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TORIC KÄHLER METRICS: COHOMOGENEITY ONE
EXAMPLES OF CONSTANT SCALAR CURVATURE IN
ACTION-ANGLE COORDINATES
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Abstract. In these notes of the mini-course given by the author at the XI-th

Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 2009

after the introduction of the toric Kähler geometry, we present Calabi’s family of

U(n)-invariant extremal Kähler metrics in symplectic action-angle coordinates and

show that it actually contains, as particular cases, many interesting cohomogeneity

one examples of constant scalar curvature.

1. Introduction

In 1982 Calabi [7] constructed, using local complex coordinates, a general four-

parameter family of U(n)-invariant extremal Kähler metrics, which he used to put

an extremal Kähler metric on

Hn
m := P(O(−m) ⊕ C) → Pn−1

for all n, m ∈ N and any possible Kähler cohomology class. In particular, when

n = 2, on all Hirzebruch surfaces.

The main goal of these notes is to present Calabi’s general family in local sym-

plectic action-angle coordinates, using the set-up of [1,2] for toric Kähler geome-

try, and show that it actually contains other interesting cohomogeneity one Kähler

metrics as particular cases (see also [22]). These include:

- the Fubini-Study, flat and Bergman Kähler-Einstein metrics of constant

holomorphic sectional curvature (positive, zero and negative, respectively).

- the complete Ricci flat Kähler metric on the total space of

O(−n) → Pn−1

for all n ∈ N and any possible Kähler cohomology class, constructed by

Calabi [6] in 1979.
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- the complete scalar flat Kähler metric on the total space of

O(−m) → Pn−1

for all m, n ∈ N and any possible Kähler cohomology class, constructed

for n = 2 by LeBrun [18] in 1988 and for n > 2 by Pedersen & Poon [21]

in 1991 (see also Simanca [24]).

- the complete Kähler-Einstein metric with negative scalar curvature on the

total space of the open disc bundle

D(−m) ⊂ O(−m) −→ Pn−1

for all n < m ∈ N and any possible Kähler cohomology class, constructed

by Pedersen & Poon [21].

- the complete constant negative scalar curvature Kähler metric on the total

space of the open disc bundle

D(−m) ⊂ O(−m) −→ Pn−1

for all n, m ∈ N and any possible Kähler cohomology class, also con-

structed by Pedersen & Poon [21].

Calabi’s general family contains many other interesting cohomogeneity one spe-

cial Kähler metrics. Besides the Bochner-Kähler orbifold examples presented

in [3], it contains for example a family of singular Kähler-Einstein metrics on

certain Hn
m that are directly related to the Sasaki-Einstein metrics constructed by

Gauntlett-Martelli-Sparks-Waldram [13, 14] in 2004 - see [4].

These notes are organized as follows. In Section 2 we give a basic introduction to

symplectic geometry and discuss some fundamental features of toric symplectic

manifolds. Section 3 is devoted to the toric Kähler metrics. After some relevant

linear algebra prelimaries, we explain how these can be parametrized in action-

angle coordinates via symplectic potentials for the associated toric compatible

complex structures and discuss some important properties of these symplectic po-

tentials. In Section 4 we write down the symplectic potentials that give rise to

the toric constant (scalar) curvature metrics on real two dimensional manifold and

identify the underlying toric symplectic surfaces. This is a warm-up for Section 5

where we discuss in detail the above higher dimensional examples that arise in

Calabi’s general family of local U(n)-invariant extremal Kähler metrics.
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2. Toric Symplectic Manifolds

In this section we give a basic introduction to symplectic geometry and discuss

some fundamental features of toric symplectic manifolds.

2.1. Symplectic Manifolds

Definition 1. A symplectic manifold is a pair (B, ω) where B is a smooth man-
ifold and ω is a closed and non-degenerate two-form, i.e.,

i) ω ∈ Ω2(B) is such that dω = 0 and

ii) for any p ∈ B and 0 �= X ∈ TpB, there exists Y ∈ TpB such that
ωp(X, Y ) �= 0.

The non-degeneracy condition ii) implies that a symplectic manifold is always

even dimensional. If B has dimension 2n, the non-degeneracy condition ii) is

equivalent to requiring that

ωn ≡ ω ∧ · · · ∧ ω ∈ Ω2n(B) is a volume form.

Hence, a symplectic manifold (B, ω) is always oriented.

Example 2. The most basic example is R2n with linear coordinates(u1, . . . , un,
v1, . . . , vn) and symplectic form

ωst = du ∧ dv :=

n∑
j=1

duj ∧ dvj .

Example 3. Any two-dimensional surface equipped with an area form is a sym-
plectic manifold. For example, the sphere S2 or any other compact orientable
surface Σg of genus g.

Example 4. If (B1, ω1) and (B2, ω2) are symplectic manifolds, then

(B = B1 × B2, ω = ω1 × ω2)

is also a symplectic manifold. Here, ω1 × ω2 means the sum of the pullbacks of
the symplectic forms ω1 and ω2 from the factors B1 and B2.
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Example 5. The imaginary part of the Hermitean metric on any Kähler manifold
is a symplectic form. Hence, any Kähler manifold is a symplectic manifold. In
particular, the complex projective space Pn equipped with its Fubini-Study form
ωFS is a symplectic manifold.

When (B, ω) is a compact symplectic manifold we have that

ωn = volume form ⇒ 0 �= [ωn] ∈ H2n(B, R) ⇒ 0 �= [ω] ∈ H2(B, R) .

In particular, the spheres S2n have no symplectic form when n > 1, since

H2(S2n, R) = 0 when n > 1 .

2.2. Symplectomorphisms and Darboux’s Theorem

Definition 6. Let (B, ω) be a symplectic manifold. A symplectomorphism of B
is a diffeomorphism ϕ : B → B such that ϕ∗(ω) = ω. These form the symplec-
tomorphism group, a subgroup of Diff(B) that will be denoted by Diff(B, ω).

Example 7. Consider the symplectic manifold (B, ω) and let h : B → R be a
smooth function on B. The non-degeneracy of ω implies that there exists a unique
vector field Xh ∈ X (B) such that Xh�ω = dh. This vector field Xh is called
the Hamiltonian vector field of the function h and has the following fundamental
property:

the flow ϕt ≡ (Xh)t : B → B consists of symplectomorphisms of B.

This can be proved by using Cartan’s formula to compute

LXh
ω = Xh�dω + d(Xh�ω) = Xh� 0 + d(dh) = 0 .

Hence, on a symplectic manifold (B, ω) any smooth function h ∈ C∞(B) gives
rise, through the flow of the corresponding Hamiltonian vector field Xh ∈ X (B),
to a local one-parameter group of symplectomorphisms.

One can use the symplectomorphisms constructed in the previous example to

prove that

i) the symplectomorphism group Diff(B, ω) is always infinite-dimensional

ii) the action of Diff(B, ω) on the manifold B is always k-transitive, for any

k ∈ N
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iii) in particular, any point of a symplectic manifold (B, ω) looks locally like

any other point of (B, ω).

This last statement is made more precise in the following

Theorem 8 (Darboux) Let (B, ω) be a symplectic manifold of dimension 2n.
Then, any point p ∈ B has a neighborhood U ⊂ B symplectomorphic to a neigh-
borhood V of the origin in (R2n, ωst), i.e., there exists a diffeomorphism

φ : U ⊂ B → V ⊂ R2n such that φ(p) = 0 and φ∗(ωst) = ω.

In other words,

there are no local invariants in symplectic geometry

which is in sharp contrast with what happens, for example, in Riemannian geom-

etry.

2.3. Symplectic and Hamiltonian Vector Fields

The Lie algebra of the symplectomorphism group Diff(B, ω), viewed as an infinite-

dimensional Lie group, is naturally identified with the vector space X (B, ω) of

symplectic vector fields, i.e., vector fields X ∈ X (B) such that LXω = 0, with

Lie bracket [·, ·] given by the usual Lie bracket of vector fields. As before, we can

use Cartan’s formula to obtain

LXω = X�dω + d(X�ω) = X� 0 + d(X�ω) = d(X�ω) .

Hence, the vector space of symplectic vector fields is given by

X (B, ω) = {X ∈ X (B) ; the one-form X�ω is closed}
while its subspace of Hamiltonian vector fields is given by

XH(B, ω) = {X ∈ X (B) ; the one-form X�ω is exact} .

In fact, as the following theorem shows, XH(B, ω) is a Lie subalgebra of X (B, ω).

Theorem 9. If X, Y ∈ X (B, ω) are symplectic vector fields, then [X, Y ] is the
Hamiltonian vector field of the function ω(Y, X) : B → R, i.e.,

[X, Y ] = Xω(Y,X) ∈ XH(B, ω) .
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Proof: It suffices to compute [X, Y ]�ω, using the standard formulas from differ-

ential geometry and the defining properties of X , Y and ω

[X, Y ]�ω = LX(Y �ω) − Y � (LXω)
= d(X� (Y �ω)) + X� (d(Y �ω)) − Y � (d(X�ω)) − Y � (X�dω)
= d(ω(Y, X)) . �

Remark 10. XH(B, ω) is the Lie algebra of the fundamental subgroup of the
symplectomorphism group, namely the subgroup Ham(B, ω) ⊂ Diff(B, ω) of
Hamiltonian symplectomorphisms of (B, ω). It follows from Theorem 9 that this
Lie algebra can be naturally identified with the vector space C∞(B)/R, i.e., the
smooth functions on B modulo constants, equipped with a bracket {·, ·} known as
the Poisson bracket

{f, g} ≡ ω(Xf , Xg) .

Note also that when H1(B, R) = 0 we have that XH(B, ω) = X (B, ω).

2.4. Hamiltonian Torus Actions

Let (B, ω) be a symplectic manifold equipped with a symplectic action of

Tm ≡ Rm/2πZm ≡ R/2πZ × · · · × R/2πZ ≡ S1 × · · · × S1

i.e., with a homomorphism Tm → Diff(B, ω). Let X1, . . . , Xm ∈ X (B) be the

vector fields generating the action of each individual S1-factor. Then, since the

action is symplectic, we have that

LXk
ω = 0 ⇔ Xk�dω + d(Xk�ω) = 0 ⇔ d(Xk�ω) = 0

i.e.,

Xk ∈ X (B, ω) for all k ∈ {1, . . . , m} .

Definition 11. A symplectic Tm-action on a symplectic manifold (B, ω) is said to
be Hamiltonian if for every k ∈ {1, . . . , m} there exists a function hk : B → R

such that Xk�ω = dhk, i.e., Xk ≡ Xhk
∈ XH(B, ω) is the Hamiltonian vector

field of hk. In this case, the map μ : B → Rm defined by

μ(p) = (h1(p), . . . , hm(p)) for all p ∈ B

which will be called a moment map for the action.
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Remark 12. Suppose μ : B → Rm is a moment map for a Hamiltonian Tm-
action on (B, ω). Then μ + c, for any given constant c ∈ Rm, is also a moment
map for that same action.

Remark 13. The orbits of a Hamiltonian Tm-action on a symplectic manifold
(B, ω) are always isotropic, i.e.,

ω|orbit ≡ 0 .

In fact, the tangent space to an orbit is generated by the Hamiltonian vector fields
Xhk

, k ∈ {1, . . . , m}. Using Theorem 9 and the fact that the torus Tm is abelian,
we have that

Xω(Xhk
,Xhl

) = − [Xhk
, Xhl

] ≡ 0 ⇒ ω(Xhk
, Xhl

) ≡ const, k, l ∈ {1, . . . , m} .

Since Tm is compact, there is for each k ∈ {1, . . . , m} and on each Tm-orbit a
point pk where the function hk|orbit attains its maximum. Then

ω(Xhk
, Xhl

) = (dhk)pk
(Xhl

) = 0 .

Hence, the above constant is actually zero and each Tm-orbit is indeed isotropic.
This fact will be used below, in the proof of Proposition 17.

Example 14. Consider (R2n, ωst), where

ωst = du ∧ dv :=
n∑

j=1

duj ∧ dvj

as in Example 2, and its usual identification with Cn given by

zj = uj + ivj , j = 1, . . . , n . (1)

The standard Tn-action τst on R2n given by

(y1, . . . , yn) · (z1, . . . , zn) = (e−iy1z1, . . . , e
−iynzn)

is Hamiltonian with a moment map μst : R2n → Rn given by

μst(u1, . . . , un, v1, . . . , vn) =
1

2
(u2

1 + v2
1, . . . , u

2
n + v2

n) .
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Example 15. Consider the projective space (Pn, ωFS) equipped with the homo-
geneous coordinates [z0; z1; . . . ; zn].

The Tn-action τFS on Pn given by

(y1, . . . , yn) · [z0; z1; . . . ; zn] = [z0; e
−iy1z1; . . . ; e

−iynzn]

is Hamiltonian, with a moment map μFS : Pn → Rn given by

μFS[z0; z1; . . . ; zn] =
1

‖z‖2
(‖z1‖2, . . . , ‖zn‖2) .

Note that the image of μFS is the convex hull of the images of the n+1 fixed points
of the action, i.e., the standard simplex in Rn.

Atiyah [5] and Guillemin-Sternberg [16] proved in 1982 the following Convexity

Theorem.

Theorem 16. Let (B, ω) be a compact, connected, symplectic manifold, equipped
with a Hamiltonian Tm-action with a moment map μ : B → Rm. Then

i) the level sets μ−1(λ) of the moment map are connected (for any λ ∈ Rm)

ii) the image μ(B) ⊂ Rm of the moment map is the convex hull of the images
of the fixed points of the action.

2.5. Toric Symplectic Manifolds

The following proposition motivates the definition of a toric symplectic manifold.

Proposition 17. If a symplectic manifold (B, ω) has an effective Hamiltonian
Tm-action, then m ≤ (dim B)/2.

Proof:

Effective action ⇒ there exist m-dimensional orbits

Hamiltonian Tm-action ⇒ orbits are isotropic (see Remark 13)

Linear Algebra ⇒ dim(isotropic orbit) ≤ 1
2 dimB .

�

Definition 18. A toric symplectic manifold is a connected symplectic manifold
(B2n, ω), equipped with an effective Hamiltonian action of the n-torus

τ : Tn ∼= Rn/2πZn ↪→ Ham(B, ω)
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such that the corresponding moment map

μ : B → Rn

which is well-defined up to a constant, is proper onto its convex image P =
μ(B) ⊂ Rn.

Remark 19. The requirement that the moment map be “proper onto its convex
image”, something that is automatic for compact manifolds, makes the theory of
non-compact toric symplectic manifolds analogous to the compact one (see [17]).

Example 20. (R2n, ωst), equipped with the standard Hamiltonian Tn-action de-
scribed in Example 14, is a non-compact toric symplectic manifold.

Example 21. (Pn, ωFS), equipped with the Hamiltonian Tn-action described in
Example 15, is a compact toric symplectic manifold.

2.6. Classification Theorem and Action-Angle Coordinates

Any toric symplectic manifold has an associated convex set, the image of the

moment map of the torus action. The convex sets that arise in this way are char-

acterized in the following definition.

Definition 22. A convex polyhedral set P in Rn is called simple and integral if

1) there are n edges meeting at each vertex p

2) the edges meeting at the vertex p are rational, i.e., each edge is of the form
p + tvi, 0 ≤ t ≤ ∞, where vi ∈ Zn

3) the v1, . . . , vn in (2) can be chosen to be a Z-basis of the lattice Zn.

A facet is a face of P of codimension one.

A Delzant set is a simple and integral convex polyhedral set P ⊂ Rn. A Delzant
polytope is a compact Delzant set.

Two Delzant sets are termed to be isomorphic if one can be mapped to the other
by a translation.

In 1988 Delzant [10] showed that any Delzant polytope determines a unique com-

pact toric symplectic manifold. More precisely, if two compact toric symplectic
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manifolds have the same Delzant polytope, then there exists an equivariant sym-

plectomorphism between them. This result can be generalized to the possibly

non-compact setting of Definition 18 (see [17]).

Theorem 23. Let (B, ω, τ) be a toric symplectic manifold, with a moment map
μ : B → Rn. Then P ≡ μ(B) is a Delzant set.

Two toric symplectic manifolds are equivariant symplectomorphic (with respect
to a fixed torus acting on both) if and only if their associated Delzant sets are iso-
morphic. Moreover, every Delzant set arises from some toric symplectic manifold.

Remark 24. One can use the results of Lerman and Tolman [19] to generalize
Theorem 23 to orbifolds. The outcome is a classification of symplectic toric orb-
ifolds via labeled Delzant sets, i.e., convex polyhedral sets, as in Definition 22,
with “Z-basis” in (3) replaced by “Q-basis” and with a positive integer label
attached to each facet.

Each facet F of a labeled Delzant set P ⊂ Rn determines a unique lattice vector
νF ∈ Zn: the primitive inward pointing normal lattice vector. A convenient way
of thinking about a positive integer label mF ∈ N associated to F is by dropping
the primitive requirement from this lattice vector: consider mF νF instead of νF .

In other words, a labeled Delzant set can be defined as a rational simple polyhe-
dral set P ⊂ Rn with an inward pointing normal lattice vector associated to each
of its facets.

The proof gives an explicit symplectic reduction construction of a canonical model

for each toric symplectic manifold, i.e., it associates to each Delzant set P an ex-

plicit toric symplectic manifold (BP , ωP , τP ) with moment map μP : BP → P .

One can use these canonical models to derive general properties of toric symplec-

tic manifolds. For example, let P̆ denote the interior of P , and consider B̆P ⊂ BP

defined by B̆P = μ−1
P (P̆ ). One easily checks that B̆P is an open dense subset of

BP , consisting of all points where the Tn-action is free. It can be described as

B̆P
∼= P̆ × Tn =

{
(x, y) ; x ∈ P̆ ⊂ Rn , y ∈ Rn/2πZn

}
where (x, y) are symplectic action-angle coordinates for ωP , i.e.,

ωP |B̆ = dx ∧ dy =
n∑

j=1

dxj ∧ dyj .

Hence, one has a global equivariant Darboux’s Theorem in the toric context. Note

that in these action-angle coordinates the moment map is given simply by

μP (x, y) = x
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i.e., projection in the action coordinates.

3. Toric Kähler Metrics

3.1. Linear Compatible Complex Structures

Definition 25. A compatible complex structure on the symplectic vector space
(V, ω) is a complex structure J on V , i.e., J ∈ End(V )) with J 2 = −Id , such
that

〈·, ·〉J := ω(·, J ·)
is an inner product on V . This is equivalent to

ω(J ·, J ·) = ω(·, ·) and ω(v, Jv) > 0 , for all v �= 0 ∈ V .

The set of all compatible complex structures on a symplectic vector space (V, ω)
will be denoted by J (V, ω).

The symplectic linear group Sp(V, ω) acts on J (V, ω) by conjugation

Sp(V, ω) × J (V, ω) → J (V, ω)

(Φ, J) �→ ΦJΦ−1.

This action can be easily seen to be transitive and, if we fix J0 ∈ J (V, ω) and

corresponding inner product 〈·, ·〉0, we have that

J (V, ω) = Sp(V, ω)/U(V, ω, 〈·, ·〉0)
where U(V, ω, 〈·, ·〉0) = Sp(V, ω) ∩ O(V, 〈·, ·〉0) is the unitary group. J (V, ω) is

a symmetric space and admits a beautiful explicit description due to Siegel [23].

Definition 26. The Siegel upper half space Sn is the open contractible subset of
the complex vector space of complex symmetric matrices defined by

Sn := {Z = R + iS ; R and S are real symmetric (n × n) matrices

and S is positive definite} .

Choose a symplectic basis for (V, ω), i.e., an isomorphism (V, ω) ∼= (R2n, ωst),
and identify the symplectic linear group Sp(V, ω) with the matrix group Sp(2n, R)
consisting of (2n × 2n) real matrices Φ such that

Φt · ω0 · Φ = ω0
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where

ω0 =

⎡
⎢⎢⎣

0
... Id

. . . . . . . . . . .

−Id
... 0

⎤
⎥⎥⎦

is the matrix form of ωst written in (n × n) blocks. We will also write any Φ ∈
Sp(2n, R) in (n × n) blocks

Φ =

⎡
⎢⎢⎣

A
... B

. . . . . . . .

C
... D

⎤
⎥⎥⎦ .

The following proposition is proved in [23].

Proposition 27. Sp(2n, R) acts on Sn by linear fractional transformations

Sp(2n, R) × Sn → Sn

(Φ, Z) �→ Φ(Z) := (AZ + B) · (CZ + D)−1 .

This action is transitive and the isotropy group of iId ∈ Sn is U(n) ⊂ Sp(2n, R):

U(n) = Sp(2n, R) ∩ O(2n) =
{
Φ ∈ Sp(2n, R) ; Φt · Φ = Id

}
.

Hence,
Sn

∼= Sp(2n, R)/U(n) .

Given Z = R + iS ∈ Sn, define

ΦZ :=

⎡
⎢⎢⎣

S1/2
... RS−1/2

. . . . . . . . . . . . . . . .

0
... S−1/2

⎤
⎥⎥⎦ ∈ Sp(2n, R) .

Under the action of Sp(2n, R) on Sn, we have that

ΦZ(iId ) = Z .

Let J0 ∈ J (R2n, ωst) be given by

J0 =

⎡
⎢⎢⎣

0
... −Id

. . . . . . . . . . .

Id
... 0

⎤
⎥⎥⎦ . (2)
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For each Z ∈ Sn, define JZ ∈ J (R2n, ωst) by

JZ := (J0 · ΦZ) · J0 · (J0 · ΦZ)−1 =

⎡
⎢⎢⎣

−S−1R
... −S−1

. . . . . . . . . . . . . . . . . . . . . .

RS−1R + S
... RS−1

⎤
⎥⎥⎦ .

This defines a bijection

Sn → J (R2n, ωst)

Z �→ JZ

which, up to J0-conjugation, is equivariant with respect to the Sp(2n, R)-action

on both spaces. More precisely, if Φ ∈ Sp(2n, R) then

Φ · JZ · Φ−1 = JZ′ ⇔ Z ′ = (J−1
0 · Φ · J0)(Z) .

In particular, J (R2n, ωst) is a contractible space and, for any symmetric (n × n)
real matrix U , we have that

Φ =

⎡
⎢⎢⎣

I
... 0

. . . . . . .

U
... I

⎤
⎥⎥⎦ ∈ Sp(2n, R) and Φ · JZ · Φ−1 = J(Z−U) . (3)

This will be relevant below.

3.2. Toric Compatible Complex Structures

Definition 28. A compatible almost complex structure on a symplectic mani-
fold (B, ω) is an almost complex structure J on B, i.e., J ∈ Γ(End(TB)) with
J2 = −Id , such that

〈·, ·〉J := ω(·, J ·)
is a Riemannian metric on B. This is equivalent to ω(J ·, J ·) = ω(·, ·) and
ω(X, JX) > 0 , for all X �= 0, X ∈ TB.

The space of all compatible almost complex structures on a symplectic manifold
(B, ω) will be denoted by J (B, ω).

Remark 29.

i) The fact that J (R2n, ωst) is contractible implies that J (B, ω) is a non-
empty, infinite-dimensional and contractible, for any symplectic manifold
(B, ω).
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ii) A Kähler manifold is a symplectic manifold (B, ω) with an integrable com-
patible complex structure J , i.e., one that is locally isomorphic to the stan-
dard complex structure J0 on R2n. Note that (1) gives the standard isomor-
phism (R2n, J0) ∼= Cn.

iii) The space of integrable compatible complex structures on the symplectic
manifold (B, ω) will be denoted by I(B, ω) ⊂ J (B, ω).

iv) In general, I(B, ω) can be empty.

Definition 30. A toric compatible complex structure on a toric symplectic mani-
fold (B2n, ω, τ) is a Tn-invariant J ∈ I(B, ω) ⊂ J (B, ω). The space of all such
structures will be denoted by IT

n

(B, ω) ⊂ J T
n

(B, ω).

Remark 31. It follows from the classification in Theorem 23, more precisely from
the explicit symplectic reduction construction of the canonical model for any com-
pact toric symplectic manifold (B2n, ω, τ), that IT

n

(B, ω) is always non-empty.

3.3. Local Form of Toric Compatible Complex Structures

It follows from the above bijection between J (R2n, ωst) and the Siegel upper half

space Sn that any J ∈ J T
n

(B̆, ω|B̆) can be written in action-angle coordinates

(x, y) on B̆ ∼= P̆ × Tn as

J =

⎡
⎢⎢⎣

−S−1R
... −S−1

. . . . . . . . . . . . . . . . . . . . . .

RS−1R + S
... RS−1

⎤
⎥⎥⎦

where R = R(x) and S = S(x) are real symmetric (n × n) matrices, with S
positive definite.

For integrable toric compatible complex structures we have that

J ∈ IT
n ⊂ J T

n ⇔ ∂Zij

∂xk
=

∂Zik

∂xj

and there exists f : P̆ → C , f(x) = r(x) + is(x), such that

Zij =
∂2f

∂xi∂xj
=

∂2r

∂xi∂xj
+ i

∂2s

∂xi∂xj
= Rij + iSij .
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Any real function h : P̆ → R is the Hamiltonian of one-parameter family

φt : B̆ → B̆

of Tn-equivariant symplectomorphisms. These are given in action-angle coordi-

nates (x, y) on B̆ ∼= P̆ × Tn by

φt(x, y) = (x, y − t
∂h

∂x
) .

Hence, it follows from (3) that the natural action of φt on J T
n

, given by

φt · J = (dφt) ◦ J ◦ (dφt)
−1

corresponds in the Siegel upper half space parametrization to

φt · (Z = R + iS) = (R + tH) + iS

where

H = (hij) =

(
∂2h

∂xi∂xj

)
.

This implies that, for any integrable J ∈ IT
n

, there exist action-angle coordinates

(x, y) on B̆ ∼= P̆ × Tn such that R ≡ 0, i.e.,

J =

⎡
⎢⎢⎣

0
... −S−1

. . . . . . . . . . . .

S
... 0

⎤
⎥⎥⎦

with

S = S(x) = (sij(x)) =

(
∂2s

∂xi∂xj

)

for some real potential function s : P̆ → R .

The holomorphic coordinates for J are given in this case by

z(x, y) = u(x, y) + iv(x, y) =
∂s

∂x
(x) + iy (4)

and the corresponding Riemannian (Kähler) metric

〈·, ·〉J := ω(·, J ·)
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on B̆ ∼= P̆ × Tn can the be written in matrix form as

ω0 · J =

⎡
⎢⎢⎣

0
... Id

. . . . . . . . . . .

−Id
... 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0
... −S−1

. . . . . . . . . . . .

S
... 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

S
... 0

. . . . . . . . . .

0
... S−1

⎤
⎥⎥⎦ (5)

with

S =

(
∂2s

∂xi∂xj

)
.

Definition 32. We will call such a potential function

s : P̆ → R

the symplectic potential of both the complex structure J and the metric 〈·, ·〉J .

Remark 33. This particular way to arrive at the above local form for any com-
patible structure J ∈ IT

n

is due to Donaldson [12], and illustrates a small part
of his formal general framework for the action of the symplectomorphism group
of a symplectic manifold on its space of compatible complex structures (cf. [11]).

Example 34. Consider the standard linear complex structure J0 ∈ IT
n

(R2n, ωst)
given by (2). In action-angle coordinates (x, y) on

R̆2n = (R2 \ {(0, 0)})n ∼= (R+)n × Tn = P̆ × Tn

its symplectic potential is given by

s : P̆ = (R+)n −→ R

x = (x1, . . . , xn) �−→ s(x) =
1

2

n∑
i=1

xi log(xi) .

Hence, in these action-angle coordinates, the standard complex structure has the
matrix form

J0 =

⎡
⎢⎢⎣

0
... diag(−2xi)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

diag(1/2xi)
... 0

⎤
⎥⎥⎦

while the standard flat Euclidean metric becomes⎡
⎢⎢⎣

diag(1/2xi)
... 0

. . . . . . . . . . . . . . . . . . . . . . . . .

0
... diag(2xi)

⎤
⎥⎥⎦ .
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3.4. Symplectic Potentials for Compact Toric Symplectic Manifolds

The proof of Theorem 23 associates to each Delzant set P ⊂ Rn, via an explicit

symplectic reduction construction, a canonical Kähler toric manifold

(B2n
P , ωP , τP , μP , JP ) such that μP (BP ) = P .

In [15] Guillemin gave an explicit formula for the symplectic potential of this

canonical Kähler metric. To write it down one needs some simple combinatorial

data that can be easily obtained directly from the polytope P .

Let Fi denote the i-th facet (codimension-one face) of the polytope P . The affine

defining function of Fi is the function

�i : Rn −→ R

x �−→ �i(x) = 〈x, νi〉 − λi

where νi ∈ Zn is a primitive inward pointing normal to Fi and λi ∈ R is such that

�i|Fi
≡ 0. Note that �i|P̆ > 0.

Theorem 35. In appropriate action-angle coordinates (x, y), the canonical sym-
plectic potential sP : P̆ → R for JP |P̆ is given by

sP (x) =
1

2

d∑
i=1

�i(x) log �i(x)

where d is the number of the facets of P .

Example 36. The symplectic potential presented in Example 34 for the standard
flat Euclidean metric on R2n is the canonical symplectic potential of the corre-
sponding Delzant set P = (R+

0 )n ⊂ Rn.

Example 37. For projective space Pn the polytope P ⊂ Rn can be taken to be
the standard simplex, with defining affine functions

�i(x) = xi , i = 1, . . . , n , and �n+1(x) = 1 − r

where r =
∑

i xi.

The canonical symplectic potential sP : P̆ → R, given by

sP (x) =
1

2

n∑
i=1

xi log xi +
1

2
(1 − r) log(1 − r)

defines the standard complex structure JFS and Fubini-Study metric on Pn.
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Theorem 39 below provides the symplectic version of the ∂∂-lemma in the toric

context, characterizing the symplectic potentials that correspond to the toric com-

patible complex structures on a toric symplectic manifold. It is an immediate ex-

tension to our possibly non-compact setting of the compact version proved in [2].

To properly state it we need the following definition.

Definition 38. Let (B, ω, τ) be a symplectic toric manifold and let us denote by

Y1, . . . , Yn ∈ XH(B, ω)

the Hamiltonian vector fields generating the torus action. A toric compatible
complex structure J ∈ IT (B, ω) is said to be complete if the J-holomorphic
vector fields

JY1, . . . , JYn ∈ X (B)

are complete. The space of all complete toric compatible complex structures on
(B, ω, τ) will be denoted by IT

c (B, ω).

Theorem 39. Let J be any complete compatible toric complex structure on the
symplectic toric manifold (BP , ωP , τP ). Then, in suitable action-angle (x, y)-
coordinates on B̆P

∼= P̆ × Tn, J is given by a symplectic potential s ∈ C∞(P̆ )
of the form

s(x) = sP (x) + h(x)

where sP is given by Theorem 35, h is smooth on the whole P , and the matrix
S = Hessx(s) is positive definite on P̆ and has determinant of the form

Det(S) =

(
δ

d∏
r=1

�r

)−1

with δ being a smooth and strictly positive function on the whole P .

Conversely, any such potential s determines a (not necessarily complete) complex
structure on B̆P

∼= P̆ × Tn, that extends uniquely to a well-defined compatible
toric complex structure J on the toric symplectic manifold (BP , ωP , τP ).

Remark 40. If one takes into account Remark 24, the word “manifold” can be
replaced by “orbifold” in Theorem 35 and Theorem 39 (see [3]).

Remark 41. There is no immediate relation between completeness of a toric com-
patible complex structure and completeness of the associated toric Kähler metric.
See Remark 43.
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3.5. Scalar Curvature

We now recall from [1] a particular formula for the scalar curvature in action-

angle (x, y)-coordinates. A Kähler metric of the form (5) has scalar curvature Sc
given by1

Sc = −
∑
j,k

∂

∂xj

(
gjk ∂ log Det(S)

∂xk

)

which after some algebraic manipulations becomes more compact

Sc = −
∑
j,k

∂2sjk

∂xj∂xk
(6)

where the sjk, 1 ≤ j, k ≤ n, are the entries of the inverse of the matrix S =
Hessx(s), s ≡ symplectic potential. See [11] for an appropriate interpretation of

this formula for the scalar curvature.

3.6. Symplectic Potentials and Affine Transformations

Because the Delzant set P ⊂ Rn of a symplectic toric manifold is well defined

up to translations (i.e., additions of constants to the moment map) and SL(n, Z)
transformations (i.e., changes of basis of the torus Tn = Rn/2πZn), symplectic

potentials should transform naturally under these type of maps. While the effect

of translations is trivial to analyse, the effect of SL(n, Z) transformations is more

interesting. In fact

symplectic potentials transform quite naturally

under any GL(n, R) linear transformation.

Let T ∈ GL(n, R) and consider the linear symplectic change of action-angle

coordinates

x := T−1x′ and y := T ty′ .

Then

P ′ =

d⋂
a=1

{x′ ∈ Rn ; �′a(x
′) := 〈x′, ν ′

a〉 + λ′
a ≥ 0}

1The normalization for the value of the scalar curvature we are using here differs from the one
used in [1, 2] by a factor of 1/2.
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becomes

P := T−1(P ′) =
d⋂

a=1

{x ∈ Rn ; �a(x) := 〈x, νa〉 + λa ≥ 0}

with

νa = T tν ′
a and λa = λ′

a

and symplectic potentials transform by

s = s′ ◦ T (in particular, sP = s′P ◦ T ).

The corresponding Hessians are related by

S = T t(S′ ◦ T )T

and

Sc = Sc′ ◦ T .

Example 42. Fig. 1 illustrates two equivalent descriptions of a toric symplectic
rational ruled four-manifold or, equivalently, of a Hirzebruch surface

H2
m := P(O(−m) ⊕ C) → P1 , m ∈ N .

The linear map T ∈ GL(2, R) relating the two is given by

T =

[
m −1
0 1

]
.

The inward pointing normal that should be considered for each facet is speci-
fied. The polytope on the right is a standard Delzant polytope for the Hirzebruch
surface H2

m. The polytope on the left is very useful for the Kähler metric con-
structions of Section 5 and was implicitly used by Calabi in [7].

4. Toric Constant Curvature Metrics on the Real Two Dimensional
Manifolds

Any real two-dimensional orientable Riemannian manifold is Kähler since its area

form is a symplectic form and oriented rotation by π/2 on each tangent plane is

a compatible complex structure. In this section we write down the symplectic

potentials that give rise to toric constant (scalar) curvature metrics of real two
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Figure 1. Hirzebruch surfaces.

dimensional manifold and identify the underlying toric symplectic manifolds B.

This will be a warm-up for the higher dimensional examples that will be presented

in Section 5.

According to the formula (6) for the scalar curvature, we are looking for symplec-

tic potentials s : P̆ ⊂ R → R such that s′′ > 0 and

−
(

1

s′′(x)

)′′

= 2k

where k ∈ R denotes the Gauss curvature. This implies that

s′′(x) = − 1

kx2 − 2bx − c
, b, c ∈ R

where x ∈ P̆ ⊂ R is such that s′′(x) > 0.

4.1. Cylinders

Suppose that k = b = 0. Then

s′′(x) =
1

c
> 0 ⇒ c > 0 and x ∈ R .

This means that P = R and s : P̆ = R → R can be written as

s(x) =
x2

2c
·

Hence

B = B̆ = P̆ × T1 = R × S1 = {(x, y) ; x ∈ R , y ∈ R/2πZ}
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and the metric is given in matrix form by[
1/c 0
0 c

]
i.e., we get a flat cylinder of radius

√
c.

4.2. Cones

Suppose that k = 0 and b �= 0. Then, modulo a translation and possible sign

change in the action variable x, we can assume that c = 0, b > 0 and

s′′(x) =
1

2bx
> 0 and therefore x > 0 .

This means that P = [0, +∞[ and s : P̆ = ]0, +∞[ → R can be written as

s(x) =
1

b
· 1

2
x log x .

If b = 1 this is the canonical symplectic potential giving the flat Euclidean metric

on R2 (cf. Example 34). In general, as explained in [3], this is the symplectic

potential of a cone metric of angle πb on R2, given in matrix form by[
1

2bx 0
0 2bx

]
.

When b = 1/p with p ∈ N, this corresponds to an orbifold flat metric on R2/Zp

(see [3]).

4.3. Footballs

Suppose that k > 0. Then, modulo a translation in the action variable x, we can

assume that b = 0 and

s′′(x) =
1

c − kx2
> 0 ⇒ c > 0 and −

√
c/k < x <

√
c/k .

This means that P =
[
−√

c/k,
√

c/k
]

and s : P̆ =
]
−√

c/k,
√

c/k
[
→ R can

be written as

s(x) =
1√
ck

· 1
2

[
(
√

c/k + x) log(
√

c/k + x) + (
√

c/k − x) log(
√

c/k − x)
]

.

If c = 1/k this is the canonical symplectic potential giving the smooth round

european football metric of total area 4π/k and constant Gauss curvature k on

P1 ≡ S2 (cf. Example 37). In general, this is the symplectic potential of a singular

american football metric of angle π
√

ck at the “poles”.
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4.4. Hyperbolic Metrics

Suppose that k < 0. Then, modulo a translation in the action variable x, we can

assume that b = 0 and

s′′(x) =
1

c − kx2
·

If c > 0 then s′′(x) > 0, for all x ∈ R, which means that P = R and s : P̆ =
R → R can be written as

s(x) =

√
−1

ck
arctan

(√
−k

c
x

)
.

This is the symplectic potential of a metric of constant Gauss curvature k < 0 on

the manifold

B = B̆ = P̆ × T1 = R × S1 = {(x, y) ; x ∈ R , y ∈ R/2πZ}
which is obviously the standart hyperboloid.

If c < 0 then

s′′(x) > 0 ⇒ x ∈
]
−∞,−

√
c/k

[
∪
]√

c/k,+∞
[

.

Hence, up to a sign change in the action variable x, we may assume that P =[√
c/k,+∞

[
and s : P̆ =

]√
c/k,+∞

[
→ R can be written as

s(x) =
1√
ck

· 1
2

[
(x −

√
c/k) log(x −

√
c/k) − (x +

√
c/k) log(x +

√
c/k)

]
.

If c = 1/k this is the symplectic potential of the hyperbolic metric of constant

Gauss curvature k < 0 on R2. In other words, in the action-angle coordinates

(x, y) of this symplectic model, the hyperbolic metric is given in matrix form by[
−k

(kx)2−1
0

0 (kx)2−1
−k

]
.

More generally, i.e., when c �= 1/k, we get singular hyperbolic metrics on R2,

with a cone singularity of angle π
√

ck at the origin.

Remark 43. This case illustrates the fact that there is no immediate relation be-
tween completeness of a toric compatible complex structure and completeness of
the associated toric Kähler metric. Here the metric is complete but the complex
structure is not. In fact, it easily follows from (4) that R2 with this complex struc-
ture is biholomorphic to an open bounded disc D ⊂ C.
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If c = 0 we have that

s′′(x) = − 1

kx2
> 0 , for all x �= 0

and s : P̆ = ]0, +∞[ → R can be written as

s(x) =
1

k
log(x) .

This is the symplectic potential of a complete hyperbolic cusp metric on B̆ =
]0, +∞[ × S1, given in matrix form by[− 1

kx2 0
0 −kx2

]
.

5. Calabi’s Family of Extremal Kähler Metrics

In [7], Calabi introduced the notion of extremal Kähler metrics. These are de-

fined, for a fixed closed complex manifold (M, J), as critical points of the square

of the L2-norm of the scalar curvature, considered as a functional on the space

of all symplectic Kähler forms ω in a fixed Kähler class Ω ∈ H2(M, R). The

extremal Euler-Lagrange equation is equivalent to the gradient of the scalar cur-

vature being a holomorphic vector field (see [6]), and so these metrics generalize

constant scalar curvature Kähler metrics. Moreover, Calabi showed in [8] that ex-

tremal Kähler metrics are always invariant under a maximal compact subgroup of

the group of holomorphic transformations of (M, J). Hence, on a toric manifold,

extremal Kähler metrics are automatically toric Kähler metrics, and one should be

able to write them down using the previous action-angle coordinates framework.

In this section, following [1], we will do that for the four-parameter family of

U(n)-invariant extremal Kähler metrics constructed by Calabi in [7]. Calabi used

this family to put extremal Kähler metrics on

P(O(−m) ⊕ C) −→ Pn−1 , n, m ∈ N

for any Kähler class. In particular, when n = 2, on all Hirzebruch surfaces (cf.

Example 42). As we will see here, this family can be used to write down many

other interesting extremal Kähler metrics, including the non-compact, cohomo-

geneity one, constant scalar curvature examples that were later constructed by

LeBrun [18], Pedersen-Poon [21] and Simanca [24]. Using the action-angle coor-

dinates set-up for toric Sasaki geometry developed in [20], one can show [4] that

Calabi’s family also contains a family of Kähler-Einstein metrics directly related

to the Sasaki-Einstein metrics constructed in 2004 by Gauntlett-Martelli-Sparks-

Waldram [13, 14].
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5.1. Calabi’s Family in Action-Angle Coordinates

Let us take symplectic potentials s : P̆ ⊂ (R+)n → R of the form

s(x) =
1

2

(
n∑

i=1

xi log xi + h(r)

)
(7)

where

r = x1 + · · ·xn

and P̆ will be determined in each of the particular cases that we will consider. A

simple computation shows that

Det(S) =
1 + rh′′(r)

2nx1 · · · · · xn
and S−1 =

(
sij = 2 (δijxi − xixjf(r))

)
where f = h′′/(1 + rh′′). Then, (6) implies that the scalar curvature of the

corresponding toric Kähler metric is given by

Sc(x) = Sc(r) = 2r2f ′′(r) + 4(n + 1)rf ′(r) + 2n(n + 1)f(r) . (8)

The Euler-Lagrange equation defining an extremal Kähler metric can be shown to

be equivalent to
∂Sc

∂xj
≡ constant, j = 1, . . . , n (9)

i.e., the metric is extremal if and only if its scalar curvature Sc is an affine function

of x (see [1]).

Requiring that the scalar curvature Sc ≡ Sc(r), given by (8), is an affine function

of r is easily seen to be equivalent to

h′′(r) = −1

r
+

rn−1

rn − A − Br − Crn+1 − Drn+2
(10)

where A, B, C, D ∈ R are the four parameters describing the family.

As shown by Calabi in [7], one can determine explicit values for the constants

A, B, C, D ∈ R so that the corresponding symplectic potential, given by (7),

gives rise to an extremal Kähler metric on

Hn
m := P(O(−m) ⊕ C) −→ Pn−1 , n, m ∈ N .

In our framework, this can be seen as follows. Up to a GL(n, R) transforma-

tion, generalizing to higher dimensions the one considered in Example 42, Hn
m is

determined by a moment polytope P n
m(a, b) ⊂ Rn with defining affine functions

�i(x) = xi, i = 1, . . . , n , �n+1(x) =
1

m
(r − a) and �n+2(x) =

1

m
(b− r)
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where the real numbers 0 < a < b determine the Kähler class, i.e., the cohomol-

ogy class of the symplectic form ωa,b. Hence, if follows from Theorem 39 that,

to determine a toric compatible complex structure on (Hn
m, ωa,b), the symplectic

potential has to be of the form

2s(x) =
n∑

i=1

xi log xi +
1

m
((r−a) log(r−a)+(b− r) log(b− r))+ h̃(r) (11)

where h̃ is smooth on P n
m(a, b) ⊂ Rn. Comparing (7), (10) and (11), one con-

cludes that we must have

rn−1

rn − A − Br − Crn+1 − Drn+2
=

1

m

(
1

r − a
+

1

b − r

)
+ R(r) (12)

where R(r) is a smooth function on P n
m(a, b) ⊂ Rn. This gives rise to a system

of four linear equations in the four unknowns A, B, C, D ∈ R, which admits a

unique explicit solution for any n, m ∈ N and a, b ∈ R such that 0 < a < b (see

page 285 of [7] or [22]).

5.2. Particular Cases

By construction, all Kähler metrics in Calabi’s four-parameter family are ex-

tremal. A simple computation shows that their scalar curvature is given by

Sc(r) = 2(n + 1)((2 + n)Dr + nC) .

Hence, these metrics have

constant scalar curvature iff D = 0

and are

scalar-flat iff C = D = 0.

Moreover, one can show that these metrics are

Kähler-Einstein iff B = D = 0

and

Ricci-flat iff B = C = D = 0.

We will now analyse in more detail these constant scalar curvature particular

cases. Note that when A = B = C = D = 0 we have

s(x) =
1

2

n∑
i=1

xi log xi

which is the standard symplectic potential of the Delzant set P =
(
R+

0

)n
and

determines the standard flat Euclidean metric on R2n (cf. Example 34).



Toric Kähler Metrics 27

5.3. Ricci-Flat Metrics

Assume that B = C = D = 0 and A = an with 0 < a ∈ R. Then

h′′(r) = −1

r
+

rn−1

rn − an

= −1

r
+

rn−1

(r − a)
∑n

k=1 ak−1rn−k

= −1

r
+

1

n
· 1

r − a
+ R(r)

where R(r) is a smooth function on the rational Delzant set P n(a) ⊂ Rn with

defining affine functions

�i(x) = xi , for all i = 1, . . . , n and �n+1(x) =
1

n
(r − a) .

The symplectic potential can be written as

s(x) =
1

2

(
n∑

i=1

xi log xi +
1

n
(r − a) log(r − a) + h̃(r)

)

where h̃ is smooth on P n(a) ⊂ Rn. Hence, for each a > 0, it defines a Ricci-flat

Kähler metric on the total space of the canonical line bundle

O(−n) −→ Pn−1

(as before, up to a GL(n, R) transformation, the underlying non-compact toric

symplectic manifold is determined by P n(a) ⊂ Rn). These are the metrics con-

structed by Calabi in [6].

5.4. Scalar-Flat Metrics

We will now show that Calabi’s family also contains the complete scalar-flat Käh-

ler metrics on the total space of the line bundles

O(−m) −→ Pn−1 , for all m ∈ N

constructed by LeBrun [18] and Pedersen-Poon [21] (see also Simanca [24]).

Up to a GL(n, R) transformation, these spaces are determined by the rational

Delzant sets P n
m(a) ⊂ Rn, with 0 < a ∈ R and defining affine functions

�i(x) = xi, i = 1, . . . , n , and �n+1(x) =
1

m
(r − a) .
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which means that the symplectic potential has to be of the form

s(x) =
1

2

(
n∑

i=1

xi log xi +
1

m
(r − a) log(r − a) + h̃(r)

)

where h̃ is smooth on P n
m(a). This implies that

h′′(r) = −1

r
+

1

m
· 1

r − a
+ R(r)

with R(r) smooth on P n
m(a). Since the scalar-flat condition is equivalent to C =

D = 0, we get that

−1

r
+

rn−1

rn − A − Br
= −1

r
+

1

m
· 1

r − a
+ R(r) .

This relation gives rise to a system of two linear equations in the two unknowns

A, B ∈ R, which admits a unique solution for any n, m ∈ N and 0 < a ∈ R

A = an(1 − n + m) and B = (n − m)an−1 .

Note that when m = 1 we get complete scalar-flat Kähler metrics on the total

space of the line bundle

O(−1) −→ Pn−1

i.e., on Cn blown-up at the origin. These were originally constructed by D. Burns

(at least when n = 2).

5.5. Fubini-Study and Bergman Metrics

Assume that A = B = D = 0, which implies in particular that we are considering

Kähler-Einstein metrics. Then

h′′(r) = −1

r
+

rn−1

rn − Crn+1

= −1

r
+

1

r(1 − Cr)
=

1
1
C − r

which implies that the symplectic potential can be written as

s(x) =
1

2

(
n∑

i=1

xi log xi +

∣∣∣∣ 1

C
− r

∣∣∣∣ log

∣∣∣∣ 1

C
− r

∣∣∣∣
)

.
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When C = 1 we recover Example 37, i.e., the standard complex structure and

Fubini-Study metric on Pn. More generally, for any C > 0, this defines the

standard complex structure and suitably scaled Fubini-Study metric on Pn. The

corresponding moment polytope is the simplex in Rn with defining affine func-

tions

�i(x) = xi , for all i = 1, . . . , n , and �n+1(x) =
1

C
− r .

When C < 0 it follows from Theorem 39 that the above symplectic potential

determines a toric compatible complex structure JC on the toric symplectic man-

ifold (R2n, ωst) with Delzant set P = (R+
0 )n ⊂ Rn. The corresponding Käh-

ler metric is a U(n)-invariant Kähler-Einstein metric of negative scalar curvature

on the complex manifold (R2n, JC). Using the holomorphic coordinates given

by (4), one easily concludes that (R2n, JC) is biholomorphic to a ball B ⊂ Cn,

which implies in particular that JC is not complete. Moreover, the Kähler metric

〈·, ·〉C := ωst(·, JC ·) is, in fact, the well-known and complete Bergman metric.

5.6. Other Kähler-Einstein Metrics

We will now show that Calabi’s family also contains the complete Kähler-Einstein

metrics with negative scalar curvature on the total space of the open disc bundles

D(−m) ⊂ O(−m) −→ Pn−1 for all n < m ∈ N

constructed by Pedersen-Poon [21].

As toric symplectic manifolds, and up to a GL(n, R) transformation, these spaces

are again determined by the rational Delzant sets P n
m(a) ⊂ Rn with defining affine

functions

�i(x) = xi , for all i = 1, . . . , n , and �n+1(x) =
1

m
(r − a)

which means that the symplectic potential has to be of the form

s(x) =
1

2

(
n∑

i=1

xi log xi +
1

m
(r − a) log(r − a) + h̃(r)

)

where h̃ is smooth on P n
m(a). This implies that

h′′(r) = −1

r
+

1

m
· 1

r − a
+ R(r)
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with R(r) smooth on P n
m(a). Since the Kähler-Einstein condition is equivalent to

B = D = 0, we get that

−1

r
+

rn−1

rn − A − Crn+1
= −1

r
+

1

m
· 1

r − a
+ R(r) .

This relation gives rise to a system of two linear equations in the two unknowns

A, C ∈ R, which admits a unique solution for any n < m ∈ N and 0 < a ∈ R

A =
(m + 1)an

n + 1
> 0 and C =

n − m

(n + 1)a
< 0 .

As remarked by Pedersen-Poon, these metrics are a superposition of Calabi’s

Ricci-flat metrics (A > 0) and Bergman metrics (C < 0). The analogous su-

perposition of Calabi’s Ricci-flat metrics (A > 0) with Fubini-Study metrics

(C > 0) gives rise to Kähler-Einstein metrics on the projectivization of the above

line bundles, with cone-like singularities in the normal directions to the zero

and infinity sections. As explained in [4], these metrics are directly related to

the smooth Sasaki-Einstein metrics constructed in 2004 by Gauntlett-Martelli-

Sparks-Waldram [13, 14].

5.7. Other Constant Scalar Curvature Metrics

We will now show that Calabi’s family also contains the complete constant nega-

tive scalar curvature Kähler metrics on the total space of the open disc bundles

D(−m) ⊂ O(−m) −→ Pn−1 for all n, m ∈ N

constructed again by Pedersen-Poon [21].

As before, we are interested in the rational Delzant sets P n
m(a) ⊂ Rn and sym-

plectic potentials of the form

s(x) =
1

2

(
n∑

i=1

xi log xi +
1

m
(r − a) log(r − a) + h̃(r)

)

with h̃ smooth on P n
m(a). Assuming D = 0 and C = −1, i.e., Sc = −2n(n+1),

this implies that

−1

r
+

rn−1

rn − A − Br + rn+1
= −1

r
+

1

m
· 1

r − a
+ R(r)

with R(r) smooth on P n
m(a). This relation gives rise to a system of two linear

equations in the two unknowns A, B ∈ R, which admits a unique solution for any

n, m ∈ N and 0 < a ∈ R

A = (m − n + (1 − n)a)an and B = (n − m + 1 + na)an−1 .
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