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Abstract. In this paper we study some properties of a Lie algebroid and its

prolongation over the vector bundle projection of the dual bundle. We generalize

some results on Poisson manifolds to the level of a Lie algebroid. The notions of

canonical Poisson bivector and horizontal lift are studied and their compatibility

conditions are pointed out.

1. Introduction

The Lie algebroid [10] is a generalization of both concepts of Lie algebra and

integrable distribution, being a vector bundle (E, π, M) with a Lie bracket on his

space of sections with properties very similar to those of a tangent bundle. The

Poisson manifolds are the smooth manifolds equipped with a Poisson bracket on

their ring of functions. I have to remark that the cotangent bundle of a Poisson

manifold has the natural structure of a Lie algebroid [13]. In the last years diverse

aspects of these subjects have been studied in a lot of papers (see for instance [13],

[14], [12], [1] and [7]). In the present paper we study some geometrical structures

on the prolongation of a Lie algebroid to its dual bundle and investigate some

aspects of the Lie algebroid geometry endowed with a Poisson structure. In this

way we generalize some results on Poisson manifolds.

The paper is organized as follows. In the Section 2 we recall the Cartan calculus

and the Schouten-Nijenhuis bracket at the level of a Lie algebroid and present the

Poisson structures on the Lie algebroid. The Section 3 deals with the prolongation

of a Lie algebroid [5], [8] to its dual bundle and continue the investigation starting

in [6]. We study the properties of the canonical Poisson bivector and introduce the

notion of horizontal lift. Finally, the compatibility conditions of these bivectors

are given. We remark that in the particular case of the standard Lie algebroid

(E = TM, σ = Id ) some results of Mitric [12] are obtained.
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2. Preliminaries on Lie Algebroids

Let M be a differentiable, n-dimensional manifold and (TM, πM , M) its tangent

bundle. A Lie algebroid over the manifold M is the triple (E, [ · , ·], σ) where π :
E → M is a vector bundle of rank m over M, whose C∞(M)-module of sections

Γ(E) is equipped with a Lie algebra structure [ · , ·] and σ : E → TM is a vector

bundle map (called the anchor) which induces a Lie algebra homomorphism (also

denoted σ) from Γ(E) to χ(M), satisfying the Leibnitz rule

[s1, fs2] = f [s1, s2] + (σ(s1)f)s2

for every f ∈ C∞(M) and s1, s2 ∈ Γ(E). Therefore, we have

[σ(s1), σ(s2)] = σ[s1, s2], [s1, [s2, s3]] + [s2, [s3, s1]] + [s3, [s1, s2]] = 0.

If ω ∈
∧k(E∗) then the exterior derivative dEω ∈

∧k+1(E∗) is given by the

formula

dEω(s1, ..., sk+1) =
k+1∑
i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1)

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ], s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

where si ∈ Γ(E), i = 1, k + 1, and it follows that (dE)2 = 0. Also, for ξ ∈ Γ(E)
one can define the Lie derivative with respect to ξ by

Lξ = iξ ◦ dE + dE ◦ iξ

where iξ is the contraction with ξ.

If we take the local coordinates (xi) on an open U ⊂ M , a local basis {sα} of

sections of the bundle π−1(U) → U generates the local coordinates (xi, yα) on

E. The local functions σi
α(x), Lγ

αβ(x) on M defined by

σ(sα) = σi
α

∂

∂xi
, [sα, sβ] = Lγ

αβsγ , i = 1, ..., n, α, β, γ = 1, ..., m

are called the structure functions of the Lie algebroid and satisfy the so called

structure equations on the Lie algebroid

σj
α

∂σi
β

∂xj
− σj

β

∂σi
α

∂xj
= σi

γLγ
αβ ,

∑
(α,β,γ)

(
σi

α

∂Lδ
βγ

∂xi
+ Lδ

αηL
η
βγ

)
= 0. (1)
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Locally, if f ∈ C∞(M) then dEf = ∂f

∂xi σ
i
αsα, where {sα} is the dual basis of

{sα} and, if θ ∈ Γ(E∗), θ = θαsα then

dEθ = (σi
α

∂θβ

∂xi
−

1

2
θγLγ

αβ)sα ∧ sβ .

Particularly, we get

dExi = σi
αsα, dEsα = −

1

2
Lα

βγsβ ∧ sγ .

The Schouten-Nijenhuis bracket is given by [13]

[X1 ∧ ...∧Xp, Y1 ∧ ... ∧ Yq]

= (−1)p+1

p∑
i=1

q∑
j=1

(−1)i+j [Xi, Yj ] ∧ X1 ∧ ... ∧
ˆ

X i ∧ ...

∧Xp ∧ Y1 ∧ ... ∧
ˆ

Y j ∧ ... ∧ Yq

where Xi, Yj ∈ Γ(E) and a hat means the absence of a factor.

2.1. Lie Algebroids with Poisson Structure

Let us consider the bivector on E (i.e., contravariant, skew-symmetric, 2-section)

W ∈ Γ(∧2E) given by

W =
1

2
wαβ(x)sα ∧ sβ . (2)

Definition 1. The bivector W is a Poisson bivector on E if and only if we have
the relation [W, W ] = 0, where [ ,] is Schouten-Nijenhuis bracket.

Proposition 2. The relation [W, W ] = 0 implies locally that∑
(α,ε,δ)

(wαβσi
β

∂wεδ

∂xi
+ wαβwγδLε

βγ) = 0. (3)

If W is a Poisson bivector then the pair (E, W ) is called a Lie algebroid with
Poisson structure. The Poisson bracket on E is given by

{f1, f2} = W (dEf1, d
Ef2), f1, f2 ∈ C∞(E).

We have the bundle map π# : E∗ → E defined by

π#ρ = iρW, ρ ∈ Γ(E∗).
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Let us consider the bracket

[ρ, θ]π = Lπ#ρθ − Lπ#θρ − dE(W (ρ, θ))

where L is the Lie derivative and ρ, θ ∈ Γ(E∗). With respect to this bracket and

the usual Lie bracket on vector fields, the map σ̃ : E∗ → TM given by

σ̃ = σ ◦ π#

is a Lie algebra homomorphism

σ̃[ρ, θ]π = [σ̃ρ, σ̃θ].

The bracket [. , .]π satisfies also the Leibnitz rule

[ρ, fθ]π = f [ρ, θ]π + σ̃(ρ)(f)θ

and it results that (E∗, [. , .]π, σ̃) is a Lie algebroid [14].

Next, we can define the contravariant exterior differential dπ :
∧k(E∗) →

∧k+1(E∗)
by

dπω(s1, ..., sk+1) =
k+1∑
i=1

(−1)i+1σ̃(si)ω(s1, ...,
ˆ
si, ..., sk+1)

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ]π, s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

In fact, is obtained the cohomology of the Lie algebroid E∗ with the anchor σ̃ and

the bracket [. , .]π which generalize the Poisson cohomology of Lichnerowicz for

Poisson manifolds [9].

3. The Prolongation of a Lie Algebroid to Its Dual Bundle

Let τ : E∗ → M be the dual of π : E → M and (E, [ · , ·], σ) a Lie algebroid

structure over M. One can construct a Lie algebroid structure over E∗, by taking

the prolongation of (E, [·, ·], σ) over τ : E∗ → M (see [5], [8], [11] and [6]).

This structure is given by the following objects:

• The associated vector bundle is (T E∗, τ1, E
∗) where T E∗ = ∪u∗∈E∗Tu∗E∗

with

Tu∗E∗ = {(ux, vu∗) ∈ Ex×Tu∗E∗|σ(ux) = Tu∗τ(vu∗), τ (u∗) = x ∈ M}

and the projection τ1 : T E∗ → E∗, τ1(ux, vu∗) = u∗.
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• The Lie algebra structure [ · , ·] on Γ(T E∗) is defined in the following way:

if ρ1, ρ2 ∈ Γ(T E∗) are such that ρi(u
∗) = (Xi(τ (u∗)), Ui(u

∗)) where

Xi ∈ Γ(E), Ui ∈ χ(E∗) and σ(Xi(τ (u∗)) = Tu∗τ(Ui (u∗)), i = 1, 2,

then

[ρ1, ρ2](u
∗) = ([X1, X2](τ (u∗)), [U1, U2](u

∗)).

• The anchor is the projection σ1 : T E∗ → TE∗, σ1(u, v) = v.

Notice that if T τ : T E∗ → E, T τ(u, v) = u then (V T E∗, τ1|V T E∗ , E∗) with

V T E∗ := kerT τ is a subbundle of (T E∗, τ1, E
∗), called the vertical subbundle.

If (xi, μα) are local coordinates on E∗ at u∗ and {sα} is a local basis of sections

of π : E → M then a local basis of Γ(T E∗) is {Xα,Pα} where

Xα(u∗) =

(
sα(τ(u∗)), σi

α

∂

∂xi
|u∗

)
, Pα(u∗) =

(
0,

∂

∂μα

|u∗

)
. (4)

The Lie brackets on the elements of this basis are:

[Xα,Xβ] = Lγ
αβXγ , [Xα,Pα] = 0, [Pα,Pβ] = 0 (5)

and

σ1(Xα) = σi
α

∂

∂xi
, σ1(Pα) =

∂

∂μα

dExi = σi
αX

α, dEμα = Pα, dEX γ = −
1

2
Lγ

αβX
α ∧ X β , dEPα = 0

where {X α,Pα} is the dual basis of {Xα,Pα}. Also, if ρ = ραXα + ζαP
α is a

section of T E∗, then

σ1(ρ) = σi
αρα ∂

∂xi
+ ζα

∂

∂μα

.

If u∗ ∈ E∗ and (ux, vu∗) ∈ Ex × Tu∗E∗ then

θE(u∗)(ux, vu∗) = u∗(ux)

is called the Liouville section. The canonical symplectic section ωE is defined by

ωE = −dEθE

and it results that this is a nondegenerate two form and dEωE = 0.

In the local coordinates it follows that the Liouville section is given by

θE = μαX
α
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and we obtain

ωE = Xα ∧ Pα +
1

2
μαLα

βγX
β ∧ X γ . (6)

We remark that V T E∗ is Lagrangian for ωE , i.e., ωE(ρ1, ρ2) = 0, for every

vertical sections ρ1, ρ2 ∈ Γ(V T E∗).

Definition 3. The Ehresmann nonlinear connection on T E∗ is an almost product
structure N on τ1 : T E∗ → E∗ (i.e., a bundle morphism N : T E∗ → T E∗,

such that N 2 = Id ) smooth on T E∗\{0} such that V T E∗ = ker(Id + N ).

If N is a connection on T E∗ then HT E∗ = ker(Id − N ) is the horizontal

distribution associated to N and

T E∗ = V T E∗ ⊕ HT E∗.

Each ρ ∈ Γ(T E∗) can be written as ρ = ρh + ρv where ρh, ρv are sections in the

horizontal and respective, vertical subbundles. A connection N on T E∗ induces

two projectors h, v : T E∗ → T E∗ such that h(ρ) = ρh and v(ρ) = ρv for every

ρ ∈ Γ(T E∗). We have

h =
1

2
(Id + N ), v =

1

2
(Id −N )

kerh = imv = V T E∗, imh = kerv = HT E∗

h2 = h, v2 = v, hv = vh = 0, h + v = Id .

Locally, a nonlinear connection is expressed as N (Xα) = Xα + 2NαβP
β and

N (Pα) = −Pα, where Nαβ = Nαβ(x, μ) are the local coefficients of N . The

local sections Pα, α = 1, ..., m define a local frame of V T E∗, and the sections

δ∗α = (Xα)h = Xα + NαβP
β (7)

generate a local frame of HT E∗. The frame {δ∗α,Pα} is a local basis of T E∗

called adapted to the direct sum decomposition. The respective dual adapted

basis is {X α, δPα} where

δPα = Pα −NαβX
β . (8)

Definition 4. A connection N is called symmetric if HT E∗ is Lagrangian for
ωE .
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By a straightforward computation, using (6) and (7) we get

ωE(δ∗α, δ∗β) = Nαβ −Nβα − μγLγ
αβ (9)

and it result that N is symmetric if and only if

Nαβ −Nβα = μγLγ
αβ .

Proposition 5. With respect to a symmetric nonlinear connection, the canonical
symplectic structure ωE can be written in the following form

ωE = Xα ∧ δPα + μαLα
βγX

β ∧ X γ .

Proof: Using (6) and (8) we get

ωE = Xα ∧ δPα +
1

2
(Nαβ −Nβα)Xα ∧ X β +

1

2
μαLα

βγX
β ∧ X γ

which ends the proof. �

Proposition 6. The Lie brackets of the adapted basis {δ∗α,Pα} are

[δ∗α, δ∗β] = Lγ
αβδ∗γ + RαβγP

γ , [δ∗α,Pβ] = −
∂Nαγ

∂μβ

Pγ , [Pα,Pβ] = 0

where
Rαβγ = δ∗α(Nβγ) − δ∗β(Nαγ) − Lε

αβNεγ . (10)

Proof: Using (7) we obtain

[δ∗α, δ∗β] =

(
σi

α

∂Nβγ

∂xi
− σi

β

∂Nαγ

∂xi
+ Nαδ

∂Nβγ

∂μδ

−N βδ

∂Nαγ

∂μδ

)
Pγ + Lε

αβXε

and putting Xε = δ∗ε −NεγP
γ we get [δ∗α, δ∗β] = Lγ

αβδ∗γ + RαβγP
γ . �

The curvature of a connection N on T E∗ is given by Ω = −Nh where h is

horizontal projector and Nh is the Nijenhuis tensor of h, given by

Nh(θ, ρ) = [hθ, hρ] − h[hθ, ρ] − h[θ, hρ] + h2[θ, ρ].

Remark 7. In the local coordinates we get

Ω = −
1

2
RαβγX

α ∧ X β ⊗Pγ

where Rαβγ is given by (10) and is called the curvature tensor of N .
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Proof: Since h2 = h we obtain

Ω(hρ1, hρ2) = −v[hρ1, hρ2], Ω(hρ1, vρ2) = Ω(vρ1, vρ2) = 0

and in local coordinates we get

Ω(δ∗α, δ∗β) = −v[δ∗α, δ∗β] = −RαβγP
γ

which concludes the proof. �

Remark 8. The curvature satisfies the Bianchi identity

Rαβγ + Rβγα + Rγαβ = 0.

Proof: By direct computation, using relation (10) and structure equations given

by (1). �

The curvature is an obstruction to the integrability of HT E∗, understanding that

a vanishing curvature entails that horizontal sections are closed under the Lie al-

gebroid bracket of T E∗. We have

Remark 9. HT E∗ is integrable if and only if the curvature vanishes.

The integrability conditions for the almost product structure N is given by the

vanishing of the associated Nijenhuis tensor NN . By a straightforward computa-

tion we obtain

NN (Pα,Pβ) = 0, NN (δ∗α,Pβ) = 0, NN (δ∗α, δ∗β) = 4RαβγP
γ .

Thus

NN = −2RαβγX
α ∧ X β ⊗ Pγ

and it results that the distribution HT E∗ is integrable if and only if the almost

product structure N is integrable.

3.1. Canonical Poisson Structure

On the Lie algebroid (T E∗, [ , ], σ1) we have the canonical symplectic section ωE

given by (6) which induces a vector bundle isomorphism

�ωE
: E∗ → E, iζωE ∈ E∗ → ζ ∈ E.
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Definition 10. The canonical Poisson bivector is given by

Λ = �ωE
ωE .

It follows that

Λ(dF, dG) = −ωE(�(dF ), �(dG)), F, G ∈ C∞(E∗)

and in local coordinates we get

Λ = Pα ∧ Xα +
1

2
μαLα

βγP
β ∧ Pγ .

Remark 11. The Schouten-Nijenhuis bracket [Λ, Λ] leads, locally, to the expres-
sion

1

3

∑
(α,β,γ)

(σi
α

∂Lε
βγ

∂xi
+ Lε

αδL
δ
βγ)μεP

β ∧ Pα ∧ Pγ

and [Λ, Λ] = 0 follows from the structure equations on the Lie algebroid (1).

Definition 12. Let us consider a Poisson bivector on E given by (2), then the
horizontal lift of W to T E∗ is the bivector defined by

WH =
1

2
wαβ(x)δ∗α ∧ δ∗β .

Proposition 13. The horizontal lift W H is a Poisson bivector if and only if W is
a Poisson bivector on E and

wαβwγδRβγε = 0.

Proof: The Poisson condition [W, W ] = 0 leads to the relation∑
(α,ε,δ)

(wαβwγδLε
βγ + wαβσi

β

∂wεδ

∂xi
) = 0

and [WH , WH ] = 0 yields∑
(ε,δ,α)

(
wαβwγδLε

βγ + wαβσi
β

∂wεδ

∂xi

)
δ∗ε∧δ∗α∧δ∗δ +wαβwγδRβγεP

ε∧δ∗α∧δ∗γ = 0

which ends the proof. �

Recall that two Poisson structures are said to be compatible if the bivectors w1

and w2 satisfy the condition

[w1, w2] = 0.
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Proposition 14. If W H is a Poisson bivector and N is a symmetric nonlinear
connection, then W H is compatible with the canonical Poisson structure Λ if and
only if the following relations fulfilled

σi
γ

∂ωαβ

∂xi
+ ωεα(

∂Nεγ

∂μβ

− Lβ
εγ) − ωεβ(

∂Nεγ

∂μα

− Lα
εγ) = 0 (11)

ωεαRαγδ = 0. (12)

Proof: If N is symmetric then Nαβ − Nβα = μγLγ
αβ and with respect with the

basis {δ∗α,Pα} it results

Λ = Pα ∧ δ∗α.

By a straightforward computation we obtain that the relation [W H , Λ] = 0 is

equivalent with relations (11) and (12). �
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