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WEAK FORM OF HOLZAPFEL’S CONJECTURE

AZNIV KASPARIAN AND BORIS KOTZEV

Communicated by Vasil V. Tsanov

Abstract. Let B C C? be the unit ball and T be a lattice of SU(2,1). Bear-
ing in mind that all compact Riemann surfaces are discrete quotients of the unit
disc A C C, Holzapfel conjectures that the discrete ball quotients B/T" and their
compactifications are widely spread among the smooth projective surfaces. There
are known ball quotients B/T" of general type, as well as rational, abelian, K3 and
elliptic ones. The present note constructs three non-compact ball quotients, which
are birational, respectively, to a hyperelliptic, Enriques or a ruled surface with an
elliptic base. As a result, we establish that the ball quotient surfaces have repre-
sentatives in any of the eight Enriques classification classes of smooth projective
surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a phi-
losophy that ... up to birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients.” By a complex algebraic surface is meant
a smooth projective surface over C. These have smooth minimal models, which
are classified by Enriques in eight types - rational, ruled of genus > 1, abelian,
hyperelliptic, K3, Enriques, elliptic and of general type. The compact torsion
free ball quotients B/I" are smooth minimal surfaces of general type. Ishida [10],
Keum [11, 12] and Dzambic [1] obtain elliptic surfaces, which are minimal res-
olutions of the isolated cyclic quotient singularities of compact ball quotients.
Hirzebruch [2] and then Holzapfel [3], [7], [9] have constructed torsion free ball
quotient compactifications with abelian minimal models. In [9] Holzapfel pro-
vides a ball quotient compactification, which is birational to the Kummer surface
of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient
surfaces are explicitly recognized and studied in [6], [8]. The present work con-
structs smooth ball quotients with a hyperelliptic or, respectively, a ruled model
with an elliptic base. It provides also a ball quotient with one double point, which
is birational to an Enriques surface. All of them are finite Galois quotients of a
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30 Azniv Kasparian and Boris Kotzev

non-compact torsion free B/ F(fig), constructed by Holzapfel in [9] and having
abelian minimal model of the toroidal compactification. As a result, we establish
the following

Theorem 1 (Weak Form of Holzapfel’s Conjecture) . Any of the eight Enriques
classification classes of complex projective surfaces contains a ball quotient sur-
face.

2. Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex two-ball
B = {(21,22) € C*; |z1|* 4 |22 < 1} = SU(2,1)/S(U(2) x U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholo-
morphism groups I' C SU(2, 1) of B, whose quotients B/I" have finite SU(2,1)-
invariant measure are called ball lattices. The present section studies the image
T of the toroidal compactifying divisor 7/ = (B/I")’ \ (B/T') on the minimal
model A of (B/I"), whenever A is an abelian surface. It establishes that for any
subgroup H C Aut(A, T) there is a ball quotient B/T" g7, birational to A/H..

Lemma 2. If a ball quotient B/T is birational to an abelian surface A then B/T
is smooth and non-compact.

Proof: Assume that B/T" is singular. For a compact B/T"set U = B/T". If B/T" is
non-compact, let U = (B/T")’ be the toroidal compactification of B/T". In either
case U is a compact surface with isolated cyclic quotient singularities. Consider
the minimal resolution ¢ : Y — U of p; € U®"® by Hirzebruch-Jung strings

vi
E = > Ef The irreducible components Ef of F; are smooth rational curves
t=1

of self-intersection (E!)2 < —2. The birational morphism Y --+ A transforms
E! onto rational curves on A. It suffices to observe that an abelian surface A
does not support rational curves C, in order to conclude that B/I" is smooth. The
compact smooth ball quotients are known to be of general type, so that B/T" is to
be non-compact.

Assume that there is a rational curve C' C A. Its desingularization f : C—C
can be viewed as a holomorphic map F' : C — A Homotopy lifting property
applies to F' and provides a holomorphic immersion F:C — A=C2inthe
universal cover A of A, due to simply connectedness of the smooth rational curve
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C. Its image F (5’ ) is a compact complex-analytic subvariety of C2, which maps
to compact complex-analytic subvarieties pr;(#'(C')) C C by the canonical pro-

jections pr; : C? — C, 1 < i < 2. Thus, pr;(F(C)) and, therefore, F/(C) are
finite. The contradiction justifies the non-existence of rational curves on A.

The next lemma lists some immediate properties of the image T of the toroidal
compactifying divisor 7/ of A’ = (B/T')’ on its abelian minimal model A.

Lemma 3. Let A’ = (B/T) be a smooth toroidal ball quotient compactification,
S
¢ : A — A be the blow-down of the (—1)-curves L = > Lj on A’ to an
j=1
abelian surface A and T}, 1 < i < h be the disjoint smooth elliptic irreducible
components of the toroidal compactifying divisor T' = (B/T)"\ (B/T"). Then

i) T; = &(T)) are smooth irreducible elliptic curves on A

i) 75 = S T,NTy=¢(L)
1<i<j<h

iii) T; N T8 = () and the restrictions ¢ : T! — T; are bijective for all
1<i<h.

Proof: i) According to the birational invariance of the genus, the curves T; =
&(T7) have smooth elliptic desingularizations. It suffices to show that any curve
C C A of genus one is smooth. If C is singular then its desingularization Cisa
smooth elliptic curve. Therefore, the composition C — C — Aofthe desingula-
rization map with the identical inclusion of C' is a morphism of abelian varieties.
In particular, it is unramified, which is not the case for C — C. Therefore any
curve C' C A of genus one is smooth.

ii) The inclusion 78 C Y. T; N Tj follows from i). For the opposite

1<i<j<h

inclusion, note that {| 4, = Id (anz) : A"\ L — A\ {(L) guarantees T; =
§(T}) # &(T}) = T; and different elliptic curves on an abelian surface intersect

transversally at any of their intersection points. Thus, 75" = Y~ T, N T;.
1<i<j<h
The disjointness of T} yields >, T;NT; C &(L). Conversely, the Kobayashi
1<i<j<h

hyperbolicity of B/I" requires card(L; N T") > 2 forall 1 < j < s. However,
card(L; NT}) < 1 by the smoothness of T; = £(77), so that there exist at least
two 77/ # T with card(L; NT}) = card(L; NT}) = 1. In other words, the point
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&(L;) € T; NTy,. That verifies the inclusion {(L) € Y~ T;N T}, whereas the
1<i<j<h
coincidence (L) = > T;N7Tj.
1<i<j<h
iii) If 7; N &(L) = 0 then the intersection numbers (77)? = T7? coincide. By the
Adjunction Formula

0=—e(Ty) =T} + Ko T; =T} + O T, = T7

so that (77 )2 = 0. That contradicts the contractibility of 7, 7 to the corresponding
cusp of B/T and justifies T; N T8 #£ () forall 1 < i < h.
Note that {|pn 7, = Id |png « T7 \ L — T\ (L) is bijective. In order to define
&L T, NE(L) — T! N L, let us recall that for any p € £(L) the smooth rational
curve £~ 1(p) has card(£ 71 (p) NTY) < 1. More precisely, card(§ 1 (p)NT)) = 1
if and only if p € Tj, so that for any p € T; N &(L) there is a unique point
{q(p)} = T! N €~ *(p). That provides a regular morphism £ ~1(p) = ¢(p) for all
p € T;NE(L).

|

According to Lemma 3, the image T = £(T") of the toroidal compactifying divi-
sorT" = (B/T)"\(B/T) under the blow-down ¢ : (B/T')" — A of the (—1)-curves
h
is a multi-elliptic divisor, i.e., 7' = > T; has smooth elliptic irreducible compo-
i=1
nents 7;, which intersect transversally. Note also that (A, T") determines uniquely
(B/T)" as the blow-up of A at T8,

Definition 4. A pair (A, T) of an abelian surface A and a divisor T C A is
an abelian ball quotient model if there exists a torsion free toroidal ball quotient
compactification (B/T')', such that the blow-down & : (B/T)" — A of the (—1)-
curves on (B/T) maps the pair (B/T)",T' = (B/T)"\ (B/T)) onto (A,T).

The next lemma explains the construction of non-compact ball quotients, which
are finite Galois quotients of torsion free non-compact B/T", birational to abelian
surfaces.

Lemma5. Let A’ = (B/T) = (B/I') UT' be a torsion free ball quotient com-
pactification by a toroidal divisor T', £ : A" — A be the blow-down of the (—1)-
curves on A’ to the abelian minimal model A and T = £(T"). Then

) Aut(A,T) = Aut(A’, T") is a finite group
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i) any subgroup H C Aut(A,T) lifts to a ball lattice T g, such that T is a
normal subgroup of T with quotient group Ty /T = H and B/Ty is a
non-compact ball quotient, birational to X = A/H.

Moreover, if X = A/ H is a smooth surface then B/T i is a smooth ball quotient.

Proof: i) If G = Aut(A, T'), then Lemma 3 ii) implies the G-invariance of {(L).
By the means of an arbitrary automorphism of the smooth projective line P!, one
extends the G-action to L and, therefore, to

A= (A\L)UL = (A\ &L)) UL

h
The G-invariance of 7/ = ) T follows from Lemma 3 iii). That justifies the
i=1
inclusion G C Aut(A’,T"). For the opposite inclusion, note that the union L of
the (—1)-curves is invariant under an arbitrary automorphism of A’. As a result,

there arises a G-action on {(L) and A = (A \ £(L))UE(L) = (A" \ L) UE(L).
h
The multi-elliptic divisor 7' = > T; is G-invariant according to Lemma 3 iii).

i=1
Consequently, Aut(A’, T") C G, whereas G = Aut(A’, T").

In order to show that G is finite, let us consider the natural representation

¢ :G— Sym(Ty,...,T)) ~ Sym,,

in the permutation group of the irreducible components 7; of T'. It suffices to
prove that the kernel kery is finite, in order to assert that GG is finite. For any
g = Tpgo € kerp C Aut(A) with linear part g, € GL2(C) and translation part
Tp, D € A, we show that g, and 7, take finitely many values. Note that the identical
inclusions T; C A are morphisms of abelian varieties. Thus, for any choice of an
origin 64 € T; there is a C-linear embedding &; : ﬁ = C < C2 = A of the
corresponding universal covers. If £;(1) = (a;, b;) then

T, = Eai:bi = {(ait, bit)(modm(A)) ;T € (C} C A.

If the origin 64 ¢ T;, then for any point (P;, Q;) € T; the elliptic curve T; =
Eq, b, + (Pi,Q;). In either case, all v; = (a;, b;) are eigenvectors of the linear
part g, of g = 7,9, € keryp. We claim that there are at least three pairwise non-
proportional v;. Indeed, if all v; were parallel, then 7°"8 = (), which contradicts
T; NT¥"& £ () for 1 < 5 < h by Lemma 3 iii). Suppose that among v1, ..., vy
there are two non-parallel and all other v; are proportional to one of them. Then
after an eventual permutation there is 1 < k& < h — 1, such that vy, vy are linearly
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independent, v; = p;vp for p; € C, 2 < ¢ < k and v; = pvgpyq for p; €
C, k 4+ 2 < ¢ < h. Holzapfel has proved in [9] that any abelian ball quotient

h . .
model (A, T) is subject to Y card(T; NT™"8) = 4card(7"™¢). In the case under

i=1
consideration
kK h
card (T®"8) Z Z card(T; N'T})
i=1 j=k+1
. h
card(T; NT*™8) = Y card(T;NT;) for 1<i<k and
j=k+1
. k
card(T; NT™"8) = anrd(Ti NT;) for k+1<j<h.
i=1

h

Therefore Y~ card(T; N T518) = 2card(T5"8) # 4card(T"2) and there are at
least three Zp;irwise non-proportional eigenvectors vy, ve, vs of g,. Let \; be the
corresponding eigenvalues of v; and v3 = p1v1+ p2ve for some p1, po € C*. Then
A3v3 = go(vg) = ,01)\11)1 + p2/\2v2 implies that A1 = A3 = Ay and g, = Aolo
is a scalar matrix. On the other hand, ¢(T;) = go(T;) + p = T; forall 1 <
1 < h, so that g, permutes among themselves the parallel elliptic curves among
T1,...,Tx. Since T; are finitely many, there is a natural number m, such that
gt € kergo Therefore Ayt € End(T;) and A\;™ € End(T;) forall 1 < i < h,
due to (g™)~! = g;™ € kerp. Recall that the units group End*(T}) = Z* =
{£1} for T; without a complex multiplication. If the elliptic curve T; has complex
multiplication by an imaginary quadratic number field Q(v/—d), d € N, then
End(T;) is a subring of the integers ring O_y of Q(v/—d). The units groups
O, = (i), 04 = (e ¢ ), and O* ; = (—1) for all d # 1,3 are finite cyclic
groups. As a subgroup of O* ,, the units group End*(7}) is a finite cyclic group.
Therefore \)' € End*(7;) and g, = A\,I> take finitely many values.

Concerning the translation part 7, of g € keryp, one can always move the origin
6.4 of A at one of the singular points of 7". Due to the G-invariance of T8, there
follows g(64) = Tpg0(0a) = Tp(64) = p € T™"8. Therefore p takes finitely
many values and kery is finite.

ii) Since I" € SU(2, 1) is a torsion free lattice, any subgroup H of

G = Aut(4, T') C Aut(A'\ T’) = Aut (B/T)
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lifts to a subgroup I'yy C Aut(B) = SU(2, 1), which normalizes I" and has quo-
tient 'y /T = H. We claim that 'y is discrete. Indeed, 'y = Ui?:l%-F is a
finite disjoint union of cosets, relative to I'. Suppose that 'z is not discrete and
there is a sequence {vy, }22; C I'y with a limit point v, € ;, I'. Then pass to a
subsequence {Vm,, }>q C 73,1, converging to v,. As aresult {v; Y, 322, T
converges to vy, 'y, € I and contradicts the discreteness of I'. Thus, I'yy D T is
discrete and, therefore, a ball lattice. Straightforwardly,

A'/H = [(B/T) /Ty /T)| U (T'/H) = (B/Ty) U (T'/H) = (B/Tx)

is the compactification of the ball quotient B/T"j; by the divisor 7"/H. The H-
Galois covers (i : A — A/H and (j; : A’ — (B/T'y) fit in a commutative
diagram

A 3

A/
Cu ¢

€y —

A/H ~——— (B/Ty)

with the contraction {7 of L/H to {(L)/H.

Note that X = A/H is smooth exactly when H has no isolated fixed points on
A. The blow-up £ : A" — A replaces an arbitrary p; = §(L;) with stabilizer
Stabg (pj) by a smooth rational curve L; with Staby(q) = Stabgy(p;) for all
q € Lj. Therefore the blow-up & does not create isolated H-fixed points on A’

and A’/H = (B/T'y) is a smooth compactification. Its open subset B/T'j; is
smooth.

3. Explicit Constructions

The present section applies Lemma 5 to a specific abelian ball quotient model
over the Gauss numbers Q(i), in order to provide ball quotient compactifications,
which are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic
base.

Theorem 6 (Holzapfel [9]) . Let us consider the elliptic curve E_1 = C/(Z+i7Z)
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with complex multiplication by the Gauss numbers Q(i), its two-torsion points

. 1 . .
Qo = 0(mod Z +iZ), Q1:§(modZ+1Z), Q2 =1Q1, Q3=Q1+ Q2
the abelian surface A_1 = E_1 x FE_1, the points

Qij = (Qi,Qj) € Az_tor C A

8
and the divisor T£61’8) = > T; with smooth elliptic irreducible components
i=1

Tk = Eik’1 for 1 S k S 4
Tm+4 = Qm X E—17 Tm+6 =FE_1 X Qm fO}" 1<m<2.

Then (A_l, T£61’8)) is an abelian model of an arithmetic ball quotient B/ F(_Gis),
defined over Q(i).

Corollary 7 (Holzapfel [9]) .

i) In the notations from Theorem 6, the multiplications I = < (1) (1) >, J =

( é (1) > byi € Z[i] = End(E_1) on the first, respectively, the second

elliptic factor E_1 of A_1 are automorphisms of <A_1, T(61’8)>.

i) If I‘g?fll is the ball lattice, containing F(_Gig)

quotient Fg?éSll/F(f;ig) = (- = 12J2> C Aut (A_l,T£61’8)), then the

as a normal subgroup with

ball quotient B/ F(I?’gs)_l is birational to the Kummer surface X i3 of A_.

iii) If Fgﬁll is the ball lattice, containing I‘(_Gig) as a normal subgroup with

quotient Fgﬁ)il/lj(_ﬁf) = (I,J) C Aut (A_l, T(Gfs)), then the ball quo-

tient B/ Fggﬁ)_l is a rational surface.

The entire automorphism group GG (_6i8) = Aut (A_l, T£61’8)> is described in the

next lemma.
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Lemma 8. In the notations from Theorem 6, the group G(_Gig) =Aut (A_l, T£61’8)

. i 0 10 . 0 1
is generated by I = < 0 1 ), J = < 0 i >,thetransp0sztwn0 = ( 1 0 )

of the elliptic factors E_1 of A_1 and the translation 133 by QQ33. The aforemen-
tioned generators are subject to the relations

I'=1d, J'=1d, ¢*=1d, 75=1d, I[J=JI
0 =JO, 0J =10, Irs3=m33l, Jr33=m133J, 07133 = 1330.
and G(_6:’18) is of order 64.

Proof:

Any g € G’(fig) leaves invariant

. 2 2
(T£61’8)>Slng = Z LiNT; = Z Z Qmn + Qoo + Qs33.
1<i<j<8 m=1n=1

Thus, g(T;) = Tj implies s; = card(T; N T58) = card(T; N T5"8) = s,
according to the bijectiveness of g. In the case under consideration, s; = sy =
s3 = 84 = 4 and s5 = s = sy = sg = 2, so that G(_Gis) permutes separately
T1,...,Tyand Ty, . .., Tg. In particular, the intersection ﬂleTi ={Qoo,Q33} is
G(_ﬁiB) -invariant and any g = 77,190 € G(_6:’18) transforms the origin 64 _, = Qoo
into g(04_,) = (U1,U2) € {Qoo,Q33}. Straightforwardly, 733(7;) = T; for
1 < i < 4and 7m33(Tht2n) = Ts—myon for 1 < m < 2, 2 < n < 3imply
that 733 € G(f‘is). Therefore G(fig) is generated by G(fig) N GLe(End(E_4)) =
G(_Gig) N GL2(Z]i]) and 733. Note that § € Aut(A_;) acts on TSGI’S) and induces
the permutation (77, 73)(T5, T%) (16, T3) of its irreducible components. Therefore

RS G(_ﬁis) and (I, J, 0) is a subgroup of G_6i8) N GL2(Z[i]). On the other hand,

any g = ( ’O; g > € G&ﬁig) N GLy(Z[i]) acts on T5, . .., Tg and, therefore, on

the set {ﬁ = Té =0 x C, T; = T\g = C x 0} of the corresponding universal
covers. If g(0 x C) = 0 x C, g(Cx0) = C x 0then § = v = 0, so that
a,0 € End(E_;) = Z[i] and det(g) = ad € End*(E_;) = (i) = C4 imply
g = I*J! forsome 0 < k, I < 3. Similarly, for g(0xC) = Cx0, g(Cx0) = 0xC
one has a = 0 = 0, whereas 3,7 € Z[i], By € Z[i]* = (i) and g = I*J'9 for
some 0 < k,l < 3. Consequently, G(618) N GLy(Z[i]) = (I, J,0) and G(ff) =

(1,J,0,733). The announced relations among 733, I, J, # imply that

GOY = (71T 0< k1<3, 0<m,n<1)
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1s of order 64.
[ |

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us
consider the subgroups Hyp = (133J%), Hpne = (—1Iz,7331%), Hru = (J?)
of G(S’8 Aut <A ., T ( )> their liftings FgES)il, anf)fl’ st) 1 to ball
lattices and the blow-up A of A_1 at the two-torsion points Ao_tor. Then

i) B/ Fgg?_l is a smooth ball quotient, birational to the smooth hyperelliptic
surface A_1/Hpyg

ii) B/ FE?nf)—l is a ball quotient with one double point Orb g, (Qo3), which is
birational to the smooth Enriques surface Am /Henr

iii) B/ FRGU?) 1 is a smooth ball quotient, birational to the smooth trivial ruled
surface A_1/Hrny = E_1 X P! with an elliptic base E_1.

Proof: i) Recall that the Z-module 71 (E_;) = Z+iZ = Z+(1+1)Z is generated
by 1,1 +iand Q3 = 1 (modm(E_1)). The translation 7, : E_y — E_1 is
of order 2, as well as the morphism

TQs(—1): E_y — E_

7Qs(=1)(P) = =P + Q3

with four fixed points

1 .
*Q3+( 1)2— tor:§Q3+{Qi;0§Z§3}-
According to [5], the quotient A_; /Hp g by the cyclic group

HHE = <TQ3 X TQ3(—1)>

(6 8)
of order 2 is a smooth hyperelliptic surface. Lemma 5 ii) implies that B/ F 1

is a smooth ball quotient, birational to A_1/Hpyp.

ii) The quotient X jc3 = As——/(—1I2) is a smooth K3 surface, called the Kummer
surface of A_;. We claim that the involution 73312 acts on As— - and determines
an unramified double cover

C : XKg = Am/<—[g> - Am/(—IQ,T3312> = Am/HEnr-



Weak Form of Holzapfel’s Conjecture 39

More precisely, 3312 = 7Q4(—1) X 7, leaves invariant the two-torsion points
As_tor = {Qi; ; 0 < 4,7 < 3} and any choice of an automorphism of P! extends
73312 to an automorphism of A5~ Note that T331%(—1I3) = (—1I3)73312, so that
73312 normalizes (—I,) and there is a well defined quotient group Hp, /(—12) =
(1331%) of order 2. That allows to define ¢ : Xg3 — Ay—=/Hgn as an

Hgn: /(—12)-Galois cover. We claim that 73312 is a fixed point free involution
on X3, in order to conclude that A / Hg,, is a smooth Enriques surface.

More precisely, the fixed points of 7'33] 2 on the set X3 of the (—I2)-orbits on
As—— lift to e-fixed points of 733/ 2 on As—— for e = +1. The e-fixed points
(P, Q) € A_; are subject to

—P+Q3 = €P
Q+Qs — Q.

For ¢ = 1 the equality @ + Q3 = @ has no solution () € E_1, while fore = —1
the equation —P 4+ Q3 = —P on P € E_; is inconsistent. Therefore 73312 has

no e-fixed points on A_;. By the very definition of the 733/%-action on As—,

there are no e-fixed points for 73372 on As——and T330% + X5 — X is a fixed
point free involution. As a result, A;—— / H Em is a smooth Enriques surface.

Recall that the exceptional divisor gQ_—Itor(A2—t0r) of the blow-up

f2—tor A — A

2—tor

of A_y at Ay o is Hppe-invariant, so that £s_o descends to the contraction

E2—tor : Am/HEnr - A—l/HEnr of fgjtor(AQ—tor)/HEnr to A2—tor/HEnr-
In particular, the smooth Enriques surface Am /Hgny is birational to A_1 / Hgy,.

The singular locus (A_1/ HEnr)sing C (As_tor/Hgnr ), according to the smooth-
ness of A / Hpyr. On the other hand, 73312 has no fixed points on As_oy, SO
that Ao_ior / H Enr consists of eight double points

OrbHEnr (QZ]) = OrbHEnr (Q3_7»73_])7 0 S 27.7 S 3
and (A,l/HEm)Sing = Ao_tor/Hgnr- Note that

sing
(T£6£8)) = {OrbHEnr (QOO)) OrbHEnr (Q11)7 OrbHEnr (Q12)}

is contained in (A_1/ HEM)Si’[1g and the birational morphism
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sing
resolves (Tg’s)) by smooth rational curves of self-intersection (—2). There-

_______\ sing
fore <]B / FE?nf) > consists of the following five double points:

OrbHEnr (QOI ) ? OrbHEnr (Qlo) ? OrbHEnr (Q02)7 OrbHEnr (Q20)7 OrbHEnr (QOB)

Since

OI‘bHEm (QO,m) S |: m—+6 \ ( © 8))Sing:| /HEnr = (T;n—l—fi \ L) /HEnr

OrbHEnr (Qm,()) € |:Tm+4 \ ( 6 8)) :| /HEHY = (T7In+4 \ L) /HEIH

for all 1 < m < 2 belong to the compactifying divisor 7"/ Hgy,, the ball quotient
(6,8) . .
B/ I'kpr,—1 has only one singular point

(B/ani)q)smg = {Orbpy,, (Qo3)}

iii) The quotient X = A_/Hgry = E_1 X [E_1/((—1))] of A_; by the reflec-
tion J2 = 1 x (—1) is a smooth surface, birational to the smooth ball quotient

IB%/I‘(6 #) It is well known that C' = E_;/(—1) is a smooth projective curve.
More precisely, if

1 1 1
=t ¥ |y
Ae(Z+iZ)\{0}

is the Weierstrass p-function, associated with the lattice Z + iZ = 71 (E_1), then
the map

¢:Ea\{op,} — P
VE+(Z+i2) = [1:p(t+ (Z+iZ)) :p'(t + (Z+iZ)] = [1:p(t) : p'(t)]

extends by (0g_,) = [0 : 0 : 1] = ps to a projective embedding of E_;. The
image

V(E) ={[z 2yl €P?; 2y® = (x — p(Q1))(z — p(Q2))(= —p(Q3)) }

is a cubic hypersurface in P2. As far as p(t) is even and p’(t) is an odd function
of ¢, the multiplication ;1 by —1 on E_; acts on t)(F_1) by the rule

pi(fzraiy)) =[zr2: -yl
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The fixed points of this action are p, and p(Q;) for 1 < ¢ < 3. The fibres of the
projection

I p(E_1) \ {poc} — P!\ {goo = [0: 1]}
M([z:z:y]) =[z: 7]

are exactly the p_j-orbits on ¢(E_1) \ {poo} SO that its image

P\ {goo} = TL($(B-1) \ {ps}) = (¥(E-1) \ {poc})/ (11-1)

is the corresponding Galois quotient by the cyclic group (p—1) of order 2. Thus,

Y(E-1)/{p=1) = ((E-1)\{Poc})/ (1=1) U{Poc} = (B \ {goc}) U{po} = P.
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