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WEAK FORM OF HOLZAPFEL’S CONJECTURE

AZNIV KASPARIAN AND BORIS KOTZEV

Communicated by Vasil V. Tsanov

Abstract. Let B ⊂ C
2 be the unit ball and Γ be a lattice of SU(2, 1). Bear-

ing in mind that all compact Riemann surfaces are discrete quotients of the unit

disc Δ ⊂ C, Holzapfel conjectures that the discrete ball quotients B/Γ and their

compactifications are widely spread among the smooth projective surfaces. There

are known ball quotients B/Γ of general type, as well as rational, abelian, K3 and

elliptic ones. The present note constructs three non-compact ball quotients, which

are birational, respectively, to a hyperelliptic, Enriques or a ruled surface with an

elliptic base. As a result, we establish that the ball quotient surfaces have repre-

sentatives in any of the eight Enriques classification classes of smooth projective

surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a phi-

losophy that “... up to birational equivalence and compactifications, all complex

algebraic surfaces are ball quotients.” By a complex algebraic surface is meant

a smooth projective surface over C. These have smooth minimal models, which

are classified by Enriques in eight types - rational, ruled of genus ≥ 1, abelian,

hyperelliptic, K3, Enriques, elliptic and of general type. The compact torsion

free ball quotients B/Γ are smooth minimal surfaces of general type. Ishida [10],

Keum [11, 12] and Dzambic [1] obtain elliptic surfaces, which are minimal res-

olutions of the isolated cyclic quotient singularities of compact ball quotients.

Hirzebruch [2] and then Holzapfel [3], [7], [9] have constructed torsion free ball

quotient compactifications with abelian minimal models. In [9] Holzapfel pro-

vides a ball quotient compactification, which is birational to the Kummer surface

of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient

surfaces are explicitly recognized and studied in [6], [8]. The present work con-

structs smooth ball quotients with a hyperelliptic or, respectively, a ruled model

with an elliptic base. It provides also a ball quotient with one double point, which

is birational to an Enriques surface. All of them are finite Galois quotients of a
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non-compact torsion free B/Γ
(6,8)
−1 , constructed by Holzapfel in [9] and having

abelian minimal model of the toroidal compactification. As a result, we establish

the following

Theorem 1 (Weak Form of Holzapfel’s Conjecture) . Any of the eight Enriques
classification classes of complex projective surfaces contains a ball quotient sur-
face.

2. Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex two-ball

B = {(z1, z2) ∈ C2 ; |z1|2 + |z2|2 < 1} = SU(2, 1)/S(U(2) × U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholo-

morphism groups Γ ⊂ SU(2, 1) of B, whose quotients B/Γ have finite SU(2, 1)-
invariant measure are called ball lattices. The present section studies the image

T of the toroidal compactifying divisor T ′ = (B/Γ)′ \ (B/Γ) on the minimal

model A of (B/Γ)′, whenever A is an abelian surface. It establishes that for any

subgroup H ⊆ Aut(A, T ) there is a ball quotient B/ΓH , birational to A/H .

Lemma 2. If a ball quotient B/Γ is birational to an abelian surface A then B/Γ
is smooth and non-compact.

Proof: Assume that B/Γ is singular. For a compact B/Γ set U = B/Γ. If B/Γ is

non-compact, let U = (B/Γ)′ be the toroidal compactification of B/Γ. In either

case U is a compact surface with isolated cyclic quotient singularities. Consider

the minimal resolution ϕ : Y → U of pi ∈ U sing by Hirzebruch-Jung strings

Ei =
νi∑

t=1
Et

i . The irreducible components Et
i of Ei are smooth rational curves

of self-intersection (Et
i )

2 ≤ −2. The birational morphism Y ��� A transforms

Et
i onto rational curves on A. It suffices to observe that an abelian surface A

does not support rational curves C, in order to conclude that B/Γ is smooth. The

compact smooth ball quotients are known to be of general type, so that B/Γ is to

be non-compact.

Assume that there is a rational curve C ⊂ A. Its desingularization f : C̃ → C
can be viewed as a holomorphic map F : C̃ → A. Homotopy lifting property

applies to F and provides a holomorphic immersion F̃ : C̃ → Ã = C2 in the

universal cover Ã of A, due to simply connectedness of the smooth rational curve
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C̃. Its image F̃ (C̃) is a compact complex-analytic subvariety of C2, which maps

to compact complex-analytic subvarieties pri(F̃ (C̃)) ⊂ C by the canonical pro-

jections pri : C2 → C, 1 ≤ i ≤ 2. Thus, pri(F̃ (C̃)) and, therefore, F̃ (C̃) are

finite. The contradiction justifies the non-existence of rational curves on A.

�

The next lemma lists some immediate properties of the image T of the toroidal

compactifying divisor T ′ of A′ = (B/Γ)′ on its abelian minimal model A.

Lemma 3. Let A′ = (B/Γ)′ be a smooth toroidal ball quotient compactification,

ξ : A′ → A be the blow-down of the (−1)-curves L =
s∑

j=1
Lj on A′ to an

abelian surface A and T ′
i , 1 ≤ i ≤ h be the disjoint smooth elliptic irreducible

components of the toroidal compactifying divisor T ′ = (B/Γ)′ \ (B/Γ). Then

i) Ti = ξ(T ′
i ) are smooth irreducible elliptic curves on A

ii) T sing =
∑

1≤i<j≤h

Ti ∩ Tj = ξ(L)

iii) Ti ∩ T sing 	= ∅ and the restrictions ξ : T ′
i → Ti are bijective for all

1 ≤ i ≤ h.

Proof: i) According to the birational invariance of the genus, the curves Ti =
ξ(T ′

i ) have smooth elliptic desingularizations. It suffices to show that any curve

C ⊂ A of genus one is smooth. If C is singular then its desingularization C̃ is a

smooth elliptic curve. Therefore, the composition C̃ → C ↪→ A of the desingula-

rization map with the identical inclusion of C is a morphism of abelian varieties.

In particular, it is unramified, which is not the case for C̃ → C. Therefore any

curve C ⊂ A of genus one is smooth.

ii) The inclusion T sing ⊆ ∑
1≤i<j≤h

Ti ∩ Tj follows from i). For the opposite

inclusion, note that ξ|A′\L = Id (A′\L) : A′ \ L → A \ ξ(L) guarantees Ti =
ξ(T ′

i ) 	= ξ(T ′
j) = Tj and different elliptic curves on an abelian surface intersect

transversally at any of their intersection points. Thus, T sing =
∑

1≤i<j≤h

Ti ∩ Tj .

The disjointness of T ′
i yields

∑
1≤i<j≤h

Ti ∩ Tj ⊆ ξ(L). Conversely, the Kobayashi

hyperbolicity of B/Γ requires card(Lj ∩ T ′) ≥ 2 for all 1 ≤ j ≤ s. However,

card(Lj ∩ T ′
i ) ≤ 1 by the smoothness of Ti = ξ(T ′

i ), so that there exist at least

two T ′
i 	= T ′

k with card(Lj ∩ T ′
i ) = card(Lj ∩ T ′

k) = 1. In other words, the point
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ξ(Lj) ∈ Ti ∩Tk. That verifies the inclusion ξ(L) ⊆ ∑
1≤i<j≤h

Ti ∩Tj , whereas the

coincidence ξ(L) =
∑

1≤i<j≤h

Ti ∩ Tj .

iii) If Ti ∩ ξ(L) = ∅ then the intersection numbers (T ′
i )

2 = T 2
i coincide. By the

Adjunction Formula

0 = −e(Ti) = T 2
i + KA.Ti = T 2

i + OA.Ti = T 2
i

so that (T ′
i )

2 = 0. That contradicts the contractibility of T ′
i to the corresponding

cusp of B/Γ and justifies Ti ∩ T sing 	= ∅ for all 1 ≤ i ≤ h.

Note that ξ|T ′
i\L

= Id |T ′
i\L

: T ′
i \ L → Ti \ ξ(L) is bijective. In order to define

ξ−1 : Ti ∩ ξ(L) → T ′
i ∩ L, let us recall that for any p ∈ ξ(L) the smooth rational

curve ξ−1(p) has card(ξ−1(p)∩T ′
i ) ≤ 1. More precisely, card(ξ−1(p)∩T ′

i ) = 1
if and only if p ∈ Ti, so that for any p ∈ Ti ∩ ξ(L) there is a unique point

{q(p)} = T ′
i ∩ ξ−1(p). That provides a regular morphism ξ−1(p) = q(p) for all

p ∈ Ti ∩ ξ(L).

�

According to Lemma 3, the image T = ξ(T ′) of the toroidal compactifying divi-

sor T ′ = (B/Γ)′\(B/Γ) under the blow-down ξ : (B/Γ)′ → A of the (−1)-curves

is a multi-elliptic divisor, i.e., T =
h∑

i=1
Ti has smooth elliptic irreducible compo-

nents Ti, which intersect transversally. Note also that (A, T ) determines uniquely

(B/Γ)′ as the blow-up of A at T sing.

Definition 4. A pair (A, T ) of an abelian surface A and a divisor T ⊂ A is
an abelian ball quotient model if there exists a torsion free toroidal ball quotient
compactification (B/Γ)′, such that the blow-down ξ : (B/Γ)′ → A of the (−1)-
curves on (B/Γ)′ maps the pair

(
(B/Γ)′ , T ′ = (B/Γ)′ \ (B/Γ)

)
onto (A, T ).

The next lemma explains the construction of non-compact ball quotients, which

are finite Galois quotients of torsion free non-compact B/Γ, birational to abelian

surfaces.

Lemma 5. Let A′ = (B/Γ)′ = (B/Γ) ∪ T ′ be a torsion free ball quotient com-
pactification by a toroidal divisor T ′, ξ : A′ → A be the blow-down of the (−1)-
curves on A′ to the abelian minimal model A and T = ξ(T ′). Then

i) Aut(A, T ) = Aut(A′, T ′) is a finite group
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ii) any subgroup H ⊆ Aut(A, T ) lifts to a ball lattice ΓH , such that Γ is a
normal subgroup of ΓH with quotient group ΓH/Γ = H and B/ΓH is a
non-compact ball quotient, birational to X = A/H .

Moreover, if X = A/H is a smooth surface then B/ΓH is a smooth ball quotient.

Proof: i) If G = Aut(A, T ), then Lemma 3 ii) implies the G-invariance of ξ(L).
By the means of an arbitrary automorphism of the smooth projective line P1, one

extends the G-action to L and, therefore, to

A′ = (A′ \ L) ∪ L = (A \ ξ(L)) ∪ L.

The G-invariance of T ′ =
h∑

i=1
T ′

i follows from Lemma 3 iii). That justifies the

inclusion G ⊆ Aut(A′, T ′). For the opposite inclusion, note that the union L of

the (−1)-curves is invariant under an arbitrary automorphism of A′. As a result,

there arises a G-action on ξ(L) and A = (A \ ξ(L)) ∪ ξ(L) = (A′ \ L) ∪ ξ(L).

The multi-elliptic divisor T =
h∑

i=1
Ti is G-invariant according to Lemma 3 iii).

Consequently, Aut(A′, T ′) ⊆ G, whereas G = Aut(A′, T ′).

In order to show that G is finite, let us consider the natural representation

ϕ : G −→ Sym(T1, . . . , Th) � Symh

in the permutation group of the irreducible components Ti of T . It suffices to

prove that the kernel kerϕ is finite, in order to assert that G is finite. For any

g = τpgo ∈ kerϕ ⊂ Aut(A) with linear part go ∈ GL2(C) and translation part

τp, p ∈ A, we show that go and τp take finitely many values. Note that the identical

inclusions Ti ⊂ A are morphisms of abelian varieties. Thus, for any choice of an

origin ǒA ∈ Ti there is a C-linear embedding Ei : T̃i = C ↪→ C2 = Ã of the

corresponding universal covers. If Ei(1) = (ai, bi) then

Ti = Eai,bi
= {(ait, bit)(mod π1(A)) ; t ∈ C} ⊂ A.

If the origin ǒA 	∈ Ti, then for any point (Pi, Qi) ∈ Ti the elliptic curve Ti =
Eai,bi

+ (Pi, Qi). In either case, all vi = (ai, bi) are eigenvectors of the linear

part go of g = τpgo ∈ kerϕ. We claim that there are at least three pairwise non-

proportional vi. Indeed, if all vi were parallel, then T sing = ∅, which contradicts

Ti ∩ T sing 	= ∅ for 1 ≤ i ≤ h by Lemma 3 iii). Suppose that among v1, . . . , vh

there are two non-parallel and all other vi are proportional to one of them. Then

after an eventual permutation there is 1 ≤ k ≤ h− 1, such that v1, vk are linearly
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independent, vi = μiv1 for μi ∈ C, 2 ≤ i ≤ k and vi = μivk+1 for μi ∈
C, k + 2 ≤ i ≤ h. Holzapfel has proved in [9] that any abelian ball quotient

model (A, T ) is subject to
h∑

i=1
card(Ti∩T sing) = 4card(T sing). In the case under

consideration

card(T sing) =

k∑
i=1

h∑
j=k+1

card(Ti ∩ Tj)

card(Ti ∩ T sing) =

h∑
j=k+1

card(Ti ∩ Tj) for 1 ≤ i ≤ k and

card(Tj ∩ T sing) =

k∑
i=1

card(Ti ∩ Tj) for k + 1 ≤ j ≤ h.

Therefore
h∑

i=1
card(Ti ∩ T sing) = 2card(T sing) 	= 4card(T sing) and there are at

least three pairwise non-proportional eigenvectors v1, v2, v3 of go. Let λi be the

corresponding eigenvalues of vi and v3 = ρ1v1+ρ2v2 for some ρ1, ρ2 ∈ C∗. Then

λ3v3 = go(v3) = ρ1λ1v1 + ρ2λ2v2 implies that λ1 = λ3 = λ2 and go = λoI2

is a scalar matrix. On the other hand, g(Ti) = go(Ti) + p = Ti for all 1 ≤
i ≤ h, so that go permutes among themselves the parallel elliptic curves among

T1, . . . , Th. Since Ti are finitely many, there is a natural number m, such that

gm
o ∈ kerϕ. Therefore, λm

o ∈ End(Ti) and λ−m
o ∈ End(Ti) for all 1 ≤ i ≤ h,

due to (gm
o )−1 = g−m

o ∈ kerϕ. Recall that the units group End∗(Ti) = Z∗ =
{±1} for Ti without a complex multiplication. If the elliptic curve Ti has complex

multiplication by an imaginary quadratic number field Q(
√−d), d ∈ N, then

End(Ti) is a subring of the integers ring O−d of Q(
√−d). The units groups

O∗
−1 = 〈i〉, O∗

−3 = 〈e 2πi
6 〉, and O∗

−d = 〈−1〉 for all d 	= 1, 3 are finite cyclic

groups. As a subgroup of O∗
−d, the units group End∗(Ti) is a finite cyclic group.

Therefore λm
o ∈ End∗(Ti) and go = λoI2 take finitely many values.

Concerning the translation part τp of g ∈ kerϕ, one can always move the origin

ǒA of A at one of the singular points of T . Due to the G-invariance of T sing, there

follows g(ǒA) = τpgo(ǒa) = τp(ǒA) = p ∈ T sing. Therefore p takes finitely

many values and kerϕ is finite.

ii) Since Γ ⊂ SU(2, 1) is a torsion free lattice, any subgroup H of

G = Aut(A′, T ′) ⊆ Aut(A′ \ T ′) = Aut (B/Γ)
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lifts to a subgroup ΓH ⊂ Aut(B) = SU(2, 1), which normalizes Γ and has quo-

tient ΓH/Γ = H . We claim that ΓH is discrete. Indeed, ΓH = ∪k
i=1γiΓ is a

finite disjoint union of cosets, relative to Γ. Suppose that ΓH is not discrete and

there is a sequence {νn}∞n=1 ⊂ ΓH with a limit point νo ∈ γioΓ. Then pass to a

subsequence {νmn}∞n=1 ⊂ γioΓ, converging to νo. As a result {γ−1
io

νmn}∞n=1 ⊂ Γ

converges to γ−1
io

νo ∈ Γ and contradicts the discreteness of Γ. Thus, ΓH ⊇ Γ is

discrete and, therefore, a ball lattice. Straightforwardly,

A′/H = [(B/Γ) / (ΓH/Γ)] ∪ (T ′/H
)

= (B/ΓH) ∪ (T ′/H
)

= (B/ΓH)

is the compactification of the ball quotient B/ΓH by the divisor T ′/H . The H-

Galois covers ζH : A → A/H and ζ ′H : A′ → (B/ΓH) fit in a commutative

diagram

A A′

A/H (B/ΓH)

�

ζH

� ξ

�

ζ′H

�ξH

with the contraction ξH of L/H to ξ(L)/H .

Note that X = A/H is smooth exactly when H has no isolated fixed points on

A. The blow-up ξ : A′ → A replaces an arbitrary pj = ξ(Lj) with stabilizer

StabH(pj) by a smooth rational curve Lj with StabH(q) = StabH(pj) for all

q ∈ Lj . Therefore the blow-up ξ does not create isolated H-fixed points on A′

and A′/H = (B/ΓH) is a smooth compactification. Its open subset B/ΓH is

smooth.

�

3. Explicit Constructions

The present section applies Lemma 5 to a specific abelian ball quotient model

over the Gauss numbers Q(i), in order to provide ball quotient compactifications,

which are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic

base.

Theorem 6 (Holzapfel [9]) . Let us consider the elliptic curve E−1 = C/(Z+iZ)



36 Azniv Kasparian and Boris Kotzev

with complex multiplication by the Gauss numbers Q(i), its two-torsion points

Q0 = 0(mod Z + iZ), Q1 =
1

2
(mod Z + iZ), Q2 = iQ1, Q3 = Q1 + Q2

the abelian surface A−1 = E−1 × E−1, the points

Qij = (Qi, Qj) ∈ A2−tor ⊂ A−1

and the divisor T
(6,8)
−1 =

8∑
i=1

Ti with smooth elliptic irreducible components

Tk = Eik,1 for 1 ≤ k ≤ 4

Tm+4 = Qm × E−1, Tm+6 = E−1 × Qm for 1 ≤ m ≤ 2.

Then
(
A−1, T

(6,8)
−1

)
is an abelian model of an arithmetic ball quotient B/Γ

(6,8)
−1 ,

defined over Q(i).

Corollary 7 (Holzapfel [9]) .

i) In the notations from Theorem 6, the multiplications I =

(
i 0
0 1

)
, J =(

1 0
0 i

)
by i ∈ Z[i] = End(E−1) on the first, respectively, the second

elliptic factor E−1 of A−1 are automorphisms of
(
A−1, T

(6,8)
−1

)
.

ii) If Γ
(6,8)
K3,−1 is the ball lattice, containing Γ

(6,8)
−1 as a normal subgroup with

quotient Γ
(6,8)
K3,−1/Γ

(6,8)
−1 = 〈−I2 = I2J2〉 ⊂ Aut

(
A−1, T

(6,8)
−1

)
, then the

ball quotient B/Γ
(6,8)
K3,−1 is birational to the Kummer surface XK3 of A−1.

iii) If Γ
(6,8)
Rat,−1 is the ball lattice, containing Γ

(6,8)
−1 as a normal subgroup with

quotient Γ
(6,8)
Rat,−1/Γ

(6,8)
−1 = 〈I, J〉 ⊆ Aut

(
A−1, T

(6,8)
−1

)
, then the ball quo-

tient B/Γ
(6,8)
Rat,−1 is a rational surface.

The entire automorphism group G
(6,8)
−1 = Aut

(
A−1, T

(6,8)
−1

)
is described in the

next lemma.
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Lemma 8. In the notations from Theorem 6, the group G
(6,8)
−1 =Aut

(
A−1, T

(6,8)
−1

)
is generated by I =

(
i 0
0 1

)
, J =

(
1 0
0 i

)
, the transposition θ =

(
0 1
1 0

)
of the elliptic factors E−1 of A−1 and the translation τ33 by Q33. The aforemen-
tioned generators are subject to the relations

I4 = Id , J4 = Id , θ2 = Id , τ2
33 = Id , IJ = JI

θI = Jθ, θJ = Iθ, Iτ33 = τ33I, Jτ33 = τ33J, θτ33 = τ33θ.

and G
(6,8)
−1 is of order 64.

Proof:
Any g ∈ G

(6,8)
−1 leaves invariant(

T
(6,8)
−1

)sing
=

∑
1≤i<j≤8

Ti ∩ Tj =
2∑

m=1

2∑
n=1

Qmn + Q00 + Q33.

Thus, g(Ti) = Tj implies si = card(Ti ∩ T sing) = card(Tj ∩ T sing) = sj ,

according to the bijectiveness of g. In the case under consideration, s1 = s2 =

s3 = s4 = 4 and s5 = s6 = s7 = s8 = 2, so that G
(6,8)
−1 permutes separately

T1, . . . , T4 and T5, . . . , T8. In particular, the intersection ∩4
i=1Ti = {Q00, Q33} is

G
(6,8)
−1 -invariant and any g = τ(U,V )go ∈ G

(6,8)
−1 transforms the origin ǒA−1

= Q00

into g(ǒA−1
) = (U1, U2) ∈ {Q00, Q33}. Straightforwardly, τ33(Ti) = Ti for

1 ≤ i ≤ 4 and τ33(Tm+2n) = T3−m+2n for 1 ≤ m ≤ 2, 2 ≤ n ≤ 3 imply

that τ33 ∈ G
(6,8)
−1 . Therefore G

(6,8)
−1 is generated by G

(6,8)
−1 ∩ GL2(End(E−1)) =

G
(6,8)
−1 ∩ GL2(Z[i]) and τ33. Note that θ ∈ Aut(A−1) acts on T

(6,8)
−1 and induces

the permutation (T1, T3)(T5, T7)(T6, T8) of its irreducible components. Therefore

θ ∈ G
(6,8)
−1 and 〈I, J, θ〉 is a subgroup of G

(6,8)
−1 ∩ GL2(Z[i]). On the other hand,

any g =

(
α β
γ δ

)
∈ G

(6,8)
−1 ∩ GL2(Z[i]) acts on T5, . . . , T8 and, therefore, on

the set {T̃5 = T̃6 = 0 × C, T̃7 = T̃8 = C × 0} of the corresponding universal

covers. If g(0 × C) = 0 × C, g(C × 0) = C × 0 then β = γ = 0, so that

α, δ ∈ End(E−1) = Z[i] and det(g) = αδ ∈ End∗(E−1) = 〈i〉 = C4 imply

g = IkJ l for some 0 ≤ k, l ≤ 3. Similarly, for g(0×C) = C×0, g(C×0) = 0×C

one has α = δ = 0, whereas β, γ ∈ Z[i], βγ ∈ Z[i]∗ = 〈i〉 and g = IkJ lθ for

some 0 ≤ k, l ≤ 3. Consequently, G
(6,8)
−1 ∩ GL2(Z[i]) = 〈I, J, θ〉 and G

(6,8)
−1 =

〈I, J, θ, τ33〉. The announced relations among τ33, I , J , θ imply that

G
(6,8)
−1 = {τn

33I
kJ lθm ; 0 ≤ k, l ≤ 3, 0 ≤ m, n ≤ 1}
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is of order 64.

�

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us
consider the subgroups HHE = 〈τ33J

2〉, HEnr = 〈−I2, τ33I
2〉, HRul = 〈J2〉

of G
(6,8)
−1 = Aut

(
A−1, T

(6,8)
−1

)
, their liftings Γ

(6,8)
HE,−1, Γ

(6,8)
Enr,−1, Γ

(6,8)
Rul,−1 to ball

lattices and the blow-up A
2̂−tor

of A−1 at the two-torsion points A2−tor. Then

i) B/Γ
(6,8)
HE,−1 is a smooth ball quotient, birational to the smooth hyperelliptic

surface A−1/HHE

ii) B/Γ
(6,8)
Enr,−1 is a ball quotient with one double point OrbHEnr

(Q03), which is
birational to the smooth Enriques surface A

2̂−tor
/HEnr

iii) B/Γ
(6,8)
Rul,−1 is a smooth ball quotient, birational to the smooth trivial ruled

surface A−1/HRul = E−1 × P1 with an elliptic base E−1.

Proof: i) Recall that the Z-module π1(E−1) = Z+iZ = Z+(1+i)Z is generated

by 1, 1 + i and Q3 = 1+i
2 (mod π1(E−1)). The translation τQ3

: E−1 → E−1 is

of order 2, as well as the morphism

τQ3
(−1) : E−1 −→ E−1

τQ3
(−1)(P ) = −P + Q3

with four fixed points

1

2
Q3 + (E−1)2−tor =

1

2
Q3 + {Qi ; 0 ≤ i ≤ 3}.

According to [5], the quotient A−1/HHE by the cyclic group

HHE = 〈τQ3
× τQ3

(−1)〉

of order 2 is a smooth hyperelliptic surface. Lemma 5 ii) implies that B/Γ
(6,8)
HE,−1

is a smooth ball quotient, birational to A−1/HHE .

ii) The quotient XK3 = A
2̂−tor

/〈−I2〉 is a smooth K3 surface, called the Kummer

surface of A−1. We claim that the involution τ33I
2 acts on A

2̂−tor
and determines

an unramified double cover

ζ : XK3 = A
2̂−tor

/〈−I2〉 → A
2̂−tor

/〈−I2, τ33I
2〉 = A

2̂−tor
/HEnr.
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More precisely, τ33I
2 = τQ3

(−1) × τQ3
leaves invariant the two-torsion points

A2−tor = {Qij ; 0 ≤ i, j ≤ 3} and any choice of an automorphism of P1 extends

τ33I
2 to an automorphism of A

2̂−tor
. Note that τ33I

2(−I2) = (−I2)τ33I
2, so that

τ33I
2 normalizes 〈−I2〉 and there is a well defined quotient group HEnr/〈−I2〉 =

〈τ33I
2〉 of order 2. That allows to define ζ : XK3 → A

2̂−tor
/HEnr as an

HEnr/〈−I2〉-Galois cover. We claim that τ33I
2 is a fixed point free involution

on XK3, in order to conclude that A
2̂−tor

/HEnr is a smooth Enriques surface.

More precisely, the fixed points of τ33I
2 on the set XK3 of the 〈−I2〉-orbits on

A
2̂−tor

lift to ε-fixed points of τ33I
2 on A

2̂−tor
for ε = ±1. The ε-fixed points

(P, Q) ∈ A−1 are subject to

−P + Q3 = εP

Q + Q3 = εQ.

For ε = 1 the equality Q + Q3 = Q has no solution Q ∈ E−1, while for ε = −1
the equation −P + Q3 = −P on P ∈ E−1 is inconsistent. Therefore τ33I

2 has

no ε-fixed points on A−1. By the very definition of the τ33I
2-action on A

2̂−tor
,

there are no ε-fixed points for τ33I
2 on A

2̂−tor
and τ33I

2 : XK3 → XK3 is a fixed

point free involution. As a result, A
2̂−tor

/HEnr is a smooth Enriques surface.

Recall that the exceptional divisor ξ−1
2−tor(A2−tor) of the blow-up

ξ2−tor : A
2̂−tor

→ A−1

of A−1 at A2−tor is HEnr-invariant, so that ξ2−tor descends to the contraction

ξ2−tor : A
2̂−tor

/HEnr → A−1/HEnr of ξ−1
2−tor(A2−tor)/HEnr to A2−tor/HEnr.

In particular, the smooth Enriques surface A
2̂−tor

/HEnr is birational to A−1/HEnr.

The singular locus (A−1/HEnr)
sing ⊆ (A2−tor/HEnr), according to the smooth-

ness of A
2̂−tor

/HEnr. On the other hand, τ33I
2 has no fixed points on A2−tor, so

that A2−tor/HEnr consists of eight double points

OrbHEnr
(Qij) = OrbHEnr

(Q3−i,3−j), 0 ≤ i, j ≤ 3

and (A−1/HEnr)
sing = A2−tor/HEnr. Note that(

T
(6,8)
−1

)sing
= {OrbHEnr

(Q00), OrbHEnr
(Q11), OrbHEnr

(Q12)}

is contained in (A−1/HEnr)
sing and the birational morphism

ξHEnr
:

(
B/Γ

(6,8)
Enr,−1

)
→ A−1/HEnr
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resolves
(
T

(6,8)
−1

)sing
by smooth rational curves of self-intersection (−2). There-

fore

(
B/Γ

(6,8)
Enr,−1

)sing

consists of the following five double points:

OrbHEnr
(Q01), OrbHEnr

(Q10), OrbHEnr
(Q02), OrbHEnr

(Q20), OrbHEnr
(Q03).

Since

OrbHEnr
(Q0,m) ∈

[
Tm+6 \

(
T

(6,8)
−1

)sing
]

/HEnr =
(
T ′

m+6 \ L
)
/HEnr

OrbHEnr
(Qm,0) ∈

[
Tm+4 \

(
T

(6,8)
−1

)sing
]

/HEnr =
(
T ′

m+4 \ L
)
/HEnr

for all 1 ≤ m ≤ 2 belong to the compactifying divisor T ′/HEnr, the ball quotient

B/Γ
(6,8)
Enr,−1 has only one singular point(

B/Γ
(6,8)
Enr,−1

)sing
= {OrbHEnr

(Q0,3)}.

iii) The quotient X = A−1/HRul = E−1 × [E−1/〈(−1)〉] of A−1 by the reflec-

tion J2 = 1 × (−1) is a smooth surface, birational to the smooth ball quotient

B/Γ
(6,8)
Rul,−1. It is well known that C = E−1/〈−1〉 is a smooth projective curve.

More precisely, if

p(t) =
1

t2
+

∑
λ∈(Z+iZ)\{0}

[
1

(t − λ)2
− 1

λ2

]

is the Weierstrass p-function, associated with the lattice Z + iZ = π1(E−1), then

the map

ψ : E−1 \ {ǒE−1
} −→ P2

ψ(t + (Z + iZ)) =
[
1 : p(t + (Z + iZ)) : p′(t + (Z + iZ))

]
= [1 : p(t) : p′(t)]

extends by ψ(ǒE−1
) = [0 : 0 : 1] = p∞ to a projective embedding of E−1. The

image

ψ(E−1) =
{
[z : x : y] ∈ P2 ; zy2 = (x − p(Q1))(x − p(Q2))(x − p(Q3))

}
is a cubic hypersurface in P2. As far as p(t) is even and p′(t) is an odd function

of t, the multiplication μ−1 by −1 on E−1 acts on ψ(E−1) by the rule

μ−1([z : x : y]) = [z : x : −y].
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The fixed points of this action are p∞ and p(Qi) for 1 ≤ i ≤ 3. The fibres of the

projection

Π : ψ(E−1) \ {p∞} −→ P1 \ {q∞ = [0 : 1]}
Π([z : x : y]) = [z : x]

are exactly the μ−1-orbits on ψ(E−1) \ {p∞}, so that its image

P1 \ {q∞} = Π(ψ(E−1) \ {p∞}) = (ψ(E−1) \ {p∞})/〈μ−1〉

is the corresponding Galois quotient by the cyclic group 〈μ−1〉 of order 2. Thus,

ψ(E−1)/〈μ−1〉 = (ψ(E−1)\{p∞})/〈μ−1〉∪{p∞} = (P1\{q∞})∪{p∞} = P1.

�
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