Geometry and Symmetry in Physics

WEAK FORM OF HOLZAPFEL'S CONJECTURE

AZNIV KASPARIAN AND BORIS KOTZEV

Communicated by Vasil V. Tsanov

Abstract. Let $\mathbb{B} \subset \mathbb{C}^2$ be the unit ball and Γ be a lattice of SU(2,1). Bearing in mind that all compact Riemann surfaces are discrete quotients of the unit disc $\Delta \subset \mathbb{C}$, Holzapfel conjectures that the discrete ball quotients \mathbb{B}/Γ and their compactifications are widely spread among the smooth projective surfaces. There are known ball quotients \mathbb{B}/Γ of general type, as well as rational, abelian, K3 and elliptic ones. The present note constructs three non-compact ball quotients, which are birational, respectively, to a hyperelliptic, Enriques or a ruled surface with an elliptic base. As a result, we establish that the ball quotient surfaces have representatives in any of the eight Enriques classification classes of smooth projective surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a philosophy that "... up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients." By a complex algebraic surface is meant a smooth projective surface over C. These have smooth minimal models, which are classified by Enriques in eight types - rational, ruled of genus > 1, abelian, hyperelliptic, K3, Enriques, elliptic and of general type. The compact torsion free ball quotients \mathbb{B}/Γ are smooth minimal surfaces of general type. Ishida [10], Keum [11, 12] and Dzambic [1] obtain elliptic surfaces, which are minimal resolutions of the isolated cyclic quotient singularities of compact ball quotients. Hirzebruch [2] and then Holzapfel [3], [7], [9] have constructed torsion free ball quotient compactifications with abelian minimal models. In [9] Holzapfel provides a ball quotient compactification, which is birational to the Kummer surface of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient surfaces are explicitly recognized and studied in [6], [8]. The present work constructs smooth ball quotients with a hyperelliptic or, respectively, a ruled model with an elliptic base. It provides also a ball quotient with one double point, which is birational to an Enriques surface. All of them are finite Galois quotients of a non-compact torsion free $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, constructed by Holzapfel in [9] and having abelian minimal model of the toroidal compactification. As a result, we establish the following

Theorem 1 (Weak Form of Holzapfel's Conjecture). Any of the eight Enriques classification classes of complex projective surfaces contains a ball quotient surface.

2. Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex two-ball

$$\mathbb{B} = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 < 1\} = SU(2, 1)/S(U(2) \times U(1))$$

is an irreducible non-compact Hermitian symmetric space. The discrete biholomorphism groups $\Gamma \subset \mathrm{SU}(2,1)$ of $\mathbb B$, whose quotients $\mathbb B/\Gamma$ have finite $\mathrm{SU}(2,1)$ -invariant measure are called ball lattices. The present section studies the image T of the toroidal compactifying divisor $T' = (\mathbb B/\Gamma)' \setminus (\mathbb B/\Gamma)$ on the minimal model A of $(\mathbb B/\Gamma)'$, whenever A is an abelian surface. It establishes that for any subgroup $H \subseteq \mathrm{Aut}(A,T)$ there is a ball quotient $\mathbb B/\Gamma_H$, birational to A/H.

Lemma 2. If a ball quotient \mathbb{B}/Γ is birational to an abelian surface A then \mathbb{B}/Γ is smooth and non-compact.

Proof: Assume that \mathbb{B}/Γ is singular. For a compact \mathbb{B}/Γ set $U=\mathbb{B}/\Gamma$. If \mathbb{B}/Γ is non-compact, let $U=(\mathbb{B}/\Gamma)'$ be the toroidal compactification of \mathbb{B}/Γ . In either case U is a compact surface with isolated cyclic quotient singularities. Consider the minimal resolution $\varphi:Y\to U$ of $p_i\in U^{\mathrm{sing}}$ by Hirzebruch-Jung strings $E_i=\sum_{t=1}^{\nu_i}E_i^t$. The irreducible components E_i^t of E_i are smooth rational curves of self-intersection $(E_i^t)^2\leq -2$. The birational morphism $Y\dashrightarrow A$ transforms E_i^t onto rational curves on A. It suffices to observe that an abelian surface A does not support rational curves C, in order to conclude that \mathbb{B}/Γ is smooth. The compact smooth ball quotients are known to be of general type, so that \mathbb{B}/Γ is to be non-compact.

Assume that there is a rational curve $C \subset A$. Its desingularization $f: \widetilde{C} \to C$ can be viewed as a holomorphic map $F: \widetilde{C} \to A$. Homotopy lifting property applies to F and provides a holomorphic immersion $\widetilde{F}: \widetilde{C} \to \widetilde{A} = \mathbb{C}^2$ in the universal cover \widetilde{A} of A, due to simply connectedness of the smooth rational curve

 \widetilde{C} . Its image $\widetilde{F}(\widetilde{C})$ is a compact complex-analytic subvariety of \mathbb{C}^2 , which maps to compact complex-analytic subvarieties $\operatorname{pr}_i(\widetilde{F}(\widetilde{C})) \subset \mathbb{C}$ by the canonical projections $\operatorname{pr}_i: \mathbb{C}^2 \to \mathbb{C}, \ 1 \leq i \leq 2$. Thus, $\operatorname{pr}_i(\widetilde{F}(\widetilde{C}))$ and, therefore, $\widetilde{F}(\widetilde{C})$ are finite. The contradiction justifies the non-existence of rational curves on A.

The next lemma lists some immediate properties of the image T of the toroidal compactifying divisor T' of $A' = (\mathbb{B}/\Gamma)'$ on its abelian minimal model A.

Lemma 3. Let $A' = (\mathbb{B}/\Gamma)'$ be a smooth toroidal ball quotient compactification, $\xi: A' \to A$ be the blow-down of the (-1)-curves $L = \sum_{j=1}^{s} L_j$ on A' to an abelian surface A and T'_i , $1 \le i \le h$ be the disjoint smooth elliptic irreducible components of the toroidal compactifying divisor $T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma)$. Then

i) $T_i = \xi(T_i')$ are smooth irreducible elliptic curves on A

ii)
$$T^{\text{sing}} = \sum_{1 \le i \le j \le h} T_i \cap T_j = \xi(L)$$

iii) $T_i \cap T^{\text{sing}} \neq \emptyset$ and the restrictions $\xi : T_i' \to T_i$ are bijective for all $1 \leq i \leq h$.

Proof: i) According to the birational invariance of the genus, the curves $T_i = \xi(T_i')$ have smooth elliptic desingularizations. It suffices to show that any curve $C \subset A$ of genus one is smooth. If C is singular then its desingularization \widetilde{C} is a smooth elliptic curve. Therefore, the composition $\widetilde{C} \to C \hookrightarrow A$ of the desingularization map with the identical inclusion of C is a morphism of abelian varieties. In particular, it is unramified, which is not the case for $\widetilde{C} \to C$. Therefore any curve $C \subset A$ of genus one is smooth.

ii) The inclusion $T^{\mathrm{sing}}\subseteq\sum_{1\leq i< j\leq h}T_i\cap T_j$ follows from i). For the opposite inclusion, note that $\xi|_{A'\setminus L}=\mathrm{Id}_{(A'\setminus L)}:A'\setminus L\to A\setminus \xi(L)$ guarantees $T_i=\xi(T_i')\neq \xi(T_j')=T_j$ and different elliptic curves on an abelian surface intersect transversally at any of their intersection points. Thus, $T^{\mathrm{sing}}=\sum_{1\leq i< j\leq h}T_i\cap T_j.$ The disjointness of T_i' yields $\sum_{1\leq i< j\leq h}T_i\cap T_j\subseteq \xi(L)$. Conversely, the Kobayashi

The disjointness of T_i' yields $\sum_{1 \leq i < j \leq h} T_i \cap T_j \subseteq \xi(L)$. Conversely, the Kobayashi hyperbolicity of \mathbb{B}/Γ requires $\operatorname{card}(L_j \cap T') \geq 2$ for all $1 \leq j \leq s$. However, $\operatorname{card}(L_j \cap T_i') \leq 1$ by the smoothness of $T_i = \xi(T_i')$, so that there exist at least

two $T_i' \neq T_k'$ with $\operatorname{card}(L_i \cap T_i') = \operatorname{card}(L_i \cap T_k') = 1$. In other words, the point

 $\xi(L_j) \in T_i \cap T_k$. That verifies the inclusion $\xi(L) \subseteq \sum_{1 \le i < j \le h} T_i \cap T_j$, whereas the coincidence $\xi(L) = \sum_{1 \le i < j \le h} T_i \cap T_j$.

iii) If $T_i \cap \xi(L) = \emptyset$ then the intersection numbers $(T_i')^2 = T_i^2$ coincide. By the Adjunction Formula

$$0 = -e(T_i) = T_i^2 + K_A \cdot T_i = T_i^2 + \mathcal{O}_A \cdot T_i = T_i^2$$

so that $(T_i')^2 = 0$. That contradicts the contractibility of T_i' to the corresponding cusp of \mathbb{B}/Γ and justifies $T_i \cap T^{\mathrm{sing}} \neq \emptyset$ for all $1 \leq i \leq h$.

Note that $\xi|_{T_i'\setminus L}=\operatorname{Id}|_{T_i'\setminus L}:T_i'\setminus L\to T_i\setminus \xi(L)$ is bijective. In order to define $\xi^{-1}:T_i\cap \xi(L)\to T_i'\cap L$, let us recall that for any $p\in \xi(L)$ the smooth rational curve $\xi^{-1}(p)$ has $\operatorname{card}(\xi^{-1}(p)\cap T_i')\leq 1$. More precisely, $\operatorname{card}(\xi^{-1}(p)\cap T_i')=1$ if and only if $p\in T_i$, so that for any $p\in T_i\cap \xi(L)$ there is a unique point $\{q(p)\}=T_i'\cap \xi^{-1}(p)$. That provides a regular morphism $\xi^{-1}(p)=q(p)$ for all $p\in T_i\cap \xi(L)$.

According to Lemma 3, the image $T=\xi(T')$ of the toroidal compactifying divisor $T'=(\mathbb{B}/\Gamma)'\backslash(\mathbb{B}/\Gamma)$ under the blow-down $\xi:(\mathbb{B}/\Gamma)'\to A$ of the (-1)-curves is a multi-elliptic divisor, i.e., $T=\sum\limits_{i=1}^h T_i$ has smooth elliptic irreducible components T_i , which intersect transversally. Note also that (A,T) determines uniquely $(\mathbb{B}/\Gamma)'$ as the blow-up of A at T^{sing} .

Definition 4. A pair (A,T) of an abelian surface A and a divisor $T \subset A$ is an abelian ball quotient model if there exists a torsion free toroidal ball quotient compactification $(\mathbb{B}/\Gamma)'$, such that the blow-down $\xi: (\mathbb{B}/\Gamma)' \to A$ of the (-1)-curves on $(\mathbb{B}/\Gamma)'$ maps the pair $((\mathbb{B}/\Gamma)', T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma))$ onto (A,T).

The next lemma explains the construction of non-compact ball quotients, which are finite Galois quotients of torsion free non-compact \mathbb{B}/Γ , birational to abelian surfaces.

Lemma 5. Let $A' = (\mathbb{B}/\Gamma)' = (\mathbb{B}/\Gamma) \cup T'$ be a torsion free ball quotient compactification by a toroidal divisor T', $\xi : A' \to A$ be the blow-down of the (-1)-curves on A' to the abelian minimal model A and $T = \xi(T')$. Then

i)
$$Aut(A, T) = Aut(A', T')$$
 is a finite group

ii) any subgroup $H \subseteq \operatorname{Aut}(A,T)$ lifts to a ball lattice Γ_H , such that Γ is a normal subgroup of Γ_H with quotient group $\Gamma_H/\Gamma = H$ and \mathbb{B}/Γ_H is a non-compact ball quotient, birational to X = A/H.

Moreover, if X = A/H is a smooth surface then \mathbb{B}/Γ_H is a smooth ball quotient.

Proof: i) If $G = \operatorname{Aut}(A, T)$, then Lemma 3 ii) implies the G-invariance of $\xi(L)$. By the means of an arbitrary automorphism of the smooth projective line \mathbb{P}^1 , one extends the G-action to L and, therefore, to

$$A' = (A' \setminus L) \cup L = (A \setminus \xi(L)) \cup L.$$

The G-invariance of $T' = \sum_{i=1}^h T_i'$ follows from Lemma 3 iii). That justifies the inclusion $G \subseteq \operatorname{Aut}(A',T')$. For the opposite inclusion, note that the union L of the (-1)-curves is invariant under an arbitrary automorphism of A'. As a result, there arises a G-action on $\xi(L)$ and $A = (A \setminus \xi(L)) \cup \xi(L) = (A' \setminus L) \cup \xi(L)$.

The multi-elliptic divisor $T = \sum_{i=1}^{h} T_i$ is G-invariant according to Lemma 3 iii).

Consequently, $\operatorname{Aut}(A', T') \subseteq G$, whereas $G = \operatorname{Aut}(A', T')$.

In order to show that G is finite, let us consider the natural representation

$$\varphi: G \longrightarrow \operatorname{Sym}(T_1, \dots, T_h) \simeq \operatorname{Sym}_h$$

in the permutation group of the irreducible components T_i of T. It suffices to prove that the kernel $\ker \varphi$ is finite, in order to assert that G is finite. For any $g = \tau_p g_o \in \ker \varphi \subset \operatorname{Aut}(A)$ with linear part $g_o \in \operatorname{GL}_2(\mathbb{C})$ and translation part $\tau_p, p \in A$, we show that g_o and τ_p take finitely many values. Note that the identical inclusions $T_i \subset A$ are morphisms of abelian varieties. Thus, for any choice of an origin $\check{o}_A \in T_i$ there is a \mathbb{C} -linear embedding $\mathcal{E}_i : \widetilde{T}_i = \mathbb{C} \hookrightarrow \mathbb{C}^2 = \widetilde{A}$ of the corresponding universal covers. If $\mathcal{E}_i(1) = (a_i, b_i)$ then

$$T_i = E_{a_i,b_i} = \{(a_i t, b_i t) (\text{mod } \pi_1(A)) ; t \in \mathbb{C}\} \subset A.$$

If the origin $\check{o}_A \not\in T_i$, then for any point $(P_i,Q_i) \in T_i$ the elliptic curve $T_i = E_{a_i,b_i} + (P_i,Q_i)$. In either case, all $v_i = (a_i,b_i)$ are eigenvectors of the linear part g_o of $g = \tau_p g_o \in \ker \varphi$. We claim that there are at least three pairwise non-proportional v_i . Indeed, if all v_i were parallel, then $T^{\mathrm{sing}} = \emptyset$, which contradicts $T_i \cap T^{\mathrm{sing}} \neq \emptyset$ for $1 \leq i \leq h$ by Lemma 3 iii). Suppose that among v_1, \ldots, v_h there are two non-parallel and all other v_i are proportional to one of them. Then after an eventual permutation there is $1 \leq k \leq h-1$, such that v_i, v_k are linearly

independent, $v_i = \mu_i v_1$ for $\mu_i \in \mathbb{C}$, $2 \leq i \leq k$ and $v_i = \mu_i v_{k+1}$ for $\mu_i \in \mathbb{C}$, $k+2 \leq i \leq h$. Holzapfel has proved in [9] that any abelian ball quotient model (A,T) is subject to $\sum\limits_{i=1}^h \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = 4\operatorname{card}(T^{\operatorname{sing}})$. In the case under consideration

$$\operatorname{card}(T^{\operatorname{sing}}) = \sum_{i=1}^{k} \sum_{j=k+1}^{h} \operatorname{card}(T_i \cap T_j)$$

$$\operatorname{card}(T_i \cap T^{\operatorname{sing}}) = \sum_{j=k+1}^h \operatorname{card}(T_i \cap T_j)$$
 for $1 \le i \le k$ and

$$\operatorname{card}(T_j \cap T^{\operatorname{sing}}) = \sum_{i=1}^k \operatorname{card}(T_i \cap T_j) \quad \text{ for } \quad k+1 \le j \le h.$$

Therefore $\sum\limits_{i=1}^h \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = 2\operatorname{card}(T^{\operatorname{sing}}) \neq 4\operatorname{card}(T^{\operatorname{sing}})$ and there are at least three pairwise non-proportional eigenvectors v_1, v_2, v_3 of g_o . Let λ_i be the corresponding eigenvalues of v_i and $v_3 = \rho_1 v_1 + \rho_2 v_2$ for some $\rho_1, \rho_2 \in \mathbb{C}^*$. Then $\lambda_3 v_3 = g_o(v_3) = \rho_1 \lambda_1 v_1 + \rho_2 \lambda_2 v_2$ implies that $\lambda_1 = \lambda_3 = \lambda_2$ and $g_o = \lambda_o I_2$ is a scalar matrix. On the other hand, $g(T_i) = g_o(T_i) + p = T_i$ for all $1 \leq i \leq h$, so that g_o permutes among themselves the parallel elliptic curves among T_1, \ldots, T_h . Since T_i are finitely many, there is a natural number m, such that $g_o^m \in \ker \varphi$. Therefore, $\lambda_o^m \in \operatorname{End}(T_i)$ and $\lambda_o^{-m} \in \operatorname{End}(T_i)$ for all $1 \leq i \leq h$, due to $(g_o^m)^{-1} = g_o^{-m} \in \ker \varphi$. Recall that the units group $\operatorname{End}^*(T_i) = \mathbb{Z}^* = \{\pm 1\}$ for T_i without a complex multiplication. If the elliptic curve T_i has complex multiplication by an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$, $d \in \mathbb{N}$, then $\operatorname{End}(T_i)$ is a subring of the integers ring \mathcal{O}_{-d} of $\mathbb{Q}(\sqrt{-d})$. The units groups $\mathcal{O}_{-1}^* = \langle \mathrm{i} \rangle$, $\mathcal{O}_{-3}^* = \langle \mathrm{e}^{\frac{2\pi i}{6}} \rangle$, and $\mathcal{O}_{-d}^* = \langle -1 \rangle$ for all $d \neq 1, 3$ are finite cyclic groups. As a subgroup of \mathcal{O}_{-d}^* , the units group $\operatorname{End}^*(T_i)$ is a finite cyclic group. Therefore $\lambda_o^m \in \operatorname{End}^*(T_i)$ and $g_o = \lambda_o I_2$ take finitely many values.

Concerning the translation part τ_p of $g \in \ker \varphi$, one can always move the origin \check{o}_A of A at one of the singular points of T. Due to the G-invariance of T^{sing} , there follows $g(\check{o}_A) = \tau_p g_o(\check{o}_a) = \tau_p(\check{o}_A) = p \in T^{\mathrm{sing}}$. Therefore p takes finitely many values and $\ker \varphi$ is finite.

ii) Since $\Gamma \subset \mathrm{SU}(2,1)$ is a torsion free lattice, any subgroup H of

$$G = \operatorname{Aut}(A', T') \subseteq \operatorname{Aut}(A' \setminus T') = \operatorname{Aut}(\mathbb{B}/\Gamma)$$

lifts to a subgroup $\Gamma_H \subset \operatorname{Aut}(\mathbb{B}) = \operatorname{SU}(2,1)$, which normalizes Γ and has quotient $\Gamma_H/\Gamma = H$. We claim that Γ_H is discrete. Indeed, $\Gamma_H = \bigcup_{i=1}^k \gamma_i \Gamma$ is a finite disjoint union of cosets, relative to Γ . Suppose that Γ_H is not discrete and there is a sequence $\{\nu_n\}_{n=1}^\infty \subset \Gamma_H$ with a limit point $\nu_o \in \gamma_{i_o}\Gamma$. Then pass to a subsequence $\{\nu_{m_n}\}_{n=1}^\infty \subset \gamma_{i_o}\Gamma$, converging to ν_o . As a result $\{\gamma_{i_o}^{-1}\nu_{m_n}\}_{n=1}^\infty \subset \Gamma$ converges to $\gamma_{i_o}^{-1}\nu_o \in \Gamma$ and contradicts the discreteness of Γ . Thus, $\Gamma_H \supseteq \Gamma$ is discrete and, therefore, a ball lattice. Straightforwardly,

$$A'/H = \left[\left(\mathbb{B}/\Gamma \right) / \left(\Gamma_H/\Gamma \right) \right] \cup \left(T'/H \right) = \left(\mathbb{B}/\Gamma_H \right) \cup \left(T'/H \right) = \overline{\left(\mathbb{B}/\Gamma_H \right)}$$

is the compactification of the ball quotient \mathbb{B}/Γ_H by the divisor T'/H. The H-Galois covers $\zeta_H:A\to A/H$ and $\zeta_H':A'\to \overline{(\mathbb{B}/\Gamma_H)}$ fit in a commutative diagram



with the contraction ξ_H of L/H to $\xi(L)/H$.

Note that X=A/H is smooth exactly when H has no isolated fixed points on A. The blow-up $\xi:A'\to A$ replaces an arbitrary $p_j=\xi(L_j)$ with stabilizer $\operatorname{Stab}_H(p_j)$ by a smooth rational curve L_j with $\operatorname{Stab}_H(q)=\operatorname{Stab}_H(p_j)$ for all $q\in L_j$. Therefore the blow-up ξ does not create isolated H-fixed points on A' and $A'/H=\overline{(\mathbb{B}/\Gamma_H)}$ is a smooth compactification. Its open subset \mathbb{B}/Γ_H is smooth.

3. Explicit Constructions

The present section applies Lemma 5 to a specific abelian ball quotient model over the Gauss numbers $\mathbb{Q}(i)$, in order to provide ball quotient compactifications, which are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 6 (Holzapfel [9]). Let us consider the elliptic curve $E_{-1} = \mathbb{C}/(\mathbb{Z}+i\mathbb{Z})$

with complex multiplication by the Gauss numbers $\mathbb{Q}(i)$, its two-torsion points

$$Q_0 = 0 \pmod{\mathbb{Z} + i\mathbb{Z}}, \quad Q_1 = \frac{1}{2} \pmod{\mathbb{Z} + i\mathbb{Z}}, \quad Q_2 = iQ_1, \quad Q_3 = Q_1 + Q_2$$

the abelian surface $A_{-1} = E_{-1} \times E_{-1}$, the points

$$Q_{ij} = (Q_i, Q_j) \in A_{2-\text{tor}} \subset A_{-1}$$

and the divisor $T_{-1}^{(6,8)} = \sum_{i=1}^{8} T_i$ with smooth elliptic irreducible components

$$T_k = E_{\mathbf{i}^k, 1}$$
 for $1 \le k \le 4$

$$T_{m+4} = Q_m \times E_{-1}, \quad T_{m+6} = E_{-1} \times Q_m \quad \text{for} \quad 1 \le m \le 2.$$

Then $\left(A_{-1}, T_{-1}^{(6,8)}\right)$ is an abelian model of an arithmetic ball quotient $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, defined over $\mathbb{Q}(i)$.

Corollary 7 (Holzapfel [9]).

- i) In the notations from Theorem 6, the multiplications $I = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ by $i \in \mathbb{Z}[i] = \operatorname{End}(E_{-1})$ on the first, respectively, the second elliptic factor E_{-1} of A_{-1} are automorphisms of $\left(A_{-1}, T_{-1}^{(6,8)}\right)$.
- ii) If $\Gamma_{K3,-1}^{(6,8)}$ is the ball lattice, containing $\Gamma_{-1}^{(6,8)}$ as a normal subgroup with quotient $\Gamma_{K3,-1}^{(6,8)}/\Gamma_{-1}^{(6,8)}=\langle -I_2=I^2J^2\rangle\subset \operatorname{Aut}\left(A_{-1},T_{-1}^{(6,8)}\right)$, then the ball quotient $\mathbb{B}/\Gamma_{K3,-1}^{(6,8)}$ is birational to the Kummer surface X_{K3} of A_{-1} .
- iii) If $\Gamma_{\mathrm{Rat},-1}^{(6,8)}$ is the ball lattice, containing $\Gamma_{-1}^{(6,8)}$ as a normal subgroup with quotient $\Gamma_{\mathrm{Rat},-1}^{(6,8)}/\Gamma_{-1}^{(6,8)}=\langle I,J\rangle\subseteq\mathrm{Aut}\left(A_{-1},T_{-1}^{(6,8)}\right)$, then the ball quotient $\mathbb{B}/\Gamma_{Rat,-1}^{(6,8)}$ is a rational surface.

The entire automorphism group $G_{-1}^{(6,8)} = \operatorname{Aut}\left(A_{-1}, T_{-1}^{(6,8)}\right)$ is described in the next lemma.

Lemma 8. In the notations from Theorem 6, the group $G_{-1}^{(6,8)} = \operatorname{Aut}\left(A_{-1}, T_{-1}^{(6,8)}\right)$ is generated by $I = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, the transposition $\theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of the elliptic factors E_{-1} of A_{-1} and the translation τ_{33} by Q_{33} . The aforementioned generators are subject to the relations

$$I^4 = \operatorname{Id}\,, \quad J^4 = \operatorname{Id}\,, \quad \theta^2 = \operatorname{Id}\,, \quad \tau_{33}^2 = \operatorname{Id}\,, \quad IJ = JI$$

$$\theta I = J\theta, \quad \theta J = I\theta, \quad I\tau_{33} = \tau_{33}I, \quad J\tau_{33} = \tau_{33}J, \quad \theta\tau_{33} = \tau_{33}\theta.$$
 and $G_{-1}^{(6,8)}$ is of order 64.

Proof:

Any $g \in G_{-1}^{(6,8)}$ leaves invariant

$$\left(T_{-1}^{(6,8)}\right)^{\text{sing}} = \sum_{1 \le i < j \le 8} T_i \cap T_j = \sum_{m=1}^2 \sum_{n=1}^2 Q_{mn} + Q_{00} + Q_{33}.$$

Thus, $g(T_i) = T_i$ implies $s_i = \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = s_i$ according to the bijectiveness of g. In the case under consideration, $s_1 = s_2 =$ $s_3 = s_4 = 4$ and $s_5 = s_6 = s_7 = s_8 = 2$, so that $G_{-1}^{(6,8)}$ permutes separately T_1, \ldots, T_4 and T_5, \ldots, T_8 . In particular, the intersection $\cap_{i=1}^4 T_i = \{Q_{00}, Q_{33}\}$ is $G_{-1}^{(6,8)}$ -invariant and any $g= au_{(U,V)}g_o\in G_{-1}^{(6,8)}$ transforms the origin $\check{o}_{A_{-1}}=Q_{00}$ into $g(\check{o}_{A-1})=(U_1,U_2)\in\{Q_{00},Q_{33}\}$. Straightforwardly, $\tau_{33}(T_i)=T_i$ for $1 \le i \le 4$ and $\tau_{33}(T_{m+2n}) = T_{3-m+2n}$ for $1 \le m \le 2, \ 2 \le n \le 3$ imply that $\tau_{33} \in G_{-1}^{(6,8)}$. Therefore $G_{-1}^{(6,8)}$ is generated by $G_{-1}^{(6,8)} \cap \mathrm{GL}_2(\mathrm{End}(E_{-1})) =$ $G_{-1}^{(6,8)}\cap \mathrm{GL}_2(\mathbb{Z}[\mathrm{i}])$ and τ_{33} . Note that $\theta\in \mathrm{Aut}(A_{-1})$ acts on $T_{-1}^{(6,8)}$ and induces the permutation $(T_1,T_3)(T_5,T_7)(T_6,T_8)$ of its irreducible components. Therefore $\theta \in G_{-1}^{(6,8)}$ and $\langle I, J, \theta \rangle$ is a subgroup of $G_{-1}^{(6,8)} \cap GL_2(\mathbb{Z}[i])$. On the other hand, any $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G_{-1}^{(6,8)} \cap \mathrm{GL}_2(\mathbb{Z}[\mathrm{i}])$ acts on T_5, \ldots, T_8 and, therefore, on the set $\{\widetilde{T_5} = \widetilde{T_6} = 0 \times \mathbb{C}, \widetilde{T_7} = \widetilde{T_8} = \mathbb{C} \times 0\}$ of the corresponding universal covers. If $g(0 \times \mathbb{C}) = 0 \times \mathbb{C}$, $g(\mathbb{C} \times 0) = \mathbb{C} \times 0$ then $\beta = \gamma = 0$, so that $\alpha, \delta \in \operatorname{End}(E_{-1}) = \mathbb{Z}[i]$ and $\det(g) = \alpha \delta \in \operatorname{End}^*(E_{-1}) = \langle i \rangle = \mathbb{C}_4$ imply $g = I^k J^l$ for some $0 \le k, l \le 3$. Similarly, for $g(0 \times \mathbb{C}) = \mathbb{C} \times 0, g(\mathbb{C} \times 0) = 0 \times \mathbb{C}$ one has $\alpha = \delta = 0$, whereas $\beta, \gamma \in \mathbb{Z}[i]$, $\beta \gamma \in \mathbb{Z}[i]^* = \langle i \rangle$ and $g = I^k J^l \theta$ for some $0 \leq k, l \leq 3$. Consequently, $G_{-1}^{(6,8)} \cap \operatorname{GL}_2(\mathbb{Z}[i]) = \langle I, J, \theta \rangle$ and $G_{-1}^{(6,8)} =$ $\langle I, J, \theta, \tau_{33} \rangle$. The announced relations among τ_{33}, I, J, θ imply that

$$G_{-1}^{(6,8)} = \{ \tau_{33}^n I^k J^l \theta^m ; \ 0 \le k, l \le 3, \quad 0 \le m, n \le 1 \}$$

is of order 64.

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us consider the subgroups $H_{HE} = \langle \tau_{33}J^2 \rangle$, $H_{\rm Enr} = \langle -I_2, \tau_{33}I^2 \rangle$, $H_{\rm Rul} = \langle J^2 \rangle$ of $G_{-1}^{(6,8)} = {\rm Aut}\left(A_{-1}, T_{-1}^{(6,8)}\right)$, their liftings $\Gamma_{HE,-1}^{(6,8)}$, $\Gamma_{{\rm Enr},-1}^{(6,8)}$, $\Gamma_{{\rm Rul},-1}^{(6,8)}$ to ball lattices and the blow-up $A_{\widehat{2-{\rm tor}}}$ of A_{-1} at the two-torsion points $A_{2-{\rm tor}}$. Then

- i) $\mathbb{B}/\Gamma_{HE,-1}^{(6,8)}$ is a smooth ball quotient, birational to the smooth hyperelliptic surface A_{-1}/H_{HE}
- ii) $\mathbb{B}/\Gamma_{\mathrm{Enr},-1}^{(6,8)}$ is a ball quotient with one double point $\mathrm{Orb}_{H_{\mathrm{Enr}}}(Q_{03})$, which is birational to the smooth Enriques surface $A_{\widehat{2-\mathrm{tor}}}/H_{\mathrm{Enr}}$
- iii) $\mathbb{B}/\Gamma_{\mathrm{Rul},-1}^{(6,8)}$ is a smooth ball quotient, birational to the smooth trivial ruled surface $A_{-1}/H_{\mathrm{Rul}} = E_{-1} \times \mathbb{P}^1$ with an elliptic base E_{-1} .

Proof: i) Recall that the \mathbb{Z} -module $\pi_1(E_{-1}) = \mathbb{Z} + i\mathbb{Z} = \mathbb{Z} + (1+i)\mathbb{Z}$ is generated by 1, 1+i and $Q_3 = \frac{1+i}{2} (\operatorname{mod} \pi_1(E_{-1}))$. The translation $\tau_{Q_3} : E_{-1} \to E_{-1}$ is of order 2, as well as the morphism

$$\tau_{Q_3}(-1): E_{-1} \longrightarrow E_{-1}$$

$$\tau_{Q_3}(-1)(P) = -P + Q_3$$

with four fixed points

$$\frac{1}{2}Q_3 + (E_{-1})_{2-\text{tor}} = \frac{1}{2}Q_3 + \{Q_i ; 0 \le i \le 3\}.$$

According to [5], the quotient A_{-1}/H_{HE} by the cyclic group

$$H_{HE} = \langle \tau_{Q_3} \times \tau_{Q_3}(-1) \rangle$$

of order 2 is a smooth hyperelliptic surface. Lemma 5 ii) implies that $\mathbb{B}/\Gamma_{HE,-1}^{(6,8)}$ is a smooth ball quotient, birational to A_{-1}/H_{HE} .

ii) The quotient $X_{K3} = A_{\widehat{2-\mathrm{tor}}}/\langle -I_2 \rangle$ is a smooth K3 surface, called the Kummer surface of A_{-1} . We claim that the involution $\tau_{33}I^2$ acts on $A_{\widehat{2-\mathrm{tor}}}$ and determines an unramified double cover

$$\zeta: X_{K3} = A_{\widehat{2-\text{tor}}}/\langle -I_2 \rangle \to A_{\widehat{2-\text{tor}}}/\langle -I_2, \tau_{33}I^2 \rangle = A_{\widehat{2-\text{tor}}}/H_{\text{Enr}}.$$

More precisely, $\tau_{33}I^2 = \tau_{Q_3}(-1) \times \tau_{Q_3}$ leaves invariant the two-torsion points $A_{2-\text{tor}} = \{Q_{ij} : 0 \leq i, j \leq 3\}$ and any choice of an automorphism of \mathbb{P}^1 extends $\tau_{33}I^2$ to an automorphism of $A_{\widehat{2-\text{tor}}}$. Note that $\tau_{33}I^2(-I_2) = (-I_2)\tau_{33}I^2$, so that $\tau_{33}I^2$ normalizes $\langle -I_2 \rangle$ and there is a well defined quotient group $H_{\text{Enr}}/\langle -I_2 \rangle = \langle \tau_{33}I^2 \rangle$ of order 2. That allows to define $\zeta: X_{K3} \to A_{\widehat{2-\text{tor}}}/H_{\text{Enr}}$ as an $H_{\text{Enr}}/\langle -I_2 \rangle$ -Galois cover. We claim that $\tau_{33}I^2$ is a fixed point free involution on X_{K3} , in order to conclude that $A_{\widehat{2-\text{tor}}}/H_{\text{Enr}}$ is a smooth Enriques surface. More precisely, the fixed points of $\tau_{33}I^2$ on the set X_{K3} of the $\langle -I_2 \rangle$ -orbits on $A_{\widehat{2-\text{tor}}}$ lift to ε -fixed points of $\tau_{33}I^2$ on $A_{\widehat{2-\text{tor}}}$ for $\varepsilon = \pm 1$. The ε -fixed points $(P,Q) \in A_{-1}$ are subject to

$$-P + Q_3 = \varepsilon P$$
$$Q + Q_3 = \varepsilon Q.$$

For $\varepsilon=1$ the equality $Q+Q_3=Q$ has no solution $Q\in E_{-1}$, while for $\varepsilon=-1$ the equation $-P+Q_3=-P$ on $P\in E_{-1}$ is inconsistent. Therefore $\tau_{33}I^2$ has no ε -fixed points on A_{-1} . By the very definition of the $\tau_{33}I^2$ -action on $A_{\widehat{2-\text{tor}}}$, there are no ε -fixed points for $\tau_{33}I^2$ on $A_{\widehat{2-\text{tor}}}$ and $\tau_{33}I^2:X_{K3}\to X_{K3}$ is a fixed point free involution. As a result, $A_{\widehat{2-\text{tor}}}/H_{\rm Enr}$ is a smooth Enriques surface.

Recall that the exceptional divisor $\xi_{2-\text{tor}}^{-1}(A_{2-\text{tor}})$ of the blow-up

$$\xi_{2-\text{tor}}: A_{\widehat{2-\text{tor}}} \to A_{-1}$$

 $\frac{\text{of }A_{-1} \text{ at }A_{2-\text{tor}} \text{ is }H_{\text{Enr}}\text{-invariant, so that }\xi_{2-\text{tor}} \text{ descends to the contraction }\overline{\xi_{2-\text{tor}}}:A_{\widehat{2-\text{tor}}}/H_{\text{Enr}} \to A_{-1}/H_{\text{Enr}} \text{ of }\xi_{2-\text{tor}}^{-1}(A_{2-\text{tor}})/H_{\text{Enr}} \text{ to }A_{2-\text{tor}}/H_{\text{Enr}}.$ In particular, the smooth Enriques surface $A_{\widehat{2-\text{tor}}}/H_{\text{Enr}}$ is birational to A_{-1}/H_{Enr} . The singular locus $(A_{-1}/H_{\text{Enr}})^{\text{sing}} \subseteq (A_{2-\text{tor}}/H_{\text{Enr}})$, according to the smoothness of $A_{\widehat{2-\text{tor}}}/H_{\text{Enr}}$. On the other hand, $\tau_{33}I^2$ has no fixed points on $A_{2-\text{tor}}$, so that $A_{2-\text{tor}}/H_{\text{Enr}}$ consists of eight double points

$$\operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{ij}) = \operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{3-i,3-j}), \quad 0 \le i, j \le 3$$

and $(A_{-1}/H_{\rm Enr})^{\rm sing} = A_{2-{\rm tor}}/H_{\rm Enr}$. Note that

$$\left(T_{-1}^{(6,8)}\right)^{\text{sing}} = \left\{ \text{Orb}_{H_{\text{Enr}}}(Q_{00}), \text{Orb}_{H_{\text{Enr}}}(Q_{11}), \text{Orb}_{H_{\text{Enr}}}(Q_{12}) \right\}$$

is contained in $(A_{-1}/H_{\rm Enr})^{\rm sing}$ and the birational morphism

$$\xi_{H_{\mathrm{Enr}}}:\left(\overline{\,\mathbb{B}/\Gamma_{\mathrm{Enr},-1}^{(6,8)}\,}
ight) o A_{-1}/H_{\mathrm{Enr}}$$

resolves $\left(T_{-1}^{(6,8)}\right)^{\mathrm{sing}}$ by smooth rational curves of self-intersection (-2). Therefore $\left(\overline{\mathbb{B}/\Gamma_{\mathrm{Enr},-1}^{(6,8)}}\right)^{\mathrm{sing}}$ consists of the following five double points:

 $\operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{01}), \operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{10}), \operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{02}), \operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{20}), \operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{03}).$ Since

$$\operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{0,m}) \in \left[T_{m+6} \setminus \left(T_{-1}^{(6,8)} \right)^{\operatorname{sing}} \right] / H_{\operatorname{Enr}} = \left(T'_{m+6} \setminus L \right) / H_{\operatorname{Enr}}$$

$$\operatorname{Orb}_{H_{\operatorname{Enr}}}(Q_{m,0}) \in \left[T_{m+4} \setminus \left(T_{-1}^{(6,8)} \right)^{\operatorname{sing}} \right] / H_{\operatorname{Enr}} = \left(T'_{m+4} \setminus L \right) / H_{\operatorname{Enr}}$$

for all $1 \le m \le 2$ belong to the compactifying divisor $T'/H_{\rm Enr}$, the ball quotient $\mathbb{B}/\Gamma^{(6,8)}_{{\rm Enr},-1}$ has only one singular point

$$\left(\mathbb{B}/\Gamma_{\mathrm{Enr},-1}^{(6,8)}\right)^{\mathrm{sing}} = \{\mathrm{Orb}_{H_{\mathrm{Enr}}}(Q_{0,3})\}.$$

iii) The quotient $X=A_{-1}/H_{\mathrm{Rul}}=E_{-1}\times [E_{-1}/\langle (-1)\rangle]$ of A_{-1} by the reflection $J^2=1\times (-1)$ is a smooth surface, birational to the smooth ball quotient $\mathbb{B}/\Gamma_{\mathrm{Rul},-1}^{(6,8)}$. It is well known that $C=E_{-1}/\langle -1\rangle$ is a smooth projective curve. More precisely, if

$$\mathfrak{p}(t) = \frac{1}{t^2} + \sum_{\lambda \in (\mathbb{Z} + i\mathbb{Z}) \setminus \{0\}} \left[\frac{1}{(t - \lambda)^2} - \frac{1}{\lambda^2} \right]$$

is the Weierstrass p-function, associated with the lattice $\mathbb{Z} + i\mathbb{Z} = \pi_1(E_{-1})$, then the map

$$\psi: E_{-1} \setminus \{\check{o}_{E_{-1}}\} \longrightarrow \mathbb{P}^2$$

$$\psi(t + (\mathbb{Z} + i\mathbb{Z})) = [1 : \mathfrak{p}(t + (\mathbb{Z} + i\mathbb{Z})) : \mathfrak{p}'(t + (\mathbb{Z} + i\mathbb{Z}))] = [1 : \mathfrak{p}(t) : \mathfrak{p}'(t)]$$

extends by $\psi(\check{o}_{E_{-1}})=[0:0:1]=p_{\infty}$ to a projective embedding of $E_{-1}.$ The image

$$\psi(E_{-1}) = \{ [z : x : y] \in \mathbb{P}^2 ; zy^2 = (x - \mathfrak{p}(Q_1))(x - \mathfrak{p}(Q_2))(x - \mathfrak{p}(Q_3)) \}$$

is a cubic hypersurface in \mathbb{P}^2 . As far as $\mathfrak{p}(t)$ is even and $\mathfrak{p}'(t)$ is an odd function of t, the multiplication μ_{-1} by -1 on E_{-1} acts on $\psi(E_{-1})$ by the rule

$$\mu_{-1}([z:x:y]) = [z:x:-y].$$

The fixed points of this action are p_{∞} and $\mathfrak{p}(Q_i)$ for $1 \leq i \leq 3$. The fibres of the projection

$$\Pi : \psi(E_{-1}) \setminus \{p_{\infty}\} \longrightarrow \mathbb{P}^1 \setminus \{q_{\infty} = [0:1]\}$$
$$\Pi([z:x:y]) = [z:x]$$

are exactly the μ_{-1} -orbits on $\psi(E_{-1}) \setminus \{p_{\infty}\}$, so that its image

$$\mathbb{P}^1 \setminus \{q_{\infty}\} = \Pi(\psi(E_{-1}) \setminus \{p_{\infty}\}) = (\psi(E_{-1}) \setminus \{p_{\infty}\}) / \langle \mu_{-1} \rangle$$

is the corresponding Galois quotient by the cyclic group $\langle \mu_{-1} \rangle$ of order 2. Thus,

$$\psi(E_{-1})/\langle \mu_{-1}\rangle = (\psi(E_{-1})\setminus \{p_{\infty}\})/\langle \mu_{-1}\rangle \cup \{p_{\infty}\} = (\mathbb{P}^1\setminus \{q_{\infty}\})\cup \{p_{\infty}\} = \mathbb{P}^1.$$

References

[1] Dzambic A., Arithmetic of a Fake Projective Plane and Related Elliptic Surfaces, arXiv: 0803.0645.

- [2] Hirzebruch F. Chern Numbers of Algebraic Surfaces An Example, Math. Ann. **266** (1984) 351–356.
- [3] Holzapfel R.-P., Chern Numbers of Algebraic Surfaces Hirzebruch's Examples Are Picard Modular Surfaces, Math. Nach. **126** (1986) 255–273.
- [4] Holzapfel R.-P., Ball and Surface Arithmetic, Vieweg, Braunschweig 1998.
- [5] Griffiths Ph. and Harris J., *Principles of Algebraic Geometry*, Wiley, New York 1978.
- [6] Holzapfel R.-P. (with Appendices by A. Pineiro and N. Vladov), *Picard-Eistein Metrics and Class Fields Connected with Apolonius Cycle*, HU Preprint **98-15** (1998).
- [7] Holzapfel R.-P., *Jacobi Theta Embedding of a Hyperbolic 4-space with Cusps*, In: Geometry, Integrability and Quantization III, I. Mladenov and G. Naber (Eds), Coral Press, Sofia 2002, pp 11–63.
- [8] Holzapfel R.-P. and Vladov N., *Quadric-Line Configurations Degenerating Plane Picard Einstein Metrics I & II*, Sitzungsber d. Berliner Math. Ges., Berlin 2003, pp 79–142.
- [9] Holzapfel R.-P., Complex Hyperbolic Surfaces of Abelian Type, Serdica Math. J. **30** (2004) 207–238.

- [10] Ishida M., *An Elliptic Surface Covered by Mumford's Fake Projective Plane*, Tohoku Math. J. **40** (1988) 367-398.
- [11] Keum J., A Fake Projective Plane with an Order 7 Automorphism, Topology **45** (2006) 919–927.
- [12] Keum J., *Quotients of Fake Projective Planes*, Geom. Topol. **12** (2008) 2497–2515.

Azniv Kasparian

Department of Mathematics and Informatics Kliment Ohridski University of Sofia 1164 Sofia, BULGARIA

E-mail address: kasparia@fmi.uni-sofia.bg

Boris Kotzev

Department of Mathematics and Informatics Kliment Ohridski University of Sofia 1164 Sofia, BULGARIA

 $\emph{E-mail address}$: bkotzev@fmi.uni-sofia.bg