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ON GENERALIZED FOURIER TRANSFORM FOR
KAUP-KUPERSHMIDT TYPE EQUATIONS

TIHOMIR VALCHEV

Communicated by Ivaïlo M. Mladenov

Abstract. We develop the Fourier transform interpretation of the inverse scat-

tering method for nonlinear integrable evolution equations associated with a Z3

reduced Zakharov-Shabat system for the Lie algebra sl(3, C). A simple represen-

tative of this integrable hierarchy is the well-known Kaup-Kupershmidt equation.

Our results admit a natural extention for nonlinear equations connected to a deeply

reduced Zakharov-Shabat system related to an arbitrary simple Lie algebra.

1. Introduction

The Kaup-Kupershmidt equation (KKE) is a 1 + 1 nonlinear evolution equation

∂tf = ∂5
x5f + 10f∂3

x3f + 25∂xf∂
2
x2f + 20f2∂xf (1)

where f ∈ C∞(R2). It is integrable by means of the inverse scattering method: it

is related to a third order spectral problem [11]

(∂3
x3 + 2f∂x + ∂xf)y = λ3y

for some smooth function y(x, t, λ). It can be easily transformed into a first order

one [5] but related to the algebra sl(3,C)

(i∂x + q − λJ)ψ = 0, q =

⎛⎝ u 0 0
0 0 0
0 0 −u

⎞⎠ , J =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠
with some additional symmetries imposed and for an appropriately chosen new

dependent variable u. Thus a system of the Caudrey-Beals-Coifman (CBC) type

occurs. This is a typical situation when transforming a scalar differential operator

of order n to a n × n matrix one, see [4]. The spectral theory, the direct and

inverse scattering transform for such systems have been worked out [1–3, 7] and

more recently [9].
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This report is to contribute to the above mentioned results on CBC systems: its

main goal is to demonstrate how the generalized Fourier interpretation of the in-

verse scattering method (ISM) for the equations of the Kaup-Kupershmidt hier-

archy can be achieved. This is a particular case of the more general problem

to work out the generalized Fourier formalism for CBC systems associated with

an arbitrary simple Lie algebra. In realizing our goal we are applying purely al-

gebraic and analytic methods: “squared solutions” and recursion operator Λ to

CBC system. The “squared solutions” form a complete set and thus they gener-

alise usual exponential functions in the Fourier analysis. The derivative operator

i∂x to whom exponents represent eigenfunctions is to be replaced then by the Λ-

operator. The integrable hierarchy of KKE can be conveniently described in terms

of the Λ-operator.

2. Some Facts From the Theory of Solitons

We are going to briefly outline some basic concepts and results from the theory of

integrable systems and introduce notation to be used further on in the text. For a

more detailed introduction we refer to [13, 15] (see also [6]). The nonlinear evo-

lution equations (NEE) under investigation represent the compatibility condition

of two linear differential operators (Lax operators)

L(λ) = i∂x + U(x, t, λ) = i∂x + q(x, t) − λJ (2)

M(λ) = i∂t + V (x, t, λ) = i∂t +
N∑

k=0

Vk(x, t)λ
k (3)

which holds true identically with the spectral parameter λ. The functions q and

Vk take values in a complex simple Lie algebra g while J is chosen a real constant

element of its Cartan subalgebra h ⊂ g (for more detailed explanations on the

theory of Lie algebras we refer the reader to the book [10]). We require also that

the potential q fulfills a zero boundary condition

lim
x→±∞

|x|lq(x, t) = 0, for all l > 0. (4)

The interpretation of the inverse scattering method as a spectral transform is real-

ized in several steps. The first step consists in associating to a NEE the spectral

problem L(λ)ψ = 0 which in our case (see (2)) is called generalized Zakharov-

Shabat system. Its fundamental sets of solutions1 ψ take values in the group G

1For simplicity we are going to refer them just fundamental solutions.
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corresponding to the algebra g. Due to the requirements imposed on J and q the

continuous spectrum of L coincides with R in the complex λ-plane. A special

type of fundamental solutions are the so-called Jost solutions

lim
x→±∞

ψ±(x, t, λ)eiλJx = 11 (5)

defined only for λ ∈ R. The transition matrix between the Jost solutions is called

scattering matrix

ψ−(x, t, λ) = ψ+(x, t, λ)T (t, λ), λ ∈ R.

The quantity

f(λ) = lim
x→±∞

V (x, t, λ)

bears the name dispersion law and determines the evolution of the scattering data

i∂tT + [f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

This information underlies ISM which allows solving the Cauchy problem for a

NEE. From now on we shall skip the time dependence in all quantities in order to

simplify our notation.

In order to construct a generalization of the usual Fourier transform one needs fun-

damental solutions to possess analytic properties beyond the continuous spectrum

of L, i.e., the real axis. These can be constructed starting from the Jost solutions

by using the Gauss decomposition of the scattering matrix

χ±(x, λ) = ψ−(x, λ)S±(λ) = ψ+(x, λ)T∓(λ)D±(λ) (6)

where

T (λ) = T−(λ)D+(λ)Ŝ+(λ) = T+(λ)D−(λ)Ŝ−(λ).

Hence χ+ and χ− are solutions to a local Riemann-Hilbert problem2

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R. (7)

NEEs whose Lax operators are obtained from generic ones after imposing certain

algebraic consraints are of primary interest in the theory of solitons due to their

potential physical applications. Formally speaking the presence of algebraic con-

straints can be viewed as an action of some finite groupGR called reduction group

on the set of fundamental solutions {ψ(x, λ)} as given below [12]

K[ψ(x, κ(λ))] = ψ̃(x, λ).

2Strictly speaking solutions to a local Riemann-Hilbert problem are the auxiliary functions
ξ±(x, λ) = χ±(x, λ)eiλJx since they satisfy the normalization condition limλ→∞ ξ±(x, λ) = 11.
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K stands for a group automorphism and κ : C → C is a conformal mapping.

The requirement of GR-invariance of the linear problem Lψ = 0 yields to cer-

tain symmetry conditions on U (and therefore on V ). Let us illustrate this in the

following example.

Example 1. Coxeter type reduction for sl(r + 1,C).

Impose the Zr+1 reduction condition

C[ψ(x, κ(λ))]C−1 = ψ̃(x, λ)

where

κ : λ→ ωλ, ω = e
2iπ
r+1 , C = diag(1, ω . . . , ωr−1, ωr).

Thus the symmetry conditions for U and V read

CU(x, ωλ)C−1 = U(x, λ) ⇒ Cq(x)C−1 = q(x), ωCJC−1 = J (8)

CV (x, ωλ)C−1 = V (x, λ) ⇒ CVk(x)C
−1 = ω−kVk(x). (9)

Consequently q(x) and J have the form

q =

r∑
k=1

qkHk, J =
∑
α∈A

Eα

where Hk for k = 1, . . . , r and Eα for any root α are the Cartan-Weyl generators
for sl(r + 1,C) while A stands for the set of all admissible roots, i.e., all simple
roots and the minimal one. Thus we see that unlike the nonreduced case J is not a
Cartan element. In order to apply the general theory one should diagonalize the
matrix J . Its eigenvalues are complex numbers and this in turn makes the theory
of CBC systems quite more complicated. �

3. NEE of the Kaup-Kupershmidt Type

As mentioned above we are studying NEEs which belong to the integrable hierar-

chy of the Kaup-Kupershmidt equation. This means that they have a Lax operator

L in the form

L(λ) = i∂x + q(x, t) − λJ (10)

where q and J belong to the algebra sl(3,C)

q =

⎛⎝ u 0 0
0 0 0
0 0 −u

⎞⎠ , J =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ .
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It proves to be more convenient to work with a diagonal matrix J , i.e., with J
being a Cartan element. This is why we are going to use from now on the repre-

sentation (gauge) given below

J =

⎛⎝ 1 0 0
0 ω 0
0 0 ω2

⎞⎠ , q =

⎛⎝ 0 cu c∗u
c∗u 0 cu
cu c∗u 0

⎞⎠ , c =
ω − 1

3
· (11)

The matrix C involved in the Coxeter reduction (see Example 1) is presented in

the new basis as follows

C =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ . (12)

The other Lax operator is a polynomial in the spectral parameter λ

M(λ) = i∂t +

N∑
k=0

Vk(x, t)λ
k, N �= 3l, l > 0. (13)

All coefficients Vk take values in sl(3,C) and the degree N of the polynomial

characterises each NEE. As it was demonstrated in the example above such a

Lax pair is obtained from the generic one by imposing Z3 Coxeter type reduction

conditions in the form (8)-(9) with r = 2. In particular, the Kaup-Kupershmidt

equation corresponds to the choice N = 5. The imaginery function u is related to

the function f in (1) by the following Miura transformation

f = −i∂xu+
1

2
u2.

In order to ensure so that u is imaginery it is necessary to impose another reduction

KU †(x, λ∗)K−1 = U(x, λ) ⇒ Kq†K−1 = q, KJ†K−1 = J

KV †(x, λ∗)K−1 = V (x, λ) ⇒ KV †
k (x)K−1 = Vk(x)

where

K =

⎛⎝ 1 0 0
0 0 ω2

0 ω 0

⎞⎠ .

Our further considerations will remain unaffected by this Z2 reduction.

Any finite order automorphism acting in a Lie algebra g introduces a grading in it.

Thus due to the action of the Coxeter automorphism sl(3,C) becomes a Z3-graded

Lie algebra following the rule

sl(3,C) = g0 ⊕ g1 ⊕ g2, gk = {X ∈ sl(3) ; CXC−1 = ωkX}.
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Figure 1. The continuous spectrum of L.

From (8) and (9) one can convince himself that

q ∈ g0, J ∈ g2, Vk ∈ g3−k

hold true.

Since J is a complex matrix (see (11)) the spectral properties of the Z3-reduced

operator L differ significantly from those of the nonreduced one [1–3, 7]. The

continuous spectrum consists of six rays la (a = 1, . . . , 6) as shown on Fig.1

determined by the condition below

Imλα(J) = 0.

With each ray la is connected a couple of roots δa = {±α} to fulfill the require-

ment

δa ≡ {α ∈ Δ; Imλα(J) = 0, for all λ ∈ la}, a = 1, . . . , 6. (14)

For J chosen in the form (11) this correspondence is shown in the following table

ray la l1, l4 l2, l5 l3, l6
roots of δa ±(e1 − e2) ±(e2 − e3) ±(e1 − e3)

.

The continuous spectrum splits the λ-plane into six sectors Ωa. In each sector can

be introduced an ordering of the root space by specifying which roots are positive

(denoted by Δ+
a ) and which — negative (resp. denoted by Δ−

a ) as follows

Δ±
a = {α ∈ Δ; Im(λα(J)) ≷ 0, for all λ ∈ Ωa} . (15)
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As a result each sector has its own fundamental analytic solution χa(x, λ). The

fundamental analytic solutions of adjacent sectors are solutions to a generalised

Riemann-Hilbert problem

χa(x, λ) = χa−1(x, λ)Ga(λ), λ ∈ la. (16)

The sewing functions Ga(λ) can be expressed by the analogs of the Gauss factors

(compare with (6))

Ga(λ) = Ŝ−
a (λ)S+

a (λ) = D̂−
a (λ)T̂+

a (λ)T−
a (λ)D+

a (λ). (17)

It can be proven [7] that the Gauss factors read

S±
a (λ) = exp

⎛⎝ ∑
β∈Δ+

a

s±a,βE±β

⎞⎠ , D+
a = exp

⎛⎝ r∑
j=1

d+
a,jHj

⎞⎠ (18)

T±
a (λ) = exp

⎛⎝ ∑
β∈Δ+

a

t±a,βE±β

⎞⎠ , D−
a = exp

⎛⎝ r∑
j=1

d−a,jw0(Hj)

⎞⎠. (19)

4. Generalized Fourier Transform for Kaup-Kupershmidt Type
Equations

The role of the usual exponents in the formalism we are describing is played by

the so-called squared solutions. One can construct them by using the fundamental

analytic solutions of the generalised Zakharov-Shabat system

e(a)
α (x, λ) = π

[
χa(x, λ)Eα(χa(x, λ))−1

]
h

(a)
j (x, λ) = π

[
χa(x, λ)Hj(χ

a(x, λ))−1
]

where π : sl(3) → sl(3)/ker(adJ). Next theorem holds true [14].

Theorem 2. The squared solutions form a complete system with the following
completeness relations

δ(x− y)Π =
1

2π

6∑
a=1

(−1)a+1

∫
la

dλ
[
e
(a)
βa

(x, λ) ⊗ e
(a)
−βa

(y, λ)

(20)

− e
(a−1)
−βa

(x, λ) ⊗ e
(a−1)
βa

(y, λ)
]
− i

6∑
a=1

∑
na

Res
λ=λna

G(a)(x, y, λ).
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where λna ∈ Ωa are discrete eigenvalues of L and

G(a)(x, y, λ) =
∑

α∈Δ+
a

e(a)
α (x, λ) ⊗ e

(a)
−α(y, λ), Π =

3∑
a=1

Eβa
∧ E−βa

βa(J)
·

Due to the existence of grading in sl(3) the squared solutions and the Weyl basis

have the representation

eα = eα,0 + eα,1 + eα,2, Eα = Eα,0 +Eα,1 +Eα,2.

All projections above can be obtained by using “averaging” procedure with Cox-

eter automorphism like in the following example

Eα,k =
1

3

3∑
l=1

ω−klC lEαC
−l, k = 0, 1, 2.

Thus one is able to write down single completeness relations also for the compo-

nents of the “squared solutions”

δ(x− y)Πk =
1

2π

6∑
a=1

(−1)a+1

∫
la

dλ
[
e
(a)
βa,k(x, λ) ⊗ e

(a)
−βa,3−k(y, λ)

− e
(a−1)
−βa,k(x, λ) ⊗ e

(a−1)
βa,3−k(y, λ)

]
− i

6∑
a=1

∑
na

Res
λ=λna

G
(a)
k (x, y, λ)

where

G
(a)
k (x, y, λ) =

∑
α∈Δ+

a

e
(a)
α,k(x, λ)⊗e(a)

−α,3−k(y, λ), Πk =
3∑

a=1

Eβa,k ∧E−βa,3−k

βa(J)
·

As a result any function X ∈ gk can be expanded over the squared solutions,

namely

X =
1

2π

6∑
a=1

(−1)a+1

∫
la

dλ
(
X

(a)
βa
e
(a)
βa,k −X

(a−1)
−βa

e
(a−1)
−βa,k

)
(21)

−i
6∑

a=1

∑
na

∑
α∈Δ+

a

(
Ẋ(a)

α,na
e
(a)
α,k,na,(x) +X(a)

α,na
ė
(a)
α,k,na

(x)
)
.
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The components of X are given respectively by the expressions

X
(a)
βa

(λ) =
[[
e
(a)
−βa,3−k(y, λ), X(y)

]]
, Ẋ(a)

α,na
=
[[
ė
(a)
−α,3−k,na

(y), X(y)
]]

X
(a−1)
−βa

(λ) =
[[
e
(a−1)
βa,3−k(y, λ), X(y)

]]
, X(a)

α,na
=
[[
e
(a)
−α,3−k,na

(y), X(y)
]]
.

We have introduced above the following auxiliary notation

e
(a)
α,k,na

(x) = lim
λ→λna

(λ− λna)e
(a)
α,k(x, λ)

ė
(a)
α,k,na

(x) = lim
λ→λa

∂λ(λ− λna)e
(a)
α,k(x, λ).

The bracket [[
X(x), Y (x)

]]
≡
∫ ∞

−∞

dx〈X, [J, Y ]〉

is the so-called skew-skalar product and 〈. , .〉 stands for the Cartan-Killing form.

Example 3. The following expansion holds true

ad−1
J [Jσ, q] =

i

2π

6∑
a=1

(−1)(a+1)βa(J
σ)

∫
la

dλ
(
s+a,βa

e
(a)
βa,1−σ + s−a,βa

e
(a−1)
−βa,1−σ

)
(22)

−i
6∑

a=1

∑
na

∑
α∈Δ+

a

(
q̇
(a)
α,na,1−σe

(a)
α,na

+ q(a)
α,na

ė
(a)
α,na,1−σ

)
where σ = 1, 2 the coefficients are given by

q(a)
α,na

=
[[
e
(a)
−α,na

(y), ad−1
J [Jσ, q(y)]

]]
, q̇(a)

α,na
=
[[
ė
(a)
−α,na

(y), ad−1
J [Jσ, q(y)]

]]
.

Since all indices are taken modulo 3, i.e., the expression 1 − σ equals either to 0
or 2. The expansion coefficients are derived from the Wronskian relation

(χ̂aJσχa − Jσ)|∞−∞ = i

∫ ∞

−∞

dxχ̂a[Jσ, q]χa

which leads immediately to

〈(χ̂aJσχa − Jσ)|∞−∞, E−α〉 = i
[[
e
(a)
−α(x, λ), ad−1

J [Jσ, q]
]]
.

Taking into account the construction of χa(x, λ) (see formulae (16), (17)) and the
parametrization of the Gauss factors (18) one obtains[[

e
(a)
−α(x, λ), ad−1

J [Jσ, q]
]]

= iα(Jσ)s+a,α[[
e(a)
α (x, λ), ad−1

J [Jσ, q]
]]

= −iα(Jσ)s−a,α.
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By analogy, the variation of q can be expanded in the following manner

ad−1
J δq(x) =

i

2π

6∑
a=1

(−1)a+1

∫
la

dλ
(
δs+a,βa

e
(a)
βa,1(x, λ) − δs−a,βa

e
(a−1)
−βa,1(x, λ)

)
.

The latter is obtained starting from another Wronskian relation

χ̂aδχa|∞−∞ = i

∫ ∞

−∞

dxχ̂aδqχa.

�

Let us introduce the quantities

E
(a)
α = χaEαχ̂a = e(a)

α + d(a)
α , H

(a)
j = χaHjχ̂a = h

(a)
j + f

(a)
j

to satisfy the equations

i∂xE
(a)
α + [q − λJ,E (a)

α ] = 0

i∂xH
(a)

j + [q − λJ,H
(a)

j ] = 0.

For the sake of simplicity we are going to skip the upper index a since all further

considerations do not depend on its choice. After splitting the diagonal and off-

diagonal part of the above equations we get

i∂xeα + π[q, eα] + π[q, dα] = λπ[J, eα] (23)

i∂xdα + (11 − π)[q, eα] = 0. (24)

By analogy with the very “squared” solution the diagonal parts of Eα admit an

expansion to be compatible with the grading

dα = d1
αJ

2 + d2
αJ.

Substituting it into (24) one immediately gets

i∂xdσ
α+

1

3
tr ([q, eα,σ]Jσ) = 0 ⇒ dσ

α =
i

3

∫ x

±∞

dytr ([q, eα]Jσ) , σ = 1, 2.

On the other hand one can rewrite (23) by “components” as follows

i∂xeα,0 + π[q, eα,0] = λπ[J, eα,1]

i∂xeα,σ +
i

3
π[q, J3−σ]

∫ x

±∞

dytr ([q, eα,σ]Jσ) + π[q, eα,σ] = λπ[J, eα,σ+1].
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As a result we obtain

Λ0eα,0 = λeα,1, Λσeα,σ = λeα,σ+1

where

Λ0 = ad−1
J (i∂x + π[q, .])

Λσ = ad−1
J

{
i∂x +

i

3
π
(
[q, J3−σ]

) ∫ x

±∞

dytr ([q, .]Jσ) + π[q, .]

}
.

Therefore we have

Λeα = λ3eα, Λ = Λ2Λ1Λ0 ⊕ Λ0Λ2Λ1 ⊕ Λ1Λ0Λ2

where each term in Λ acts in a different subspace (from g0 to g2).

It can be verified that the integrable hierarchy of Kaup-Kupershmidt equation in

terms of Λ operator reads

iad−1
J ∂tq =

n∑
l=1

c3l−1Λ
l−1Λ0Λ2ad−1

J [q, J2] −
n∑

l=1

c3l−2Λ
l−1Λ0q, N = 3n− 1

iad−1
J ∂tq =

n−1∑
l=1

c3l−1Λ
l−1Λ0Λ2ad−1

J [q, J2] −
n∑

l=1

c3l−2Λ
l−1Λ0q, N = 3n− 2

where

f(λ) =
n∑

m=1

(
c3m−1λ

3m−1J2 + c3m−2λ
3m−2J

)
, c3m = 0.

In particular, for the Kaup-Kupershmidt equation itself we have f(λ) = −9λ5J2

and therefore

iad−1
J ∂tq + 9ΛΛ0Λ2ad−1

J [q, J2] = 0.

After substituting the expansions of q and its variation one obtains

i∂ts
±
a,βa

∓ 9λ5βa(J
2)s±a,βa

= 0 ⇒ s±a,βa
(t) = s±a,βa

(0) exp
(
∓ 9iβa(J

2)λ5t
)
.

In the general case we have

s±a,βa
(t) = exp

[
±i

(
βa(J

2)
∑

l

c3l−1λ
l+1 + βa(J)

∑
l

c3l−2λ
l

)
t

]
s±a,βa

(0).

These are linearized versions of the NEE with dispersion laws f(λ).
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5. Conclusion

We have realized the generalized Fourier transform interpretation of the ISM in

the case of Kaup-Kupershmidt type equations in terms of “squared solutions” and

recursion operators. The presence of a Z3 symmetry leads to a Z3-grading in

sl(3,C). As a result the completeness property of the “squared solutions” holds

true also for their components. Due to compatibility requirements with the Z3-

grading the Λ-operator obtains a certain factorization. Thus one can describe the

integrable hierarchy of the KKE by using the Λ-operator and its factors. More-

over, by using expansions over the “squared solutions” one is able to obtain lin-

earized versions of the corresponding NEE in terms of minimal sets of scattering

data. Apart from describing the hierarchy of integrable NEE the Λ-operators gen-

erate an infinite hierarchy of symplectic forms and Hamiltonians associated with

these equations. Discussed results can be generalized for Lax operators related to

sl(r + 1) and even related to an arbitrary simple Lie algebra. For example, the

“squared solutions” admit the following expansion

eα(x, λ) =
h−1∑
k=0

eα,k(x, λ), eα,k(x, λ) ∈ gk

where h is the Coxeter number of the Lie algebra g. The corresponding recursion

operator can be represented

Λ = Λh−1Λh−2 . . .Λ0 + cycl.

where

Λkj
= ad−1

J

(
i∂x + π[q, .] + iπ[q, Ej ]

∫ x

±∞

dy〈[q, .], Ẽj〉
)

if gkj intersects the centralizer of J and

Λkj
= ad−1

J (i∂x + π[q, .])

otherwise. The elements Ej ∈ gkj and Ẽm ∈ glm form a basis in the centralizer of

J and they are normalized as follows

〈Ej , Ẽm〉 = δjm.

In the case of sl(r + 1) these are simply certain powers of J . Another possible

generalization is to consider NEEs with constant boundary conditions. This class

of NEEs currently is a subject of increasing interest, see [8].
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