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Abstract. We have generalized the fermionic coherent states to pseudo-fermion
oscillator system. The system of coherent states constructed consist of two sub-
sets, which are bi-normalized and bi-overcomplete. The two subsets are built up
as eigenstates of two annihilation operators b and b = nbn~! of respectively H
and HT where 7 is the Hermitian and invertible operator that ensures the pseudo-
Hermiticity of the Hamiltonian H = n~'Htn.

1. Introduction

The coherent states which provide a quantum description of the evolution of a
classical system [4] has been generalized to several quantum systems [9, 12]. In
last years the concept of coherent states was also introduced to non-Hermitian
quantum mechanics [1, 10]. In this perspective, we have constructed in a re-
cent paper [3] pseudo-fermionic coherent states for pseudo-Hermitian two-level
Hamiltonians with real spectrum.

Our aim is to develops the ideas of [3] in the case of the single pseudo-fermion or
called “phermion” oscillator described by the Hamiltonian H = w (b#b— %) . First
we start with a review in Section 2 of some main results on the pseudo-Hermiticity.
In Section 3 we construct pseudo-fermionic or “phermionic” coherent states for
the single phermion oscillator. In Section 4 we study the time evolution of coher-
ent states constructed. The paper ends with concluding remarks.

2. Some Main Results on Pseudo-Hermiticity

By definition [5], an Hamiltonian H is called pseudo-Hermitian if it satisfies the
relation
H* =nHn™! (1)
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where 7 is a linear, Hermitian, and invertible operator. One can also express the
definition (1) in the form
H? = H )

where
H# =n'H'y (3)

is the n-pseudo adjoint of H [5]. The condition (1) reduces to hermicity when the
operator 7 is equal to the identity. The pseudo-Hermitian conjugation # has the
same properties as the Hermitian conjugation T, namely

a) (A")* = A
b) (AB)# = B# A%

¢) (aA+BB)* = o* A + 3* B¥, where A and B are linear operators, and
« and (3 are complexes numbers.

3. Pseudo-Fermionic or ‘“Phermionic” Coherent States

We consider the single pseudo-fermion “phermion” oscillator described by the

following Hamiltonian
1
H=w <b#b — 2) 4)

where w is constant, b and b are respectively the creation and annihilation op-
erators of the single-degree of freedom of what is called the pseudo-Hermitian
fermion or a phermion [6], which satisfies the standard anticommutation relations

[b, b#L —ob* L bth=1,  (b)?=(¥)2 =0 5)

b# = n~'bTy [5], where 7 is a linear, Hermitian and invertible operator. The
phermion number operators is N = b#b satisfy

b, N] = b, [b#, N} — _p#, [b, b#} —1—2N. 6)

H satisfies the pseudo-hermiticity relation [5] HT = nHn~'. We note that
if n = 1, thus b# = bT, the pseudo-Hermitian fermion (phermion) algebra (5)
reduces to the usual fermion algebra [6]. By analogy with the Fock space repre-
sentation of the fermion algebra, the Fock space representation of the phermion
algebra is spanned by the two-dimensional simultaneous eigenbasis {|11) , [t)2)}
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of the corresponding number operator b#b. The operators b and b* allow transi-
tions between the states as

bly1) =0, bl2) = [t1) @)
b |ha) = 0, b (1) = [to). (8)

The operator b annihilates the lowest eigenstates |1/1), and b7 brings this state
onto the upper eigenstates [1)2).

We define the phermionic coherent states |€) in an analogue scheme as the fermi-
onic coherent states [2, 8] as follow

1€) = e(PFEED) 4y} = e m2EE () — £ |hn))

where ¢ and £* are Grassmannian variables which satisfy the anticommutation
relations

{§&=¢+¢=0, {3 =0  {&. =0 ©)
The ¢ and ¢* anticommute with b and b7

gb=—bg,  £b=—b"

(10)
g = e, &bt = bt
and have the following properties
E[n) = |ih1)¢, §[Y2) = —lib2) (11)
£lo1) = [91)€, §ld2) = —|d2)¢. (12)

The pseudo-Hermitian conjugation reverses the order of all fermionic quantities,
both the operators and the Grassmann variables

(V& + E°D)F = £+ b7€. (13)

The Grassmann integration and differentiation over the complex Grassmann vari-
ables are given by

/dgl—o, /dgg—L /d§*1:o, /dg*g*:1 (14)

d d d d .,
A S S - e R = (15)
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The Grassmann integration of any function is equivalent to the left differentiation

JEIGE {fg ©). (16)

The Hermitian adjoint of the coherent state is

(€] = e 38 (] + € (wa]). a7

In the same way, we introduce another family of coherent states associated to H ™+
as follows

€)= 72 (|61) — €162)) (18)
where |¢71) and | ) are the eigenstates of H . The Hermitian adjoint of E is
(] = e3¢ (on] +€{0nl) 19)

The scalar product between (£|¢) takes the form

(€16) = (p1le1) + ((P2lp2) — (D1]01))E7E — 21 Im(E(P1p2)) #1  (20)

while

(€1&) = (D1l1) + ((P2ltha) — (D1]¢1))€7€ — 21 Im(E(d1le2)) =1 (2D

and

(€l6) = (V1]o1) + ((Y2lp2) — (P1]¢1))§7E — 21 Im(E(P1]g2)) =1  (22)

or more generally

P n * 1 * *
(€1&2) = (1| DT (&) D(&2)|¢n) = &€& + 12 G)E2-8&86). 23
By means of the two type of states |£) and @ the resolution of the identity is
realized in the following way

1— / ae*de |€)(¢] = / ag*de |E)(¢]. (24)

This leads to the statement: The system of phermionic coherent states {|¢), [£)}

consists of two subsets {|£) } and {|£) }, which are bi-normalized and bi-overcomp-
lete.

In the next Section we show that these phermionic coherent states satisfy also the
temporal stability property.
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4. Time Evolution of Phermionic Coherent States

We study the time evolution of the phermionic coherent states constructed above.
We said that the evolution of a given coherent state is time-stable if the time evo-
lution of any initial state from the set, governed by the Hamiltonian, leaves the
state in the set for any ¢ [7, 11]. In the case of our phermionic coherent states

{1£), @} the set parameter is the complex Grassmann variable &, the eigenvalue
of the lowering operators b or b. The time evolution is stable if the evolved states

&) and |€; t) remain eigenstates of the operators b and b respectively

bl&;t) = E(t)[E:t) (25)
blEst) = £(1)[E;t). (26)

This implies that the time evolved coherent states |£;¢) and |¢; ) should form bi-
normal and bi-overcomlete system. Let us first consider the time evolution of an
initial coherent states |). Clearly we have

€:8) = TH0lE),1€:0) = 18). 27)
Using the form (9) of |£) and the facts that |¢); o) are eigenstates of H (with
eigenvalues F/q o) we get

€)= e (1 - ;5*5) [11) — e yy). (28)

Taking into account that £y = —F and Ey = E we put £(t) = e 2F%¢ and
rewrite the last equation in the form

€1y = (1= 3607E®) [vn) — EDIW2)) =E(1)  (29)
which manifests the stability of the time evolution of coherent states |§> Ina

similar manner we establish, that the time evolution ]f t) of an initial \f ), is stable
(remains eigenstate of b)

658) = €070 (1= JE@760) [61) — §0I62) = e™e(®).  (0)
The results (29) and (30) reveal the bi-normality and bi-overcompleteness of the
family of time evolved states {|; ¢), |Z?)} of the phermionic oscillator system (4)
—one has (t; 5\/{,6 =1,and

- / ae*del; 1) (1 €] = / Ag*de|E: 1 (t:€]. 31)

We observe that here the time evolved states |; t) and \EB differ from coherent

states |£(t)) and |E(t\7) only in phase factors.
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5. Concluding Remarks

In this paper, we have constructed phermionic coherent states for the single phermi-
onic oscillator. We have shown that these coherent states satisfy the usual proper-
ties of the coherent states: a) continuity of labelling, b) the resolution of identity,
¢) the temporal stability.
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