsuru and the present author
[20–26, 28, 30–32]. In all these theories, we obtain differential operators over
a submanifoldS in an Euclidean space relying on a confinement potential and
taking some squeezing limit of the potential.

The so obtained differential operators however do not strongly depend upon the
shape of confinement potentials or in the way the squeezing limit is taken. Further
they exhibit geometrical nature of the submanifold. In fact, the Dirac operators
obtained in the scheme are related to the Frenet-Serret and the generalized Weier-
strass relations [21–28] from which we can recover all geometrical data of the
submanifold. Thus we believe that they should be obtained beyond any approxi-
mation and defined more algebraically.

In this article, we will give a more algebraic definition of the submanifold quantum
mechanics, which is free from any approximation theories, and show what is the
essential of the submanifold quantum mechanics from an algebraic point of view.
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2. Self-adjoint Operators

As will be shown later, in submanifold quantum mechanics, a non-unitary trans-
formation plays a key role, which converts a not self-adjoint operator into self-
adjoint. Thus as a preparation, we should investigate the self-adjoint operators
more precisely. However the concept of “adjointness” of an operator is subtle
even in the study of algebra of differential operators as in [Remark 1.2.16 in [3]].
Let us consider a differential operator∂/∂zα defined over an-dimensional dif-
ferentiable manifoldM with local coordinates (z1.z2, ..., zM ). Let ∂/∂zα acts
on the functions from left hand side conventionally. Provided thatM is equipped
with a metricg and a volume formg1/2dnz, we have a natural pairing for smooth
wavefunctionsf1 andf2 whose support is compact

〈f1|f2〉g =
∫
M

g1/2 f∗
1 (z)f2(z)dnz. (1)

Using this pairing, an expectation value of∂/∂zα is also naturally defined by

〈f1| ∂

∂zα
f2〉g =

∫
M

g1/2 f∗
1 (z)

∂

∂zα
f2(z)dnz.

The adjoint operator of
∂

∂zα
is given as

(
∂

∂zα

)∗
= − ∂

∂zα
− 1

2

(
∂ log g
∂zα

)
, which

obviously depends upon the measure. For another measureg′1/2dnz such that
g1/2dnz f∗

1 (z)f2(z) = g′1/2dnz (σf1)∗(z)(σf2)(z) whereσ := (g/g′)1/4, we
may have another expectation value

〈f1| ∂

∂zα
f2〉g′ =

∫
M

g′1/2
f∗
1 (z)

∂

∂zα
f2(z)dnz (2)

and a different adjoint operator(∂/∂zα)∗. The adjointness has such an ambiguity.

Using this ambiguity, we can introduce the half-density and then any∂/∂zα can
be self-adjoint by settingg′ = 1 (Theorem 18.1.34 in [15]). However in general
the measureg1/2dnz, e.g., Haar measure, exhibits a geometrical nature of the
space. Thus the measureless expression such as the half-density sometimes are
less effective. For example, in the theory of the ordinary second order differential
equation related to orthonormal polynomial functions, the concept of the half-
density implicitly appears (p. 424 in [2]) but gives only very rough estimations,
such as the asymptotic expressions of the functions. On the other hand, their
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expressions with the proper measure as the orthonormal polynomials give more
precise information.

In the submanifold quantum mechanics [8, 18], we partially use the half-density
in the framework of a theory with the Haar measure as we will show later.

From quantum mechanical point of view, the first problem in quantum mechanics
over a curved system is to search for a proper metric and a proper measure. This
problem is easily solved for quantum mechanics over a curved object in the Eu-
clidean spaceE3. In E

3, the ordinary Lebesgue measure is natural because it is
the Haar measure for the translations. As the quantum mechanics is established in
E

3 and the concept of the adjoint operator plays essential role [9], we will use the
induced metric on the curved object from that one inE

3.

Next we will review the properties of a self-adjoint operators precisely. We will
deal with the space of functionsΩ and its dualΩ∗ with L2-type paring〈 , 〉 :
Ω∗ × Ω → C using the Lebesgue measure inE

3. Let us consider an operator
Q which domain isΩ. Then if exists, we will define aright-adjoint operator,
Ad (Q), with the domainΩ∗ by

〈f,Qg〉 = 〈fAd (Q), g〉, for (f, g) ∈ Ω∗ × Ω. (3)

Assume that there is an isomorphismϕ betweenΩ andΩ∗ as vector spaces. Then
the triplet(Ω∗ × Ω, 〈 , 〉, ϕ) becomes a Hilbert spaceH by introducing the inner
product( , ) : Ω × Ω → C with (f, g) := 〈ϕ(f), g〉 after completion in( , ). We
assume such completion in this article and thus we write(Ω∗ × Ω, 〈 , 〉, ϕ) = H
hereafter. Then the ordinary adjoint operatorQ∗, (Q∗f, g) = (f,Qg), is given
by Q∗f := ϕ−1(ϕ(f)Ad (Q)). In general, the dual spaceΩ∗ of Ω is greater than
Ω itself and we regardΩ∗ as the image ofϕ. In this construction, the Diracδ
functions are elements in the complement of the image ofϕ in the dual space.

Suppose that the operatorQ is self-adjoint, i.e., the domains ofQ∗ andQ coincide
andQ∗ = Q there. Then we have the following properties:

1. The kernel ofQ, ker(Q), is isomorphic to theker(Ad (Q)), i.e.,

(ker(Q))∗ := ϕ(ker(Q)) = ker(Ad (Q)) (4)

2. The projectionπQ from Ω∗×Ω to (ker(Q))∗×ker(Q) is commutative with
ϕ, i.e.,

ϕπQ|Ω = πQ|Ω∗ϕ, (ϕ(πQ|Ωf ) = πQ|Ω∗ϕ(f) ≡ ϕ(f)Ad (πQ|Ω)) (5)

3. ((ker(Q))∗ × ker(Q), 〈 , 〉, ϕ) becomes a Hilbert space.
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ForπQ satisfying (5), we will say thatπQ is consistent with the inner product.
In fact (5) means that�Q := πQ|Ω is a projection operator as∗-algebra [1]:�2

Q =
�Q and�∗

Q = �Q due to the relation�∗
Qf ≡ ϕ−1(ϕ(f)Ad (�Q)) = �Qf .

We will end the review of the properties of self-adjoint operators by giving a
physical setting for the submanifold quantum mechanics. Though we can do this
in more general situation, we will investigate only the case of a surface in the three
dimensional Euclidean spaceE

3.

3. Geometry of an Embedded Surface

For a smooth surfaceS embedded in the euclidean spaceE
3 with the metric in-

duced onS from the metric onE3, we consider a Schr¨odinger equation over a
tubular neighborhoodTS of S, πS : TS → S, with the L2-type Hilbert space
H = (Ω∗ × Ω, 〈 , 〉GS

, ϕ)

−∆ψ = Eψ over TS . (6)

HereΩ∗ andΩ consist of smooth compact support functions overTS and∆ is
the Laplacian inE3. Following [8, 18], we will add a potential to the left hand
side in (6), which confines a particle in the tubular neighborhoodTS . This po-
tential restrains the support of the wavefunctions inTS . By taking a squeezing
limit of the potential, we decompose the system in the normal and the tangential
modes, suppress the normal mode, and obtain the submanifold Schr¨odinger equa-
tion along the surfaceS. Instead of the above scheme, below we will provide
another definition of the Schr¨odinger operator specified by (16).

Before giving the new definition, we will present a geometrical preliminary. Let
S be locally expressed by a coordinate system(s1, s2) and q be a normal co-
ordinate ofTS whose absolute value is the distance from the surfaceS, dq is
an infinitesimal length inE3 and belongs to the kernel ofπS∗ anddq(∂α) = 0
(α = 1, 2, ∂α := ∂/∂sα). A point in TS expressed by the affine coordinate
x := (x1, x2, x3) in E

3 can be uniquely represented by

x = πSx + qe3 (7)

wheree3 is the normal unit vector atS. The moving frameEi
α = ∂µx

i, (µ =
1, 2, 3, i = 1, 2, 3) is written by

Ei
α = ei

α + q3γβ
3αe

i
β, Ei

3 = ei
3 (8)

whereα, β = 1, 2, ei
α := ∂α(πSx

i), and

∂αe3 = γβ
3αeβ. (9)



22 Shigeki Matsutani

Thus the metric,GSµν := δijE
i
µE

j
ν , (µ, ν = 1, 2, 3), induced from that one in the

Euclidean spaceE3 is given as

GS =
(
gS(q) 0

0 1

)

gS(q)αβ = gSαβ + [γγ
3αgSγβ + gSαγγ

γ
3β]q + [γδ

3αgSδγγ
γ
3β]q2 (10)

wheregSαβ := δije
i
αe

j
β. The determinant of the metric is expressed as

detGS = ρdet gS , ρ = 1 + tr(γα
3β)q + det(γα

3β)q2 (11)

and thus the pairing〈 , 〉GS
is expressed by

〈ψ1, ψ2〉GS
=

∫
(det gS)1/2ρ1/2ψ∗

1ψ2d2sdq. (12)

Following [8, 18], we wish to establish the quantum mechanics of a particle re-
stricted toS ⊂ E

3. The restriction of the particle to the surface requires that
the components of momentum and position of the particle in the normal direc-
tion vanish. We have the canonical commutation relation for the normal direction,
[
√−1∂q, q] ≡

√−1∂qq − q
√−1∂q =

√−1 and wish to consider the kernel of
pq :=

√−1∂q. Let us note that for a functionh(q) of q, [h(q), q] = 0 and thus
we have[

√−1∂q + h(q), q] =
√−1. Using this ambiguity, we can optimizeh

so that
√−1∂q + h(q) is self-adjoint. Howeverpq is not self-adjoint in general

due to the existence ofρ in (12) and thus a projection to the kernel of∂q will be
not consistent with the inner product in the above sense and we will give another
equivalent scheme called self-adjointization.

Thus we deform the Hilbert space so thatpq becomes a self-adjoint operator by
using the half-density theory (Theorem 18.1.34 in [15]). As we will show (see
(13) and (14) below), there exist a Hilbert spaceH′ ≡ (Ω̃∗ × Ω̃, 〈 , 〉gS

, ϕ̃) and
self-adjointization: ηsa : H → H′ satisfying the following properties

1) There exists an isomorphism betweenΩ∗ × Ω → Ω̃∗ × Ω̃ as vector spaces.
We denote it by the sameηsa

2) By defining a pairing〈◦,×〉gS
:= 〈ηsa◦, ηsa×〉GS

, we setϕ̃ := ηsaϕη
−1
sa

3) An operatorQ in H is transformed intoηsa(Q) = ηsaQη−1
sa

4) pq itself (notηsa(pq)) becomes a self-adjoint operator inH′.

Of course, the self-adjointization is not a unitary operation and due to this opera-
tion, the inner product changes from〈 , 〉GS

to 〈 , 〉gS
.



On the Essential Algebraic Aspects of Submanifold Quantum Mechanics 23

Using the dependence of the adjoint operator upon the measure as mentioned
above, the self-adjointizationηsa is realized as follows

ηsa(ψ∗
1) = ρ−1/4ψ∗

1 , ηsa(ψ2) = ρ−1/4ψ2, ηsa(∆) = ρ−1/4∆ρ1/4 (13)

〈ψ1, ψ2〉gS
=

∫
(det gS)1/2ψ∗

1ψ2d2sdq. (14)

In TS , ρ does not vanish and therefore (13) defines an isomorphisms. Since the
measure in (14) isq-independet,pq :=

√−1∂q itself becomes a self-adjoint op-
erator inH′. Here we should notice that the proper treatment of the self-adjoint
operators and a prototype of self-adjointization appear implicitly in the study of
hydrogen atom in the classical book by Dirac [9]. In the book, instead ofpq, the
formally self-adjoint operatorη−1

sa (pq) is treated which determines an additional
termh(q) to

√−1∂q so that it becomes self-adjoint. Corresponding to the prop-
erty 4) ofηsa, the transformation from

√−1∂q to η−1
sa (pq) is not unitary. Hence

the projection

πpq : Ω̃∗ × Ω̃ → (ker(Ad (pq)))∗ × ker(pq) (15)

is consistent with the inner product( , ). Due to the self-adjointness and the map
ϕ̃ : ker(pq) → ker(Ad (pq)) the latter spaces are isomorphic. More precisely we
should writeϕ̃|ker(pq) instead ofϕ̃.

In other words,Hpq := ((ker(Ad (pq))) × ker(pq), ( , ), ϕ̃) presents a quantum
mechanical system.

We should note that sometimes the Goldstone mode is given as a zero mode of
a differential operator exhibiting a symmetry [4], i.e.,ψ ∈ ker(pq) behaves like
a Goldstone mode for the normal translation mode. In fact,pq mode does not
contribute toηsa(∆) over the Hilbert spaceHpq . The projection onHpq means
vanishing momentum of the normal direction and kills the normal translation free-
dom. Hence we can choose a positionq as an ordinary symmetry breaking op-
erator. Precisely speaking, sinceηsa(∆)|ker(pq) hasq-dependence and the energy
depends weakly uponq, it slightly differs from the ordinary symmetry breaking
operator. However as the dependence is not strong, it can be justified. If we
chooseq = q0 for all points inS, we have submanifold Schr¨odinger equation
over a surfaceS(q0) given byq = q0 instead of the surfaceS for q = 0. After
choosing it asq = 0, the Laplacian in (6) becomes

∆S↪→En := ηsa(∆)|ker(pq)|q=0 (16)

as an operator inHpq|q=0. The first restriction|kerpq
means the restriction of do-

main as an operator and the second one|q=0 should be regarded as a restriction in
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the meaning of presheaf theory. Since (16) can be written by

∆S↪→En := (ρ1/4∆ρ−1/4)|∂q=0,q=0

it might be expected that the definition should be expressed in differential ring
theory [3]. By lettingK andH denote the Gauss and mean curvatures ofS ⊂ E

3,
we obtain the well-known operator [8, 18]

∆S↪→E3 = ∆S + H2 −K (17)

and the submanifold Schr¨odinger equation

−∆S↪→E3ψ = Eψ overS (18)

in the Hilbert spaceHpq|q=0. Here∆S is the Beltrami-Laplace operator onS
which exhibits the intrinsic properties of the surfaceS, whereas the second and
the third terms in (17) represent the extrinsic properties ofS ⊂ E

3.

4. Conclusions

Here we emphasize that the definition (16) is very algebraic. Particularly in this
construction, we did not use any approximation theories nor limit-theorems. Phys-
ically speaking, the above requirement of vanishing momentum and position will
contradict with the uncertainly principle. However the vanishing normal momen-
tum naturally leads to a symmetry breaking. Thus, if we consider the normal
direction as an inner space, we believe that the above requirement is quite natural.
In fact our construction is consistent with that in [17], in which (18) was obtained
by means of the Dirac constraint quantization scheme under the constraint condi-
tion of vanishing momentum.

Further, our study reveals why we need to deform the Hilbert space in the con-
struction of the submanifold quantum mechanics [8, 18]. If we did not deform the
Hilbert space usingηsa, �pq can not become a projection operator in the sense of
∗-algebra [1].

By means of the above construction, we can give a more algebraic representation
of generalized Weierstrass relation in terms of the submanifold Dirac operators
[24–26,28], which is closely related to the extrinsic Polyakov string [27].
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