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Abstract. This is a review article on the motion of charged particles related to the

author’s study. The equation of motion of a charged particle is defined as a curve

satisfying a certain differential equation of second order in a semi-Riemannian

manifold furnished with a closed two-form. Charged particle is a generalization of

geodesic. We shall oversee the geometric aspect of charged particles.

1. Introduction

Let F be a closed two-form and U a function on a connected semi-Riemannian

manifold (M, 〈 , 〉), where 〈 , 〉 is a semi-Riemannian metric on M . We denote by∧m(M) the space of m-forms on M . Denote by ι(X) :
∧m(M) → ∧m−1(M)

the interior product operator induced from a vector field X on M , and by L :
T (M) → T ∗(M), the Legendre transformation from the tangent bundle T (M)
of M onto the cotangent bundle T ∗(M), which is defined by

L : T (M) → T ∗(M), u �→ L(u), L(u)(v) = 〈u, v〉, u, v ∈ T (M). (1)

A curve x(t) in M is called the motion of a charged particle under electromag-
netic field F and potential energy U , if it satisfies the following second order

differential equation

∇ẋẋ = −gradU − L−1(ι(ẋ)F ) (2)

where ∇ is the Levi-Civita connection of M . Here ∇ẋẋ means the acceleration

of the charged particle. Since −L−1(ι(ẋ)F ) is perpendicular to the direction ẋ of

the movement, −L−1(ι(ẋ)F ) means the Lorentz force. This equation originated

in the theory of general relativity (see § 2 or [26]). When F = 0 and U = 0,

then x(t) is merely a geodesic. When M is a Kähler manifold with a complex

structure J , then it is natural to take a scalar multiple of the Kähler form Ω defined
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by Ω(X,Y ) = 〈X, JY 〉 as an electromagnetic field F . We call κΩ the Kähler
electromagnetic field, where κ is a constant. The author believes that the motion

of charged particle under Kähler electromagnetic field oughts to reflect the Kähler

structure of its spacetime M (see Cor. 10 in § 4). Returning to the general case, if

x(t) is the motion of a charged particle (2) under F and U , then the total energy

1

2
〈ẋ, ẋ〉 + U(x(t)) (3)

is a constant. If F has an electromagnetic potential A, that is F = dA, then we

define a functional E by

E(x) =

∫
1

0

(
1

2
〈ẋ, ẋ〉 +

1

2
A(ẋ) − U(x(t))

)
dt.

Here we set

(2dA)(X,Y ) = X(A(Y )) − Y (A(X)) −A([X,Y ]).

The Euler-Lagrange equation for E describes the motion of a charged particle

(2) under F and U . For instance, if M is a Hermitian symmetric space of non-

compact type, since it is diffeomorphic to a Euclidean space, any electromagnetic

field has an electromagnetic potential. On the other hand, for a Kähler electromag-

netic field on a compact Kähler manifold, there does not exist an electromagnetic

potential ([19, p. 132, 6]).

We denote by π : T (M) → M the natural projection. Based on (3), we define a

function H on T (M) as

H(u) =
1

2
〈u, u〉 + U(π(u)) for u ∈ T (M). (4)

Here we mainly deal with charged particles in the case where M is a homoge-

neous space. In the beginning of each section is given an abstract. For almost all

assertions, we shall omit their proofs. See the original papers.

2. Physical Background

In this section we explain the physical background of the motion of charged par-

ticle (2) according to [16].

We denote by ρ = ρ(t, x1, x2, x3) and J = J(t, x1, x2, x3) the charge and current

density respectively. The equation of continuity is given by

∂ρ

∂t
+ divJ = 0. (5)
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The magnetic field B = (B1, B2, B3) and the electric field E = (E1, E2, E3) are

time dependent vector fields on R
3. Maxwell’s equations are given by

divB = 0 (non-existence of magnetic monopoles) (6)

∂B

∂t
+ rot E = 0 (Faraday’s law) (7)

divE =
ρ

ε0
(Gauss’ law) (8)

−ε0∂E

∂t
+

1

μ0

rot B = J (Ampère-Maxwell’s law). (9)

The speed of light c is given by c = 1
√

ε0μ0
. Let (t, x1, x2, x3) be the canonical

coordinates of R
4. We define a two-form on R

4 by

F =
3∑

i=1

Eidxi ∧ dt+ S1,2,3B1dx2 ∧ dx3

where we denote by S1,2,3 the cyclic sum. Then we have

dF = (divB)dx1 ∧ dx2 ∧ dx3 + S1,2,3

(
∂B1

∂t
+ (rotE)1

)
dt ∧ dx2 ∧ dx3.

Hence the conditions (6) and (7) are equivalent to the condition dF = 0. We

define a Lorentz metric on 〈 , 〉 on R
4 by〈

∂

∂xi
,
∂

∂xj

〉
= δij ,

〈
∂

∂t
,
∂

∂t

〉
= −c2,

〈
∂

∂t
,
∂

∂xj

〉
= 0.

We denote by R
4
1

= (R4, 〈 , 〉) the four dimensional Minkowski space-time. The

Hodge star operator ∗ :
∧

2(R4
1
) → ∧2(R4

1
) is conformal invariant and satisfies

∗2 = −1. We define the current density one-form j ∈ ∧1(R4
1
) by

j =
1

c2ε0

3∑
i=1

Jidxi − ρ

ε0
dt.

Since

d ∗ j =
1

cε0

(
∂ρ

∂t
+ div J

)
dt ∧ dx1 ∧ dx2 ∧ dx3

the condition (5) is equivalent to δj = 0. Since

∗F =
1

c
S1,2,3E1dx2 ∧ dx3 − c

3∑
i=1

Bidxi ∧ dt

δF = ∗d ∗ F = −(div E)dt− 1

c

3∑
i=1

(
1

c

∂Ei

∂t
− c(rot B)i

)
dxi
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the conditions (8) and (9) are equivalent to the condition δF = j.

Let x(τ) = (t(τ), x1(τ), x2(τ), x3(τ)) be a curve in R
4
1
, where τ is called a

proper time. The equation of motion for an electric charged particle with mass m
and electric charge q is give by m∇ẋẋ = −qL−1(ι(ẋ)F ), which is equivalent to

m
d2t

dτ2
=

q

c2

3∑
i=1

Ei
dxi

dτ

m
d2x1

dτ2
= q

(
E1

dτ

dt
+

dx2

dτ
B3 − dx3

dτ
B2

)
m

d2x2

dτ2
= q

(
E2

dτ

dt
+

dx3

dτ
B1 − dx1

dτ
B3

)
m

d2x3

dτ2
= q

(
E3

dτ

dt
+

dx1

dτ
B2 − dx2

dτ
B1

)
.

The Lorentz metric 〈 , 〉 naturally induces a scaler product 〈 , 〉 on
∧k(R4

1
). See

[20] for the detail. For instance

〈dxi,dxj〉 = δij , 〈dt,dt〉 = − 1

c2
, 〈dt,dxi〉 = 0

〈dxi ∧ dxj ,dxk ∧ dxl〉 = δikδjl, i �= j, k �= l

〈dxi ∧ dt,dxj ∧ dt〉 = − 1

c2
δij , 〈dxi ∧ dt,dxj ∧ dxk〉 = 0.

Since

〈F, ∗F 〉 =
2

c
E · B, 〈F + ∗F, F + ∗F 〉 = −〈F − ∗F, F − ∗F 〉 =

4

c
E · B

the condition E ⊥ B is equivalent to one of (hence all) the following conditions:

〈F, ∗F 〉 = 0, 〈F − ∗F, F − ∗F 〉 = 0, 〈F + ∗F, F + ∗F 〉 = 0.

3. Hamiltonian Dynamics of a Charged Particle

In this section, we show that, according to [13], even if the electromagnetic field

F does not have an electromagnetic potential, the motion of a charged particle

(2) is a Hamiltonian system with H defined by (4) and a noncanonical symplectic

structure on T (M) (Theorem 3). We here mention some fundamental defini-

tions concerning symplectic geometry. A symplectic structure on a manifold is

a closed two-form which is nondegenerate at each point. A symplectic manifold
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is a manifold possessing a symplectic structure. A symplectic manifold is even-

dimensional and orientable. A diffeomorphism on a symplectic manifold is called

a symplectic transformation if it preserves the symplectic structure, though, in old

literatures, a symplectic transformation was called a canonical transformation.

3.1. Hamiltonian Dynamics of a Geodesic

In this subsection, we review the Hamiltonian dynamics of a geodesic, which

is defined by ∇ẋẋ = 0, in a semi-Riemannian manifold (M, 〈 , 〉), in order to

contrast it with the Hamiltonian dynamics of a charged particle discussed in the

next subsection. The results obtained here will be used in the next subsection.

Define a function H on T (M) by

H(u) =
1

2
〈u, u〉 for u ∈ T (M)

which corresponds to the kinetic energy. There exists a canonical symplectic

structure ω∗ on T ∗(M). We denote by ω the pull back of ω∗ by the Legendre

transformation L : T (M) → T ∗(M). Then ω is a symplectic structure on T (M)
(see (11) in the proof of Proposition 1 below). We denote by XH the Hamiltonian

vector field of the Hamiltonian H with respect to ω, that is, dH = ι(XH)ω. We

denote by { , } the Poisson bracket on C∞(T (M)) with respect to ω, which is

defined by

{f, g} = Xf (g) = ω(Xg, Xf ) for f, g ∈ C∞(T (M)).

Each orbit of the geodesic flow on T (M) coincides with the integral curve of XH

([10]). We define a mapping

P : X(M) → (C∞(T (M)), { , }), Y �→ PY

by PY (u) = 〈u, Y 〉. The mapping P is, defined via the Legendre transformation

L specified in (1)

PY = L ◦ Y.
Here the differential one-form L ◦ Y being considered as a function on T (M),
whose restriction to each fibre of the bundle is linear. It is clear that P is injective.

If Y is a Killing vector field, then PY is a conservative constant for geodesics

(see [20, Lemma 9.26]). In other words

{H,PY } = 0 (10)

for any Killing vector field Y .
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Proposition 1 ([10], p. 222) . {PY , PZ} = P[Y,Z] for all Y, Z ∈ X(M).

Proof: Let (x1, · · · , xn) be a local coordinate system in M . The components

gij of 〈 , 〉 with respect to (x1, · · · , xn) are given by gij = 〈 ∂
∂xi ,

∂
∂xj 〉. We de-

note by (gij) the inverse matrix of (gij). We introduce a local coordinate system

(x1, · · · , xn, u1, · · · , un) in T (M) by setting

u =
n∑

i=1

ui(u)
∂

∂xi
, u ∈ T (M).

The local expression for the canonical symplectic structure ω is then given by

ω =
∑
i,j,k

∂gij

∂xk
ujdxi ∧ dxk +

∑
i,j

gijdx
i ∧ duj = −d(

∑
giju

jdxi). (11)

The vector fields Y and Z can be written as Y =
∑
Y i ∂

∂xi , Z =
∑
Zi ∂

∂xi , so

PZ =
∑

gijZ
iuj , and P[Y,Z] =

∑
gjk

(
Y i∂Z

j

∂xi
− Zi∂Y

j

∂xi

)
uk.

Since dPY = ι(XPY
)ω, we have

XPY
=
∑

Y i ∂

∂xi
−
∑(

Y k ∂gij

∂xk
+
∂Y k

∂xi
gjk

)
giluj ∂

∂ul
· (12)

Hence we obtain

{PY , PZ} = XPY
(PZ)

=
∑

Y i∂(gjkZ
j)

∂xi
uk −

∑(
Y k ∂gij

∂xk
+
∂Y k

∂xi
gjk

)
gilujgplZ

p

=
∑

Y i∂(gjkZ
j)

∂xi
uk −

∑(
Y j ∂gik

∂xj
+
∂Y j

∂xi
gjk

)
Ziuk

=
∑

gjk

(
Y i∂Z

j

∂xi
− Zi∂Y

j

∂xi

)
uk = P[Y,Z].

�

A diffeomorphism ϕ of M induces a transformation ϕ∗ of T (M). Thus a vector

field Y ofM induces vector fields of T (M) in the following two ways: One is the

Hamiltonian vector field XPY
of PY , and the other is

dϕt∗(u)

dt |t=0
(u ∈ T (M)),

where ϕt is the one parameter transformation group of M generated by Y .

When Y is a Killing vector field, by (10) Noether’s theorem tells us that the one-

parameter transformation group of T (M) generated byXPY
is a symplectic trans-

formation which preserves H .
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Proposition 2 ([13]) . Letϕt∗ be the one-parameter transformation group of T (M)
induced from the one parameter transformation group ϕt of M generated by a
Killing vector field Y . Then ϕt∗ coincides with the one-parameter transformation
group generated by the Hamiltonian vector field of PY .

Proof: Since Y is a Killing vector field∑
k

Y k ∂gij

∂xk
= Y

(〈
∂

∂xi
,
∂

∂xj

〉)
=

〈[
Y,

∂

∂xi

]
,
∂

∂xj

〉
+

〈
∂

∂xi
,

[
Y,

∂

∂xj

]〉
= −

∑
k

(
∂Y k

∂xi
gkj +

∂Y k

∂xj
gki

)
.

Applying
∑

i g
il to the equation above, we have

∂Y l

∂xj
= −
∑(∂Y k

∂xi
gkj + Y k ∂gij

∂xk

)
gil.

Using (12), we obtain

XPY
=
∑

Y i ∂

∂xi
+
∑ ∂Y l

∂xj
uj ∂

∂ul
=

dϕt∗

dt |t=0

·

�

3.2. Hamiltonian Dynamics of a Charged Particle

In this subsection, we study the Hamiltonian dynamics of the motion of a charged

particle (2) in a connected semi-Riemannian manifold (M, 〈 , 〉). We define a

function H on T (M) by (4). For a closed two-form F , we define a closed two-

form ωF on T (M) by

ωF = ω − π∗F.

For each tangent vector u ∈ T (M), we denote by xu the motion of a charged

particle (2) with the initial vector u. The electromagnetic flow Φt : T (M) →
T (M) is defined by Φt(u) = ẋu(t).

Theorem 3 ([13]) .

1) The closed two-form ωF is a symplectic structure on T (M).
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2) We denote by XF
H the Hamiltonian vector field of the Hamiltonian H with

respect to ωF . Each orbit of the electromagnetic flow on T (M) coincides
with the integral curve of XF

H .

Remark 4. This theorem is well-known when F = 0. The theorem is also well-

known when M = R
4
1

and U = 0 ([21], [10, § 20] and [18, § 4]).

Henceforth, we set U = 0. We define a tensor field φ of type (1, 1) by

F (X,Y ) = 〈X,φY 〉 that is φX = −L−1(ι(X)F ) (13)

which is skew-symmetric with respect to 〈 , 〉. We consider the motion of a charged

particle

∇ẋẋ = φẋ (14)

under electromagnetic field F . We define a Lie subalgebra Iφ(M) in X(M) by

Iφ(M) = {X ∈ X(M) ; LX〈 , 〉 = 0, LXφ = 0}
where LX is the Lie derivative with respect to the vector field X . The condition

LX〈 , 〉 = 0 means X is a Killing vector field. Using (13), we have

Iφ(M) = {X ∈ X(M) ; LX〈 , 〉 = 0, LXF = 0}
For X ∈ Iφ(M), we have d(ι(X)F ) = 0 (we refer to the proof of Theorem 9).

The following proposition will be used in the proof of Theorem 9.

Proposition 5 ([13]) . Let X and Y be in Iφ(M). Then

ι([X,Y ])F = −d(F (X,Y )).

Proof: Let Z be any vector field on M . Since F is closed, we have

SX,Y,ZX(F (Y, Z)) − SX,Y,ZF ([X,Y ], Z) = 0

which implies that

d(F (X,Y )(Z) = Z(F (X,Y ))

= −X(F (Y, Z)) − Y (F (Z,X))

+F ([X,Y ], Z) + F ([Y, Z], X) + F ([Z,X], Y )

= −X(〈Y, φZ〉) − Y (〈Z, φX〉)
+〈[X,Y ], φZ〉 + 〈[Y, Z], φX〉 + 〈[Z,X], φY 〉.
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Since X and Y are Killing vector fields

d(F (X,Y )(Z) = −〈Y, [X,φZ]〉 − 〈Z, [Y, φX]〉 + 〈[Z,X], φY 〉.

Since X and Y are infinitesimal automorphisms of φ,

(d(F (X,Y ))(Z) = −〈Y, φ[X,Z]〉 − 〈Z, φ[Y,X]〉 + 〈[Z,X], φY 〉
= F (Z, [X,Y ]) = −ι([X,Y ])F (Z).

Hence d(F (X,Y ) = −ι([X,Y ])F . �

Let Y be in Iφ(M). Assume that there exists a function fY such that

ι(Y )F = dfY .

For instance, if M satisfies one of the conditions 1), 2) or 3) in Theorem 9, then

such a function fY exists. We define a function P F
Y on T (M) by

PF
Y (u) = 〈u, Y 〉 − fY (π(u)) = (PY − fY ◦ π)(u) for all u ∈ T (M).

We denote by { , }F the Poisson bracket with respect to ωF .

Proposition 6 ([13]) . Let Y be in Iφ(M). Assume that there exists a function fY

such that ι(Y )F = dfY . Then

1) The Hamiltonian vector field of P F
Y with respect to ωF coincides with the

Hamiltonian vector field XPY
of PY with respect to ω.

2) {H,PF
Y }F = 0, where H(u) = 1

2
〈u, u〉.

Proof: 1) Using ι(Y )F = dfY and (12), we have d(fY ◦ π) = ι(XPY
)π∗F . Thus

dPF
Y = dPY − d(fY ◦ π) = ι(XPY

)ω − ι(XPY
)π∗F = ι(XPY

)ωF .

2) {H,PF
Y }F = −XPY

(H) = {H,PY } = 0

where 1) guarantees the first equality, and the last follows from (10). �

Using Noether’s theorem, Proposition 2 and Proposition 6, we obtain the fol-

lowing conclusion: The one-parameter transformation group of T (M) which is

induced from the one-parameter transformation group of M generated by X ∈
Iφ(M) is a symplectic transformation that preserves H .

Assume that there exists a function fY such that dfY = ι(Y )F for any vector

field Y ∈ Iφ(M). We examine the relation between {P F
Y , P

F
Z }F and PF

[Y,Z]
for
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Y, Z ∈ Iφ(M). In order to formulate this, we define an equivalence relation ∼ on

C∞(T (M)) by

f1 ∼ f2 ⇔ f2 − f1 = a constant function f1, f2 ∈ C∞(T (M)).

We denote by C∞(T (M))/R the set of equivalence classes in C∞(T (M)). If we

set

{[f1], [f2]}F = [{f1, f2}F ] for f1, f2 ∈ C∞(T (M))

then the induced Poisson bracket { , }F on C∞(T (M))/R is well-defined, where

we denote by [f ] the equivalence class of f ∈ C∞(T (M)). By Lemma 1, Propo-

sition 5 and Proposition 6, we have the following

Proposition 7 ([13]) . Assume that there exists a function fY such that dfY =
ι(Y )F for any Y ∈ Iφ(M). Then the mapping

[PF ] : (Iφ(M), [ , ]) → (C∞(T (M))/R, { , }F ), Y �→ [PF
Y ]

is a Lie homomorphism, that is

{[PF
Y ], [PF

Z ]}F = [PF
[Y,Z]

] for Y, Z ∈ Iφ(M).

4. Simpleness of the Motion of Charged Particles

In general, it is an interesting problem whether a given equation of motion has a

periodic solution or not. In this section, we apply the conservation law obtained in

the previous section to the simpleness of the motion of a charged particle accord-

ing to [15]. Here a curve in a manifold is simple if it is a simply closed periodic

curve, or if it does not intersect itself. Hence a curve is not simple if it has a

self-intersection point but it is not simply closed.

Definition 8 ([13]) . Let (M, 〈 , 〉) be a semi-Riemannian manifold and φ a ten-
sor field of type (1, 1) on M which is skew-symmetric with respect to the semi-
Riemannian metric 〈 , 〉. Such a manifold (M, 〈 , 〉, φ) is called G-homogeneous
or simply homogeneous if a Lie transformation group G of isometries acts transi-
tively and effectively on M , and φ is invariant under the action of G.

Theorem 9 ([13], [16]) . Let (M, 〈 , 〉, φ) be a G-homogeneous semi-Riemannian
manifold. Assume that the two-form Ω defined by Ω(X,Y ) = 〈X,φY 〉 is closed.
If one of the following three conditions 1), 2) or 3) holds, then the motion of
charged particle ∇ẋẋ = κφ(ẋ) is simple, where κ is a constant.
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1) One dimensional de-Rham cohomology group H1(M) vanishes.

2) [g, g] = g, where g is a Lie algebra of G.

3) (M, 〈 , 〉, φ, η, ξ) is an almost α-Sasakian manifold, where α is a nonzero
constant.

See § 5 for the definition of almost α-Sasakian manifold.

Proof: Let X be a Killing vector field which is an infinitesimal automorphism of

φ. We show that ι(X)Ω is closed. Using Cartan’s relation and the assumption that

Ω is closed we have

2d(ι(X)Ω) = LXΩ − 3!ι(X)dΩ = LXΩ.

Hence, for any vector field Y and Z, we have

2(d(ι(X)Ω))(Y,Z) = (LXΩ)(Y, Z)

= X(Ω(Y, Z)) − Ω([X,Y ], Z) − Ω(Y, [X,Z])

= X〈Y, φZ〉 − 〈[X,Y ], φZ〉 − 〈Y, φ[X,Z]〉
= 〈Y, [X,φZ]〉 − 〈Y, φ[X,Z]〉 = 0

where the fourth equality comes from the fact LX〈 , 〉 = 0, and LXφ = 0 guaran-

tees the last equality. Hence ι(X)Ω is closed.

We show that there exists a function fX such that ι(X)Ω = dfX if M satisfies

one of the conditions 1), 2) or 3) in Theorem 9.

1) Since d(ι(X)Ω) = 0 and H1(M) = {0}, there exists a function fX such

that ι(X)Ω = dfX .

2) Since [g, g] = g, there exists a function fX such that ι(X)Ω = dfX by

Proposition 5.

3) If we put fX = − 1

2αη(X), then ι(X)Ω = dfX by Proposition 20.

Let x(t) be the motion of charged particle. Since

d

dt
(〈ẋ(t), Xx(t)〉 − κfX(x(t))) = 〈∇ẋẋ, X〉 + 〈ẋ,∇ẋX〉 − κ(dfX)(ẋ)

= κ〈φ(ẋ), X〉 − κΩ(X, ẋ) = 0
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〈ẋ(t), Xx(t)〉 − κfX(x(t)) is a constant independent of t. Assume that x(0) =
x(1). Since

〈ẋ(0), Xx(0)〉 − κfX(x(0)) = 〈ẋ(1), Xx(0)〉 − κfX(x(0))

we have

〈ẋ(0) − ẋ(1), Xx(0)〉 = 0.

Since (M, 〈 , 〉, φ) is homogeneous

Tx(0)(M) = span{Xx(0) ; X − Killing, LXφ = 0}.

Since 〈 , 〉 is nondegenerate, we have ẋ(0) = ẋ(1). Since ∇ẋẋ = κφ(ẋ) is an

ordinary differential equation of second order, we have x(t + 1) = x(t). Hence

x(t) is a a simply closed periodic curve. �

Corollary 10 ([16]) . A homogeneous Kähler manifold M does not contain a to-
tally geodesic Kähler immersed complex torus if M satisfies one of the conditions
1) or 2) in Theorem 9.

Proof: Let T = C
n/Γ be a complex torus of complex dimension n, where Γ =∑

2n
j=1

Raj is a lattice of C
n. It is sufficient to prove that there exists a charged

particle which is not simple in T . Denote by π : C
n → T the natural projection.

Let p and q be points in C
n such that p �= q and π(p) = π(q). Let x̃(t) be the

motion of a charged particle in C
n through p and q under a Kähler electromagnetic

field, which is a circle in the usual sense. If we put x(t) = π(x̃(t)), then x(t) is a

motion of a charged particle in T which is not simply closed. �

In a similar way to the proof of Theorem 9, we can prove the following theorem

of Kobayashi ([20, p. 321]), when M is a homogeneous Riemannian manifold.

Theorem 11 ([16]) . Every geodesic in a homogeneous semi-Riemannian mani-
fold is a simple curve.

5. Sasakian Manifold

The following definitions are to be found in [7].

Definition 12. Let (M, 〈 , 〉) be an odd dimensional Riemannian manifold with

the Riemannian metric 〈 , 〉. An almost contact metric structure on M is defined
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by a tensor field φ of type (1, 1), a vector field ξ and a one-form η on M such that

φ2 = −1 + η ⊗ ξ (15)

φ(ξ) = 0 (16)

η(φX) = 0 (17)

η(ξ) = 1 (18)

〈φX, φY 〉 = 〈X,Y 〉 − η(X)η(Y ) (19)

η(X) = 〈X, ξ〉. (20)

A manifold equipped with an almost contact metric structure is called an almost
contact metric manifold.

Example 13. Let M be an oriented real hypersurface in a Hermitian manifold

(M̄, 〈 , 〉, J). We denote by ν a unit normal vector field of M . Set

ξ = −Jν, η(X) = 〈X, ξ〉, φ(X) = (JX)T . (21)

Then (M, 〈 , 〉, φ, η, ξ) is an almost contact metric manifold.

Definition 14. We define a two-form Ω on an almost contact metric manifold

(M, 〈 , 〉, φ, η, ξ) by Ω(X,Y ) = 〈X,φY 〉.

We will study the motion of a charged particle in an almost contact metric mani-

fold (M, 〈 , 〉, φ, η, ξ) defined by

∇ẋẋ = κφ(ẋ).

Since φ(ẋ) is perpendicular to both ẋ and ξ, the vector field ξ and the force κφ(ẋ)
mean the magnetic field and the Lorentz force, respectively, in magnetic theory.

Hence in this paper we call φ the Lorentz tensor, after Lorentz.

Definition 15. Let (M, 〈 , 〉, φ, η, ξ) be an almost contact metric manifold. We

define a tensor [φ, φ] of type (1, 2) by

[φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ] − φ[φX, Y ] − φ[X,φY ]

which is called the Nijenhuis torsion of φ.

Since the torsion tensor of the Levi-Civita connection vanishes, we can write

[φ, φ] (X,Y ) = (∇φXφ)(Y ) − (∇φY φ)(X)
(22)

+φ((∇Y φ)(X) − (∇Xφ)(Y )).
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Definition 16. An almost contact metric manifold (M, 〈 , 〉, φ, η, ξ) is said to be

normal if [φ, φ] + 2dη ⊗ ξ = 0, where

2dη(X,Y ) = X(η(Y )) − Y (η(X)) − η([X,Y ]).

Proposition 17 (Blair [5], p. 50, Proposition) . If an almost contact metric man-
ifold (M, 〈 , 〉, φ, η, ξ) is normal then

Lξη = 0, Lξφ = 0, (LφXη)(Y ) = (LφY η)(X).

Definition 18. An almost contact metric manifold (M, 〈 , 〉, φ, η, ξ) is said to be

an almost α-Sasakian manifold if

dη(X,Y ) = α〈X,φY 〉 (23)

where α is a function. In this paper we deal with M only if α is a constant.

Hence η means a (scalar multiple of) magnetic potential for magnetic field ξ when

α is a non-zero constant.

Proposition 19. Let (M, 〈 , 〉, φ, η, ξ) be an almost α-Sasakian manifold. Then

1) The integral curves of ξ are geodesics.

2) Lξη = 0.

The following proposition was used in the proof of Theorem 9.

Proposition 20. Let (M, 〈 , 〉, φ, η, ξ) be an almost α-Sasakian manifold, where
α is a non-zero constant. If X is a Killing vector field which is an infinitesimal
automorphism of φ, then

ι(X)Ω = − 1

2α
d(η(X)).

Definition 21. An almostα-Sasakian manifold (M, 〈 , 〉, φ, η, ξ) is calledα-Sasakian
if M is normal and one-Sasakian manifold is simply called Sasakian manifold.

Proposition 22. Let (M, 〈 , 〉, φ, η, ξ) be an α-Sasakian manifold, where α is a
non-zero constant. Then

1) ξ is a Killing vector field.
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2) ∇Y ξ = −αφY .

The following proposition is a theorem of Blair when α = 1 (see [5, p. 73]).

Proposition 23. Let (M, 〈 , 〉, φ, η, ξ) be an almost α-Sasakian manifold, where
α is a constant.

1) If (M, 〈 , 〉, φ, η, ξ) satisfies

(∇Xφ)(Y ) = α(〈X,Y 〉ξ − η(Y )X)

then it is an α-Sasakian manifold.

2) Conversely assume that (M, 〈 , 〉, φ, η, ξ) is an α-Sasakian manifold, where
α is a non-zero constant. Then

(∇Xφ)(Y ) = α(〈X,Y 〉ξ − η(Y )X). (24)

Proposition 24. Let (M, 〈 , 〉, φ, η, ξ) be an oriented real hypersurface in a Käh-
ler manifold (M̄, 〈 , 〉, J), where (φ, η, ξ) is defined by (21). Assume that the man-
ifold M is totally umbilic, that is, there exists a constant α such that B(X,Y ) =
−α〈X,Y 〉ν, whereB is the second fundamental form ofM . Then (M, 〈 , 〉, η, φ, ξ)
is an α-Sasakian manifold.

At the end of this section we focus our attention on the motion of a charged particle

under Lorentz force in an odd-dimensional sphere S
2n+1 of unit radius. We denote

by J the complex structure of C
n+1. If we set

ξx = −Jx, φX = (JX)T , η(X) = 〈X, ξ〉
then S

2n+1 is a Sasakian manifold by Proposition 24 since it is a totally umbilic

real hypersurface in the complex Euclidean space C
n+1.

Theorem 25 ([16]) . Let x(t) be the motion of a charged particle ∇ẋẋ = κφ(ẋ)
under Lorentz force in the odd-dimensional sphere S

2n+1 of unit radius. Assume
that x(0) = e1 and that

ẋ(0) = iv1e1 +
n+1∑
j=2

vjej , v1 ∈ R, v2, · · · , vn+1 ∈ C
∗.

Then x(t) is given by

x(t) = exp

(
i

2
κt

)⎧⎨⎩
(

cosωt+
i

ω
(v1 − κ

2
) sinωt

)
e1 +

sinωt

ω

n+1∑
j=2

vjej

⎫⎬⎭
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where

ω =

√
1

4
κ2 − κv1 + v2 > 0, v = ||ẋ(0)||, i =

√−1.

The motion is periodic if and only if κ/ω is rational.

6. Sasaki-Kähler Submersion

The image of any horizontal geodesic under a Riemannian submersion is a geo-

desic [20]. However, in general the image of a geodesic under a Riemannian

submersion is not a geodesic. In this section, according to [17], we define a

Sasaki-Kähler submersion from a Sasakian manifold onto a Kähler manifold, and

show that the image of the motion of a charged particle is the motion of a charged

particle. In particular, the image of a geodesic is the motion of a charged parti-

cle under a Sasaki-Kähler submersion. A Sasaki-Kähler submersion is a kind of

Riemannian submersion [3].

6.1. Charged Particles and Okumura Geodesics

Let (M, 〈 , 〉, φ, η, ξ) be a Sasakian manifold. For a constant r ∈ R, we define a

tensor field A of type (1, 2) by

A(X)Y = dη(X,Y )ξ + rη(X)φY + η(Y )φX.

Then A(X) is skew-symmetric with respect to g. The Okumura linear connection

∇̃ is defined by ∇̃XY = ∇XY +A(X)Y , which satisfies ∇̃〈 , 〉 = 0 and ∇̃ξ = 0
(see [23]). We have

∇̃XX = ∇XX + (r + 1)η(X)φX. (25)

A curve x(t) in M is called the motion of a charged particle if ∇ẋẋ = κφ(ẋ) for

a constant κ. The constant κ is the charge-to-mass ratio for x(t).

Proposition 26 ([17]) .

1) If x(t) is an Okumura geodesic, that is ∇̃ẋẋ = 0, then η(ẋ(t)) is a constant.

2) If x(t) is the motion of a charged particle, then η(ẋ(t)) is a constant.

Proposition 26 and (25) immediately imply the following:
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Proposition 27 ([17]) .

1) Let x(t) be an Okumura geodesic. Set c = η(ẋ(t)), then x(t) is the motion
of a charged particle of the charge-to-mass ratio κ = −(r + 1)c.

2) Let x(t) be the motion of a charged particle. Set c = η(ẋ(t)).

2.1) When c �= 0, then x(t) is an Okumura geodesic for r = −( κ
c + 1).

2.2) When c = 0, then ∇̃ẋẋ = κφ(ẋ).

Corollary 28 ([17]) . A curve x(t) is a geodesic with respect to the Levi-Civita
connection if and only if

1) x(t) is an Okumura geodesic for r = −1 when η(ẋ) �= 0

2) x(t) is an Okumura geodesic for any r when η(ẋ) = 0.

6.2. Sasaki-Kähler Submersion and Charged Particles

Definition 29 ([17]) . Let π : M̄ → M be a Riemannian submersion from a
Sasakian manifold (M̄, 〈 , 〉, φ, η, ξ) of dimension 2n+ 1 onto a Kähler manifold
(M, 〈 , 〉, J) of real dimension 2n. We call π a Sasaki-Kähler submersion if

1) π−1(y) (y ∈M) is the image of an integral curve of ξ

1) dπφX = JdπX for any horizonal vector X .

Here horizontal vector means η(X) = 0.

For instance, we can construct a Sasaki-Kähler submersion from any Hermitian

symmetric space M .

Theorem 30 ([17]) . Let π : M̄ → M be a Sasaki-Kähler submersion. Assume
that x(t) ∈ M̄ is the motion of a charged particle of the charge-to-mass ratio κ.
Define a constant c by c = η(ẋ). Then y(t) = π(x(t)) is the motion of a charged
particle of the charge-to-mass ratio κ+ 2c, that is ∇ẏẏ = (κ+ 2c)Jẏ, where ∇
is the Levi-Civita connection of M . In particular, if x(t) is a geodesic, then y(t)
is the motion of a charged particle of the charge-to-mass ratio 2c.
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Proof: Since ||ẋ|| is a constant, ẋ(t) = 0 for some t if and only if ẋ(t) = 0 for

any t. In this case, x(t) is a single point. Hence we may assume ẋ(t) �= 0 for any

t. If ẋ(t) is proportional to ξ for some t, then x(t) is an integral curve of ξ. In this

case, y(t) is a single point. Hence we may assume that ẋ is not proportional to ξ
for any t. In other words, we may assume ẏ(t) �= 0 for any t. Hence there exists

a (local) vector field X of M such that X = ẏ. If we denote by X̄ the horizontal

lift of X , then we have ẋ = X̄ + η(ẋ)ξ = X̄ + cξ. Since x(t) is the motion of a

charged particle, we get

κφX̄ = κφẋ = ∇̄ẋẋ = ∇̄X̄+cξ(X̄ + cξ) = ∇̄X̄X̄ + c(−2φX̄ + [ξ, X̄])

where ∇̄ is the Levi-Civita connection of M̄ . Since ξ and 0 are π-related, and

X̄ and X are π-related, we have π[ξ, X̄] = [πξ, πX̄] = 0. Hence [ξ, X̄] is

vertical. Since ξ is a Killing vector field and X̄ is perpendicular to ξ, we have

η([ξ, X̄]) = 〈ξ, [ξ, X̄]〉 = ξ(〈ξ, X̄〉) = 0. Hence [ξ, X̄] = 0, which implies

that κφX̄ = ∇̄X̄X̄ − 2cφX̄ . Using [20, p. 212, Lemma 45, (3)], we obtain

∇ẏẏ = ∇XX = dπ(∇̄X̄X̄) = (κ+ 2c)πφX̄ = (κ+ 2c)Jẏ. �

7. Charged Particles in Special Homogeneous Spaces

7.1. Charged Particles in Special Homogeneous Spaces

In this subsection we shall construct a Riemannian homogeneous space M with

an invariant (1, 1)-tensor I and consider the motion of charged particles under

electromagnetic field κI according to [14].

Let G be a connected Lie group and K a compact subgroup of G. We consider

the coset manifold M = G/K. We denote by g and k the Lie algebras of G and

K, respectively. SinceK is compact, there exists an Ad(K)-invariant subspace m

of g such that

g = k ⊕ m. (26)

We denote by π the natural projection from G onto M , and by o = π(e), the

origin of M . Then we can identify m with To(M) through π∗. We assume that

there exist such Ad(K)-invariant subspaces m1 and m2 of m which span m, i.e.,

m = m1 ⊕ m2 (27)

and such that

[m1,m1] ⊂ k ⊕ m2, [m2,m2] ⊂ k, [m1,m2] ⊂ m1. (28)
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For X in g, we denote by Xi the mi-component of X . Moreover we assume that

there exist a nonzero constant c ∈ R and Ad(K)-invariant inner product 〈 , 〉 in m

such that

m1 ⊥ m2, 〈[X,Y ]2, Z〉 + c〈X, [Z, Y ]〉 = 0, X, Y ∈ m1, Z ∈ m2. (29)

If we extend the inner product 〈 , 〉 to a G-invariant Riemannian metric 〈 , 〉 on M ,

then M is a Riemannian homogeneous space and G acts on M isometrically. We

denote by c the center of k. For W in c, we define an endomorphism I of m by

I : m → m;X1 +X2 �→ [W,X1] +
1

c
[W,X2], X1 ∈ m1, X2 ∈ m2. (30)

Since Ad(k)I = IAd(k) for any k in K, we can extend I to a G-invariant (1, 1)-
tensor I on M . We then have

〈IX, Y 〉 + 〈X, IY 〉 = 0 for X,Y ∈ X(M).

Let κ be a constant. A curve x(t) is called the motion of a charged particle under
electromagnetic field κI , if it satisfies the following differential equation

∇ẋẋ = κIẋ. (31)

When κ = 0, then x(t) is a geodesic.

Theorem 31 ([14]) . Let M = (G/K, 〈 , 〉) be a Riemannian homogeneous space
with a G-invariant skew-symmetric (1, 1)-tensor I satisfying the conditions (26),
(27), (28), (29) and (30). Let x(t) be the motion of a charged particle defined by
(31) under electromagnetic field κI with initial conditions x(0) = o and ẋ(0) =
X1 +X2 (X1 ∈ m1, X2 ∈ m2). Then x(t) is given by

x(t) = π
(
exp t(X1 + cX2 + κW ) exp t(1 − c)

(
X2 +

κ

c
W
))

.

If x(t) intersects itself, then it is simply closed.

Remark 32. In the case when κ = 0, this is a theorem of Dohira [9].

Example 33 (geodesics in compact four-symmetric spaces) . Let G be a com-
pact connected Lie group and θ an automorphism of G of order four. We also
denote by θ the differential of θ. We define a closed subgroup K of G by K =
{g ∈ G ; θ(g) = g} and a subspace m in the Lie algebra g of G by

m = {X ∈ g ; (θ3 + θ2 + θ + 1)(X) = 0}.
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We define subspaces m1 and m2 in m by

m1 = {X ∈ m ; θ2(X) = −X} = {X ∈ g ; θ2(X) = −X}
m2 = {X ∈ m ; θ2(X) = X} = {X ∈ g ; θ(X) = −X}.

Let F : G/K → G be a Cartan embedding, which is defined by

F : G/K → G, gK �→ gθ(g−1).

Take an Ad(G) and θ invariant inner product ( , ) on g. Then F and ( , ) induce a
G-invariant Riemannian metric 〈 , 〉 on G/K. Since F∗X = X − θX, X ∈ m,
we have

〈X,Y 〉 = (X − θX, Y − θY ) for X,Y ∈ m.

If we set c = 2, then the conditions (26), (27), (28) and (29) are satisfied. Hence
a curve x(t) in (G/K, 〈 , 〉) is a geodesic such that x(0) = o and ẋ(0) = X1 +
X2(Xi ∈ mi) if and only if

x(t) = π (exp t(X1 + 2X2) exp(−tX2)) .

7.2. Charged Particles in Hermitian Symmetric Spaces

In this subsection we shall apply Theorem 31 to the motion of charged particles

in Hermitian symmetric spaces according to [14] and [16]. Every motion of a

charged particle in a Hermitian symmetric space under Kähler electromagnetic

field is simple. Let (G,K, θ, 〈 , 〉, J) be an almost effective Hermitian symmet-

ric pair. Then the coset manifold M = G/K is a Hermitian symmetric space.

Conversely, every Hermitian symmetric space is obtained in this way. Let

g = k ⊕ m

be the canonical decomposition of the Lie algebra g of G. We denote by c the

center of k. There exists an element Jo in c such that J = ad(Jo) is a complex

structure on m. Setting m2 = {0} and W = Jo in Theorem 31, we redemonstrate

the following.

Corollary 34 (Adachi-Maeda-Udagawa [2]) . Let M = G/K be a Hermitian
symmetric space . Let x(t) be the motion of a charged particle defined by ∇ẋẋ =
κJẋ under the electromagnetic field κJ with initial conditions x(0) = o and
ẋ(0) = X ∈ m. Then x(t) is given by

x(t) = π(exp t(κJo +X)). (32)



Motion of Charged Particles From the Geometric View Point 43

Corollary 35 ([14]) . Let x(t) be the motion of a charged particle in a Hermitian
symmetric space. Then its velocity vector ẋ(t) can then be extended to a Killing
vector field which is an infinitesimal automorphism of J .

We here mention some fundamental properties of the motion of charged particles

under a Kähler electromagnetic field. Let x(t) be the motion of a charged particle

under a Kähler electromagnetic field κΩ in a Kähler manifold (M, 〈 , 〉, J). If g is

a holomorphic isometry of M , then gx(t) is also the motion of a charged particle

under κΩ. Two motions x1(t) and x2(t) are called congruent if there exists a

holomorphic isometry g with x2 = g ◦ x1.

Let M be a Hermitian symmetric space of compact type, with fixed rank r.

Let δ(> 0) be the maximum of the sectional curvatures of M . We denote by

S
2(1/

√
δ) the two-dimensional sphere of radius 1/

√
δ. Then there exists a totally

geodesic Kähler embedding

ι : (S2(1/
√
δ))r = S

2(1/
√
δ) × · · · × S

2(1/
√
δ) →M

which is called a Hermann map (see [11], [24, § 3] and [25, § 3] for details).

Let trajectory x(t) describes the motion of charged particle in M . Since M is

homogeneous, replacing x(t) with a congruent class there of if necessary, we may

assume that x(0) ∈ (S2(1/
√
δ))r. Since rank((S2(1/

√
δ))r) = r, we may assume

that

ẋ(0) ∈ To(S
2(1/

√
δ))r (o = x(0)).

Because (S2(1/
√
δ))r is a totally geodesic complex submanifold in M , we have

x(R) ⊂ (S2(1/
√
δ))r. Since the motions of the charged particles in S

2 are

small circles, there exists an r-dimensional flat torus T in (S2(1/
√
δ))r such that

x(R) ⊂ T and such that x(t) is a geodesic in T . Hence we obtain the following.

Theorem 36 ([16]) . Let M be a Hermitian symmetric space of compact type,
whose rank is equal to r. For any motion x(t) of a charged particle under a
Kähler electromagnetic field in M , there exists an r-dimensional flat torus T in
M such that x(t) is a geodesic in T .

Remark 37. WhenM is of rank one, the above theorem shows that every motion

of a charged particle is simply closed. This fact is well known. When M is a

complex Grassmann manifold, then the above theorem corresponds to a theorem

of Adachi, Maeda and Udagawa [2, Theorem 2.2]. When r ≥ 2, the above the-

orem shows that there exist both a simply closed motion and an open motion of

charged particles of any given κ. This fact was mentioned in [2, Corollary 2.1].
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In a similar way we get the following.

Theorem 38 ([16]) . LetM be a Hermitian symmetric space of non-compact type,
whose rank is equal to r. Let −δ(< 0) be the minimum of the sectional curva-
tures of M . We denote by H2(−δ) the two-dimensional real hyperbolic space of
constant curvature −δ. For any motion x(t) of a charged particle under a Kähler
electromagnetic field in M , there exists a totally geodesic complex submanifold

(H2(−δ))r = H2(−δ) × · · · ×H2(−δ) ⊂M

such that x(t) is the motion of charged particle in (H2(−δ))r.

Remark 39. The motion of charged particles in H2(−δ) was studied by Comtet

[8] and Sunada [22]. The motion of charged particles in (H2(−δ))r was studied

by Adachi [1].

7.3. Charged Particles in Kähler C-spaces

In this subsection we shall apply Theorem 31 to the motion of charged particles

in Kähler C-spaces with certain conditions according to [14]. By a C-space we

mean a compact simply connected complex homogeneous space, and by a Kähler

C-space, a C-space M which admits a Kähler metric such that a group of holo-

morphic isometries acts transitively on M . Every motion of a charged particle in

a Kähler C-space under Kähler electromagnetic field is simple.

We shall construct Kähler C-spaces according to [4, Ch. 8]. Let G be a compact

connected semisimple Lie group and W in its Lie algebra g. We define a closed

subgroup K of G by

K = {g ∈ G ; Ad(g)W = W}.
Then K is connected, and coset manifold M = G/K is compact and simply con-

nected, which is called a generalized flag manifold. We can identify the tangent

space To(M) at the origin o with m = im ad(W ). In order to define a G-invariant

complex structure J on M , take a maximal torus T of G such that W is in its Lie

algebra t. Take a biinvariant Riemannian metric ( , ) on G. We denote by Δ the

set of nonzero roots of gC with respect to tC. Take a lexicographic ordering on t

such that (W,α) ≥ 0 for any positive root α. We denote by Δ+ the set of positive

roots. We have the following direct sum decomposition of g

g = t ⊕
∑

α∈Δ+

(RFα ⊕ RGα)
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where for each H ∈ t, [H,Fα] = (α,H)Gα, [H,Gα] = −(α,H)Fα. Set

ΔW = {α ∈ Δ ; (α,W ) = 0}, Δ+

W = ΔW ∩ Δ+

then we have

k = t ⊕
∑

α∈Δ
+

W

(RFα ⊕ RGα), m =
∑

α∈Δ+−Δ
+

W

(RFα ⊕ RGα).

We define a complex structure J on m by

JFα = Gα, JGα = −Fα for α ∈ Δ+ − Δ+

W .

Since Ad(k)J = JAd(k) for any k in K, we can extend J to a G-invariant

almost complex structure on M . This almost complex structure J is integrable.

We assume that G is simple. We denote by Π = {α1, · · · , αr} the set of simple

roots, and by α0 =
∑
mjαj , the highest root.

If we set

ΠW = {αj ∈ Π ; (αj ,W ) > 0} = {αi1 , · · · , αis}
then it is known that the second betti number b2(M) of M is given by b2(M) =
s = #(ΠW ) ( [6]). We assume that b2(M) = 1, that is, ΠW = {αi}. For a

natural number n, set

Δ+(αi;n) = {α =
∑

njαj ∈ Δ+ ; ni = n}, mn =
∑

α∈Δ+(αi;n)

(RFα⊕RGα)

then we have

Δ+ − Δ+

W = Δ+(αi) =
⋃
n≥1

Δ+(αi;n), m =
∑
n≥1

mn.

We set also m0 = k for simplicity. Then for n,m ≥ 0 we have [mn,mm] ⊂
mn+m + m|n−m|. If we normalize W so that (W,αi) = 1, then we have nJ =
ad(W ) on mn. We define a G-invariant Kähler metric 〈 , 〉 on M by

〈Xn, Xm〉 = nδnm(Xn, Xm) for Xn ∈ mn, Xm ∈ mm.

We assume that mi = 2. If we set c = 2, then conditions (26), (27), (28), (29)

and (30) are satisfied. Hence we have the following corollary by Theorem 31.

Corollary 40 ([14]) . Let M = (G/K, J) be a Kähler C-space with b2(M) = 1.
We assume that G is a compact connected simple Lie group. Further, we assume
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that there exists a simple root αi such that ΠW = {αi} and that mi = 2, where
α0 =

∑
j mjαj is the highest root. Let x(t) be a motion of charged particle

defined by ∇ẋẋ = κJẋ under the electromagnetic field κJ with initial conditions
x(0) = o and ẋ(0) = X1 +X2 (X1 ∈ m1, X2 ∈ m2). Then x(t) is given by

x(t) = π
(
exp t(X1 + 2X2 + κW ) exp

(
−t
(
X2 +

κ

2
W
)))

where W is in the center of the Lie algebra k of K.
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