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Abstract. We have generalized the fermionic coherent states to pseudo-fermion

oscillator system. The system of coherent states constructed consist of two sub-

sets, which are bi-normalized and bi-overcomplete. The two subsets are built up

as eigenstates of two annihilation operators b and b̃ = ηbη−1 of respectively H
and H+ where η is the Hermitian and invertible operator that ensures the pseudo-

Hermiticity of the Hamiltonian H = η−1H+η.

1. Introduction

The coherent states which provide a quantum description of the evolution of a

classical system [4] has been generalized to several quantum systems [9, 12]. In

last years the concept of coherent states was also introduced to non-Hermitian

quantum mechanics [1, 10]. In this perspective, we have constructed in a re-

cent paper [3] pseudo-fermionic coherent states for pseudo-Hermitian two-level

Hamiltonians with real spectrum.

Our aim is to develops the ideas of [3] in the case of the single pseudo-fermion or

called “phermion” oscillator described by the HamiltonianH = ω
(
b#b− 1

2

)
. First

we start with a review in Section 2 of some main results on the pseudo-Hermiticity.

In Section 3 we construct pseudo-fermionic or “phermionic” coherent states for

the single phermion oscillator. In Section 4 we study the time evolution of coher-

ent states constructed. The paper ends with concluding remarks.

2. Some Main Results on Pseudo-Hermiticity

By definition [5], an Hamiltonian H is called pseudo-Hermitian if it satisfies the

relation

H+ = ηHη−1 (1)
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where η is a linear, Hermitian, and invertible operator. One can also express the

definition (1) in the form

H# = H (2)

where

H# = η−1H+η (3)

is the η-pseudo adjoint of H [5]. The condition (1) reduces to hermicity when the

operator η is equal to the identity. The pseudo-Hermitian conjugation # has the

same properties as the Hermitian conjugation +, namely

a) (A#)# = A

b) (AB)# = B#A#

c) (αA+βB)# = α∗A# +β∗B#, whereA andB are linear operators, and

α and β are complexes numbers.

3. Pseudo-Fermionic or “Phermionic” Coherent States

We consider the single pseudo-fermion “phermion” oscillator described by the

following Hamiltonian

H = ω

(
b#b− 1

2

)
(4)

where ω is constant, b# and b are respectively the creation and annihilation op-

erators of the single-degree of freedom of what is called the pseudo-Hermitian

fermion or a phermion [6], which satisfies the standard anticommutation relations[
b, b#

]
+

= bb# + b#b = 1, (b)2 = (b#)2 = 0 (5)

b# = η−1b+η [5], where η is a linear, Hermitian and invertible operator. The

phermion number operators is N = b#b satisfy

[b,N ] = b,
[
b#, N

]
= −b#,

[
b, b#

]
= 1 − 2N. (6)

H+ satisfies the pseudo-hermiticity relation [5] H+ = ηHη−1. We note that

if η = 1, thus b# = b+, the pseudo-Hermitian fermion (phermion) algebra (5)

reduces to the usual fermion algebra [6]. By analogy with the Fock space repre-

sentation of the fermion algebra, the Fock space representation of the phermion

algebra is spanned by the two-dimensional simultaneous eigenbasis {|ψ1〉 , |ψ2〉}
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of the corresponding number operator b#b. The operators b and b# allow transi-

tions between the states as

b |ψ1〉 = 0, b |ψ2〉 = |ψ1〉 (7)

b# |ψ2〉 = 0, b#|ψ1〉 = |ψ2〉. (8)

The operator b annihilates the lowest eigenstates |ψ1〉, and b# brings this state

onto the upper eigenstates |ψ2〉.
We define the phermionic coherent states |ξ〉 in an analogue scheme as the fermi-

onic coherent states [2, 8] as follow

|ξ〉 = e(b#ξ−ξ∗b) |ψ1〉 = e−
1

2
ξ∗ξ (|ψ1〉 − ξ |ψ2〉)

where ξ and ξ∗ are Grassmannian variables which satisfy the anticommutation

relations

{ξ, ξ∗} = ξξ∗ + ξ∗ξ = 0, {ξ, ξ} = 0, {ξ∗, ξ∗} = 0. (9)

The ξ and ξ∗ anticommute with b and b#

ξb = −bξ, ξ∗b = −bξ∗

ξb# = −b#ξ, ξ∗b# = −b#ξ∗
(10)

and have the following properties

ξ|ψ1〉 = |ψ1〉ξ, ξ|ψ2〉 = −|ψ2〉 (11)

ξ|φ1〉 = |φ1〉ξ, ξ|φ2〉 = −|φ2〉ξ. (12)

The pseudo-Hermitian conjugation reverses the order of all fermionic quantities,

both the operators and the Grassmann variables

(b#ξ + ξ∗b)# = ξ∗b+ b#ξ. (13)

The Grassmann integration and differentiation over the complex Grassmann vari-

ables are given by∫
dξ 1 = 0,

∫
dξξ = 1,

∫
dξ∗ 1 = 0,

∫
dξ∗ξ∗ = 1 (14)

d

dξ
1 = 0,

d

dξ
ξ = 1,

d

dξ∗
1 = 0,

d

dξ∗
ξ∗ = 1. (15)
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The Grassmann integration of any function is equivalent to the left differentiation∫
dξ f(ξ) =

∂

∂ξ
f(ξ). (16)

The Hermitian adjoint of the coherent state is

〈ξ| = e−
1

2
ξ∗ξ (〈ψ1| + ξ∗〈ψ2|) . (17)

In the same way, we introduce another family of coherent states associated to H+

as follows

|̃ξ〉 = e−
1

2
ξ∗ξ (|φ1〉 − ξ|φ2〉) (18)

where |φ1〉 and |φ2〉 are the eigenstates of H+. The Hermitian adjoint of |̃ξ〉 is

〈̃ξ| = e−
1

2
ξ∗ξ (〈φ1| + ξ∗〈φ2|) . (19)

The scalar product between 〈̃ξ|ξ̃〉 takes the form

〈̃ξ|ξ̃〉 = 〈φ1|φ1〉 + (〈φ2|φ2〉 − 〈φ1|φ1〉)ξ∗ξ − 2i Im(ξ〈φ1|φ2〉) �= 1 (20)

while

〈̃ξ|ξ〉 = 〈φ1|ψ1〉 + (〈φ2|ψ2〉 − 〈φ1|ψ1〉)ξ∗ξ − 2i Im(ξ〈φ1|ψ2〉) = 1 (21)

and

〈ξ|ξ̃〉 = 〈ψ1|φ1〉 + (〈ψ2|φ2〉 − 〈ψ1|φ1〉)ξ∗ξ − 2i Im(ξ〈ψ1|φ2〉) = 1 (22)

or more generally

〈ξ1|ξ̃2〉 = 〈ψ1|D+(ξ1)D̃(ξ2)|φ1〉 = ξ∗1ξ2 +
1

4
(2 − ξ∗1ξ1)(2 − ξ∗2ξ2). (23)

By means of the two type of states |ξ〉 and |̃ξ〉 the resolution of the identity is

realized in the following way

1 =

∫
dξ∗dξ |ξ〉〈̃ξ| =

∫
dξ∗dξ |̃ξ〉〈ξ|. (24)

This leads to the statement: The system of phermionic coherent states {|ξ〉, |̃ξ〉}
consists of two subsets {|ξ〉} and {|̃ξ〉}, which are bi-normalized and bi-overcomp-

lete.

In the next Section we show that these phermionic coherent states satisfy also the

temporal stability property.
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4. Time Evolution of Phermionic Coherent States

We study the time evolution of the phermionic coherent states constructed above.

We said that the evolution of a given coherent state is time-stable if the time evo-

lution of any initial state from the set, governed by the Hamiltonian, leaves the

state in the set for any t [7, 11]. In the case of our phermionic coherent states

{|ξ〉, |̃ξ〉} the set parameter is the complex Grassmann variable ξ, the eigenvalue

of the lowering operators b or b̃. The time evolution is stable if the evolved states

|ξ; t〉 and ˜|ξ; t〉 remain eigenstates of the operators b and b̃ respectively

b|ξ; t〉 = ξ(t)|ξ; t〉 (25)

b̃˜|ξ; t〉 = ξ(t) ˜|ξ; t〉. (26)

This implies that the time evolved coherent states |ξ; t〉 and ˜|ξ; t〉 should form bi-

normal and bi-overcomlete system. Let us first consider the time evolution of an

initial coherent states |ξ〉. Clearly we have

|ξ; t〉 = e(−iHt)|ξ〉, |ξ; 0〉 ≡ |ξ〉. (27)

Using the form (9) of |ξ〉 and the facts that |ψ1,2〉 are eigenstates of H (with

eigenvalues E1,2) we get

|ξ; t〉 = e−iE1t

(
1 − 1

2
ξ∗ξ

)
|ψ1〉 − e−iE2tξ|ψ2〉. (28)

Taking into account that E1 = −E and E2 = E we put ξ(t) = e−i2Etξ and

rewrite the last equation in the form

|ξ; t〉 = eiEt
((

1 − 1
2ξ(t)

∗ξ(t)
)
|ψ1〉 − ξ(t)|ψ2〉

)
= eiEt|ξ(t)〉 (29)

which manifests the stability of the time evolution of coherent states |ξ〉. In a

similar manner we establish, that the time evolution ˜|ξ; t〉 of an initial |̃ξ〉, is stable

(remains eigenstate of b̃)˜|ξ; t〉 = e(iEt)
((

1 − 1
2ξ(t)

∗ξ(t)
)
|φ1〉 − ξ(t)|φ2〉

)
= e(iEt) |̃ξ(t)〉. (30)

The results (29) and (30) reveal the bi-normality and bi-overcompleteness of the

family of time evolved states {|ξ; t〉, ˜|ξ; t〉} of the phermionic oscillator system (4)

– one has 〈t; ξ˜|ξ; t〉 = 1, and

1 =

∫
dξ∗dξ|ξ; t〉〈̃t; ξ| =

∫
dξ∗dξ˜|ξ; t〉〈t; ξ|. (31)

We observe that here the time evolved states |ξ; t〉 and ˜|ξ; t〉 differ from coherent

states |ξ(t)〉 and |̃ξ(t)〉 only in phase factors.
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5. Concluding Remarks

In this paper, we have constructed phermionic coherent states for the single phermi-

onic oscillator. We have shown that these coherent states satisfy the usual proper-

ties of the coherent states: a) continuity of labelling, b) the resolution of identity,

c) the temporal stability.
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