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Abstract. In this paper we study the second mean curvature for different hy-

persurfaces in space forms. We furnish some examples and we remind some con-

nections between II-minimality and biharmonicity. The main result consists in

proving that there are no II-minimal translation surfaces in the Euclidean three-

space.

1. Introduction

The study of the second fundamental form II was initiated through the early pa-

pers of Weingarten [16], Darboux [5] and Cartan [3] where appeared for the first

time notions like connection or curvature associated to II . Later on, Erard [7]

introduced the second fundamental form as metric on the surface. This is possi-

ble only when II is non-degenerate and hence it can be regarded as a (pseudo)-

Riemannian metric on the surface. At this point one can consider a connected

smooth surface M endowed with II as metric in order to study new characteris-

tics associated to (M, II). In the classical case when the metric on the surface

is given by the first fundamental form I , i.e., for (M, I), there are well known

formulae to compute the Gaussian curvature K and the mean curvature H in or-

der to analyze the properties of M that arise from this “measures”. In a similar

manner, the second Gaussian curvature denoted by KII and the second mean
curvature, denoted by HII , were considered. In [3], KII was introduced for the

first time by Cartan, as the analogous of the Gaussian curvature. Concerning HII ,

it was defined by Glässner in [8]. An overview over the literature dedicated to

the second fundamental form and the associated curvatures for different type of

submanifolds in different ambient spaces can be found in [15] and its references.

Regarding the second mean curvature, the critical points of the area functional of

the second fundamental form are those surfaces for which the mean curvature of

the second fundamental form vanishes. A non-developable surface is said to be
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II-flat if KII = 0 and respectively II-minimal if HII = 0. Consequently, the

well known result that there are no compact minimal submanifolds in the Euclid-

ean space was discussed also in the case of the second mean curvature and in [8]

it is proved that do not exist compact II-minimal surfaces in Euclidean space.
Despite this non-existence result confirmed also in some other particular ambient

spaces, in [15] it is proved that compact II-minimal surfaces may exist in some

general ambient spaces.

In the present paper we are interested in the study of the second mean curvature

for different examples of submanifolds. More exactly we study the II-minimality

property, equivalently, the condition HII = 0. The classical examples in the the-

ory of harmonic and biharmonic maps are proved to be also interesting examples

concerning the II-minimality property. Let us remind the following situations of

classical biharmonic maps which are also II-minimal, namely the standard em-

bedding S
n( 1

√
2
) ⊂ S

n+1 and the hypersurface S
k( 1

√
2
) × S

n−k( 1
√

2
) ⊂ S

n+1 for

k = 1, . . . , n − 1 (see e.g., [4], [10] and [15]). In the sequel we formulate some

generalizations of these results.

Returning to the theory of surfaces, in [11] it is proved that a ruled surface with

nowhere vanishing Gaussian curvature is II-minimal if and only if it is a piece

of helicoid. A study on II-minimal affine translation surfaces written as a sum

of two curves is contained in [12]. Here it is stated that there are no affine II-
minimal translation surfaces of this type. An interesting situation occurs when

the two curves are situated in orthogonal planes. This is our case of translation

surfaces. One can retrieve the same non-existence result concerning II-minimal

translation surfaces in the Euclidean three-space. The aim of this article is to

give a proof of this statement. It is contained in Section 3, after we acquaint the

reader with the basic notions about translation surfaces and II-minimality in the

Preliminaries of this article. Moreover, we provide also interesting examples of

II-minimal hypersurfaces in different space forms.

2. Preliminaries

In the general theory of surfaces and hypersurfaces generically denoted by M and

isometrically immersed in some ambient space (M̃, g̃), one can associate different

“measures”. Naturally, a way to describe a metric g on M is taking the restriction

of the metric g̃ from the ambient space. If the immersion (M, g) ↪→ (M̃, g̃) has

codimension one, we write the Gauss and Weingarten formulas
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∇̃XY = ∇XY + II(X, Y ) N

∇̃XN = −AX

for every X, Y tangent to M . The corresponding Levi-Civita connections on the

ambient space and on the surface are denoted by ∇̃ and ∇, respectively. More-

over II is a symmetric (1, 2)-tensor field called the second fundamental form of

the surface M and A is a symmetric (1, 1)-tensor field known as the shape oper-
ator associated to the unit normal to the surface N . The following relation holds

II(X, Y ) = g(X, AY ), where X, Y are vector fields tangents to M .

Concerning the curvature tensor R on the surface and using the previous notations,

recall that we use the following sign convention R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ]

for any X, Y ∈ T (M).

Having now some basic working tools on M we can construct its intrinsic and

extrinsic geometry by means of the characterization of the curvatures. The most

used metrics on a surface is given by the first fundamental form I associated to

the immersion which gives the parametrization. But, one can think of rebuilding

all the geometry corresponding to I by taking the second fundamental form as a

new metric on the surface. One elementary condition that II must satisfy consists

of non-degeneracy, namely the surface must be non-developable.

2.1. Translation Surfaces

Let us consider a surface having the Cartesian parametrization given by

(
x

y

)
�→ A(x)

⎛⎝ f(y)
g(y)
h(y)

⎞⎠+

⎛⎝ a(x)
b(x)
c(x)

⎞⎠
where A(x) ∈ SO(3) (sometimes in O(3)). This surface represents a union of

“equal” curves i.e., it is the image of one curve, called generatrix, obtained by

isometries of the space. Some authors call this kind of surface a surface of Dar-
boux. Some known examples are to be mentioned, namely

1. A = I3 : translation surfaces

2. A = matrix of rotation (the axe and the angle are fixed), a = b = c = 0 :

rotation surfaces
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3. A = matrix of rotation (the axe n̄ and the angle are fixed), (a, b, c) = x n̄ :

helicoidal surfaces

If the generatrix is

a. a straight line : ruled surfaces

b. a circle : circled surfaces including, e.g. tubes. For a smooth curve γ, the

tube of unit radius around it is given by

r(s, t) = γ(t) + cos s N(t) + sin s B(t)

where s is the arclength parameter, N(s) and B(s) are respectively the

normal and the binormal of the curve. As a Darboux surface, a tube can be

written as

r(s, t) = γ(t) + A(t) S
1

where by S
1 we mean the unit circle.

The special Euclidean group of the n-dimensional space or the Euclidean mo-

tion group SE(n) is the semi-direct product of R
n with the special orthogonal

group SO(n). In the three-dimensional case SE(3) = R
3

� SO(3). To be more

precise, for two elements h = (a, A) and h′ = (b, B) in SE(3), the group mul-

tiplication and the inverse are given by h ◦ h′ = (a + Ab, AB), respectively

h−1 = (−AT a, AT ). It is also possible to represent any element of SE(n) as an

(n + 1) × (n + 1) homogeneous transformation matrix of the form

(
A a

O 1

)
(see e.g. [14], p.45).

A surface of Darboux can be thought as the action of the one-parameter family of

matrices in SE(3) to a given curve.

As we have seen, a translation surface is a “sum” of two curves. If the two curves

are situated in orthogonal planes the surface can be represented as

(x, y) �−→ (x, y, f(x) + g(y)). (1)

Examples: planes, cylinders, hyperbolic and elliptic paraboloids, the egg box sur-

face, Scherk surface (the only minimal translation surface in E
3).

2.2. II-minimality

We dedicate this section to some very nice examples of II-minimal hypersur-

faces immersed in the sphere S
n and we give a nonexistence result in the case
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of II-minimal hypersurfaces in the hyperbolic space H
n. The motivation comes

from another interesting property of these immersions intensively studied in re-

cent years, namely the biharmonicity. Similar to the variational characterization

of the mean curvature H , the curvature of the second fundamental form, denoted

by HII is introduced as a measure for the rate of change of the II-area under

a normal deformation. Let us denote by M a m-dimensional hypersurface in a

semi-Riemannian manifold (M̃, g̃) with the second fundamental form as semi-

Riemannian metric. Accordingly (see [15]), the mean curvature associated to the

second mean curvature HII is given by

HII =
1

2

(
mH −

m∑
i=1

g̃(R̃(Vi, N)Vi, N)κi +
α

2
ΔII log |detA| − α divIIZ

)
.

Let us explain in few words the notations used above. The classical mean cur-

vature of the first fundamental form is denoted by H , the unit normal is called

N and by A we mean the shape operator of M . Moreover, Vi, i = 1, . . . m
form an orthonormal basis on M with respect to II and let κi = II(Vi, Vi) =
±1, i = 1, . . . m. The vector field Z in T (M) is constructed as Z = trIIB =
m∑

i=1

B(Vi, Vi)κi, where the tensor B : T (M) × T (M) → T (M) is defined by

(V, W ) �→ A−1

{(
R̃(V, N)W

)t}
. Here, we denote by t the tangential com-

ponent of the corresponding vector field. The shape operator is thought here

as a field of endomorphisms of each tangent spaces in points of M , namely

A : T (M) → T (M), V �→ −∇̃V N .

If the ambient space is a space form (its sectional curvature is constant), then the

tensor B vanishes and hence Z = 0. Moreover, if in addition the shape operator

has constant determinant (and this often happens) the second mean curvature can

be computed by using an easier formula, namely

HII =
1

2

(
mH −

m∑
i=1

g̃(R̃(Vi, N)Vi, N)κi

)
. (2)

In the sequel we present some examples of II-minimal hypersurfaces in spheres.

Example 1. The standard embedding S
n−1(r) ↪→ S

n(1) is II-minimal if and
only if r = 1

√
2
·

Proof: Let (x0, x1, . . . , xn) be global coordinates in E
n+1 and denote by p ei-

ther the point or the position vector in E
n+1. Without loss of the generality one
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can think the sphere S
n−1(r) as obtained by cutting the unit sphere S

n by the

hyperplane x0 =
√

1 − r2. Thus, an arbitrary vector field tangent to S
n−1(r)

can be expressed as X = (0, X1, . . . , Xn), where X i are smooth functions de-

pending on x1, . . . , xn such that
n∑

i=1

Xixi = 0. In order to compute the second

mean curvature, one can express first the unit normal of the embedding as ν =

±
(
−r,

√
1−r2

r (x1, . . . , xn)
)

. Fixing an orientation we choose, e.g. the “plus”

sign. The second fundamental form is given by II(X, Y ) = −
√

1−r2

r 〈X, Y 〉 for

all X, Y ∈ T (Sn−1(r)), where 〈 , 〉 denotes the usual Euclidean scalar product.

Note that II is negatively defined. We are able now to obtain the second mean

curvature. After straightforward computations in (2) one gets

HII =
1

2

(
r√

1 − r2
−

√
1 − r2

r

)
.

Under the assumption of II-minimality, HII = 0 is equivalent with r = 1
√

2
·

Hence the conclusion.

�

More generally we have

Example 2. The embedding S
n−1(r) ↪→ S

n(R) is II-minimal if and only
if r = R

√
R2+1

.

Proof: Similar computations as in previous example. �

Remark 3. The following chain of embeddings

S
1

( 1√
n

)
↪→ S

2

( 1√
n − 1

)
↪→ · · · ↪→ S

n−1

( 1√
2

)
↪→ S

n(1)

is such that each embedding S
k
(

1
√

n−k+1

)
↪→ S

k+1

(
1

√
n−k

)
is II-minimal for

any k ∈ {1, ..., n − 1}.

Let us give another example of a II-minimal surface in the unit sphere S
3.

Example 4. Let us consider the following parametrization

r : M −→ S
3(1), r(s, t) = (cos s cos t, sin s cos t, cos s sin t, sin s sin t).

Then second mean curvature of the surface M vanishes identically.
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Proof: The proof of this statement is straightforward. �

The next example ends the series of II-minimal surfaces in spheres presented in

this paper.

Example 5. Let M = S
m1(r1) × S

m2(r2) ↪→ S
m+1(r) = M̃ be the usual em-

bedding with r2
1

+ r2
2

= r2 and m1 + m2 = m. Then, M is II-minimal in M̃ if

and only if r1 = r
√

m1+m2r2

m(r2+1)
and r2 = r

√
m2+m1r2

m(r2+1)
·

Proof: Consider (x0, x1, . . . , xm1) and (y0, y1, . . . , ym2) global coordinates on

R
m1+1, respectively on R

m2+1. The unit normal is ν =
1

r

(
−r2

r1

x,
r1

r2

y

)
where

x = (x0, x1, . . . , xm1) and y = (y0, y1, . . . , ym2). Hence the shape operator can

be expressed as

A =

⎛⎜⎝
r2

rr1

Im1
O

O − r1

rr2

Im2

⎞⎟⎠
whose determinant is constant. By Ik we denoted the identity k × k matrix. After

straightforward computations we get from (2) that the second mean curvature is

given by

HII =
1

2rr1r2

(
m1r

2

2 − m2r
2

1 − m1r
2r2

1 + m2r
2r2

2

)
.

Hence the conclusion. �

Remark 6. In particular, if m = 2 and r = 1 we get that the Clifford torus

S
1

(
1√
2

)
× S

1

(
1√
2

)
↪→ S

3(1)

is II-minimal.

Proof: See for example [9]. �

Having in mind these results, there is another interesting property involving the

curvatures of a surface that we can study, the Weingarten property. If A, B are

two different type curvatures of a (non-developable) surface, and if there is a non-

trivial functional relation between A and B, then the surface is called an {A, B}
– generalized Weingarten surface. See for details [6].
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Remark 7. The generalized Clifford torus S
1 (r1) × S

1 (r2) ↪→ S
3(1), with

r2
1

+ r2
2

= 1 is a {H, HII}-generalized Weingarten surface.

Proof: Easy computations yield the following relation: HII = 2H , namely, the

two mean curvatures corresponding to the first and to the second fundamental

forms respectively, are proportional. �

Seeing all these nice examples for spheres, we wonder what happens when the

ambient is the hyperbolic space. At this point, if we consider similar problems,

e.g. II-minimality, in the hyperbolic spaces, we get the following non-existence

result

Proposition 8. There is no r > 0 such that H
n−1(−r) ↪→ H

n(−1) is II-minimal.
Here H

k
R := H

k(−R) = {x ∈ R
k+1

1
; 〈x, x〉1 = −R2, x0 > 0} (R > 0) where

〈 , 〉1 denotes the usual Lorentzian scalar product with signature (− + · · ·+).

Proof: After similar computations as in the previous examples we find the ex-

pression of the second mean curvature, but under the restriction of II-minimality

we reach a contradiction! �

Having in mind all these examples in spheres and in hyperbolic spaces, let us

recall now another interesting property for surfaces and hypersurfaces, the bihar-
monicity. As the aim of our article does not consist in the study of biharmonicity,

the reader is invited to check [1, 2] for more details on the subject.

In the end of this section we would like to bring into attention some classi-

cal results concerning the biharmonicity of the surfaces and hypersurfaces stud-

ied above from the II-minimality point of view. Concerning the spheres, it

is known that the proper biharmonic surfaces in S
3 are also II-minimal sur-

faces. Moreover, the hyperspheres S
m
(

1
√

2

)
and the generalized Clifford tori

S
m1

(
1
√

2

)
×S

m2

(
1
√

2

)
, m1 �= m2 are the only known examples of proper bihar-

monic hypersurfaces in S
m+1.

If the problem is considered in hyperbolic spaces, only few results are obtained.

For example (see [1]), there exist no proper biharmonic hypersurfaces in H
4.

3. II-minimal Translation Surfaces

In this section we analyze II-minimal translation surfaces with a Riemannian

second fundamental form, namely we study under which conditions the second



New Results on the Geometry of the Translation Surfaces 57

mean curvature vanishes, i.e., HII = 0. Having in mind the usual technique for

computing the second mean curvature by using the normal variation of the area

functional one gets for surfaces in E
3

HII = H +
1

4
ΔII log(K)

where K and H denote the usual Gaussian, respectively mean curvatures of our

surface and ΔII is the Laplacian for functions computed with respect to the sec-

ond fundamental form as metric. HII can be equivalently expressed as

HII = H +
1

2
√

detII

∑
i,j

∂

∂ui

(√
detII hij ∂

∂uj
(ln

√
K)

)
. (3)

Here II denotes the second fundamental form, (hij) is the associated matrix with

its inverse (hij), the indices i, j belong to the set {1, 2} and the parameters u1, u2

are x, respectively y from the parametrization (1). Moreover, II becomes a metric

on the surface if it is positive definite (or, more generally, if it is non-degenerated).

Sometimes, the second mean curvature is taken with the opposite sign (see [15]).

Using the parametrization (1) of a translation surface and denoting by r the cor-

responding immersion in the Euclidean three-space endowed with the Euclidean

scalar product 〈 , 〉, namely r : M → E
3, (x, y) �→ r(x, y) = (x, y, f(x) + g(y))

one easily computes its first fundamental form

I = Edx2 + 2Fdxdy + Gdy2

where E, F , G - the coefficients of I - are given by E = 〈rx, rx〉, F = 〈rx, ry〉,
G = 〈ry, ry〉 and the second fundamental form

II = Ldx2 + 2Mdxdy + Ndy2

with the coefficients given by L =
(rx,ry ,rxx)
√

EG−F 2
, M =

(rx,ry ,rxy)
√

EG−F 2
and N =

(rx,ry ,ryy)
√

EG−F 2
·

Here (rx, ry, rxx) = 〈rx × ry, rxx〉 and the same definition is valid for the other

expressions.

Denoting f ′ = α and g′ = β, we get

I =
(
1 + α(x)2

)
dx2 + 2α(x)β(y)dx dy +

(
1 + β(y)2

)
dy2

II =
1√
Δ

(
α′(x) dx2 + β′(y) dy2

)
where Δ = 1 + α(x)2 + β(y)2.
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The inverse matrix (hij) of the second fundamental form of a translation surface

has the following expression

(
hij
)
i,j

=

⎛⎜⎝
√

1+α2+β2

α′
0

0

√
1+α2+β2

β′

⎞⎟⎠ .

The curvatures corresponding to the first fundamental form, the Gaussian curva-

ture K = LN−M2

EG−F 2 and the mean curvature H = EN−2FM+GL
EG−F 2 become in this

case

K =
α′(x)β′(y)

Δ2

and

H =
(1 + β2(y))α′(x) + (1 + α2(x))β′(y)

2Δ3/2
·

After straightforward computations, the sum in (3) has the following expression∑
i,j

= 1

4Δ2

√
β′

α′

(
2α′α′′′−3α′′2

α′2 Δ2 + (−4αα′′ − 8α′2)Δ + 16α2α′2

)
+ 1

4Δ2

√
α′

β′

(
2β′β′′′−3β′′2

β′2 Δ2 + (−4ββ′′ − 8β′2)Δ + 16β2β′2

)
.

Notice that α′β′ > 0 since the second fundamental form is positive definite, so

the square roots are well defined.

We are interested to find II–minimal translation surfaces in the Euclidean three-

space. Having now all the necessary tools, the condition HII = 0 for a translation

surface is equivalent to

2α′α′′′ − 3α′′2

2α′3
+

2β′β′′′ − 3β′′2

2β′3
− 2

Δ

(
α′2 + αα′′

α′
+

β′2 + ββ′′

β′

)
(4)

+
6

Δ2
(α2α′ + β2β′) = 0.

The first two terms in (4) are functions only of x respectively of y, hence we take

the derivatives in the previous equation successively w.r.t. x and y.

Denoting by

φ(x) =
α′2 + αα′′

α′
, ψ(y) =

β′2 + ββ′′

β′
, p(x) = α2α′ and q(y) = β2β′
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we get

∂

∂y

∂

∂x

(
− 2

Δ
(φ + ψ) +

6

Δ2
(p + q)

)
= 0.

After straightforward computations and multiplying with
Δ3

8αα′ββ′
it follows

(F + G)Δ2 − 2(P + Q)Δ + 18(p + q) = 0 (5)

where F (x) =
φ′

2αα′
, G(y) =

ψ′

2ββ′
, P (x) = φ +

3p′

2αα′
and Q(y) = ψ +

3q′

2ββ′
· Repeating similar operations, namely taking the two partial derivatives and

dividing by 4αα′ββ′ one gets

(A + B)Δ + a + b = 0 (6)

where A(x) =
F ′

2αα′
, B(y) =

G′

2ββ′
, a(x) = F − P ′

2αα′
and b(y) = G − Q′

2ββ′
·

Finally, using the same technique, we should have

A′

2αα′
= c,

B′

2ββ′
= −c, c ∈ R.

Solving the above equations we obtain A(x) = cα2 +d1 and B(y) = −cβ2 +d2.

Replacing these expressions in the previous ODEs we find that

F (x) =
c

2
α4 + d1α

2 + μ1

G(y) = − c

2
β4 + d2β

2 + μ2

φ(x) =
c

6
α6 +

d1

2
α4 + μ1α

2 + τ1

ψ(y) = − c

6
β6 +

d2

2
β4 + μ2β

2 + τ2

α′(x) =
c

42
α6 +

d1

10
α4 +

μ1

3
α2 + τ1 +

ρ1

α

β′(y) = − c

42
β6 +

d2

10
β4 +

μ2

3
β2 + τ2 +

ρ2

β
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p(x) =
c

42
α8 +

d1

10
α6 +

μ1

3
α4 + τ1α

2 + ρ1α

q(y) = − c

42
β8 +

d2

10
β6 +

μ2

3
β4 + τ2β

2 + ρ2β

P (x) =
19c

42
α6 +

7d1

5
α4 + 3μ1α

2 + 4τ1 +
3ρ1

2α

Q(y) = −19c

42
β6 +

7d2

5
β4 + 3μ2β

2 + 4τ2 +
3ρ2

2β

a(x) = −6c

7
α4 − 9d1

5
α2 − 2μ1 +

3ρ1

4α3

b(y) =
6c

7
β4 − 9d2

5
β2 − 2μ2 +

3ρ2

4β3

where d1, d2, μ1, μ2, τ1, τ2, ρ1, ρ2 ∈ R. In order to determine all these integration

constants, we substitute the corresponding expressions in (6), obtaining a sum of

polynomials in α and β which are equal to zero. This means that there exists

ξ ∈ R such that

c

7
α4 +

(
c − 4

5
d1 + d2

)
α2 +

3ρ1

4α3
+ d1 − 2μ1 − ξ = 0

− c

7
β4 +

(
−c + d1 − 4

5
d2

)
β2 +

3ρ2

4β3
+ d2 − 2μ2 + ξ = 0.

At this point, by the same argument as in the previous section, all the coefficients

in the above (algebraic) expressions must be zero and consequently we get c = 0,

d1 = d2 = 0, ρ1 = ρ2 = 0, μ1 = − ξ
2

and μ2 = ξ
2
· Thus, the previous expressions

can be expressed in a simpler form

F (x) = −ξ

2
, G(y) =

ξ

2

φ(x) = −ξ

2
α2 + τ1, ψ(y) =

ξ

2
β2 + τ2

α′(x) = −ξ

6
α2 + τ1, β′(y) =

ξ

6
β2 + τ2

p(x) = −ξ

6
α4 + τ1α

2, q(y) =
ξ

6
β4 + τ2β

2

P (x) = −3ξ

2
α2 + 4τ1, Q(y) =

3ξ

2
β2 + 4τ2

a(x) = ξ, b(y) = − ξ.

(7)
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Let us look now at (5). By the same reasoning as above we deduce

(3ξ + 10τ1 − 8τ2)α
2 − 8τ1 = η

(−3ξ − 8τ1 + 10τ2)β
2 − 8τ2 = −η

for an arbitrary η ∈ R. Moreover, the constants τ1, τ2 and ξ are given by τ1 = −η
8

,

τ2 = η
8

, ξ = 3η
4

. We conclude that α′ = −η
8
(α2 +1) and β′ = η

8
(β2 +1). Finally

α and β must satisfy also the condition (4). After straightforward computations it

follows that η = ξ = 0.

It follows that α′ = β′ = 0, which cannot occur since if this happened, the second

fundamental form would vanish identically. Hence, the second mean curvature is

not defined and we end this section with the following non-existence theorem.

Theorem 9. There are no II-minimal translation surfaces in Euclidean three-
space.
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