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RESOLUTION OF DEGREE ≤ 6 ALGEBRAIC EQUATIONS BY
GENUS TWO THETA CONSTANTS
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Communicated by Ivaïlo M. Mladenov

Abstract. We adjoin complete first kind Abelian integrals of genus two to resolve

the general sextic equation c0z
6 + c1z

5 + · · · + c6 = 0 with simple zeros by

genus two theta constants (Thetanullwerten). Using the same formulas, we also

resolve each algebraic equation of degree five, four or three. It is shown that the

monodromy group of a sextic is isomorphic to the second congruence sub-group

Γ(2) of the symplectic group Sp
4
(Z).

1. Introduction

Diophantus was the first to expound (“Arithmetica”, 3rd century B.C.) the solution

of the quadratic equation ax2 + bx + c = 0 . The solution of the cubic equation

is nowadays known as Cardano formula and was derived in 1515 by del Ferro. In

1545 was published Ferrari’s method for resolving by radicals of any quartic.

During the next three hundred years, fruitless efforts were made to find a solution

by radicals of the quintic and higher degrees equations, which coefficients are

letters. It was finally demonstrated by Abel [1] in 1826 that such solution does not

exist. A complete answer to the question when an algebraic equation is solvable

by radicals was given by Galois [6] about the year 1830.

These discoveries of Abel and Galois had been followed by remarkable results

of Hermite and Kronecker: in 1858 they proved that we can resolve any quintic

extracting a cubic root, three square roots and using an elliptic modular function
[9], [13]. That solution was in fact analogous to the formula

n
√

a = exp
( 1

n

a∫
1

dx

x

)
but the exponent replaced by an elliptic modular function and the integral

∫
dx
x by

an elliptic integral.
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Kronecker thought that the resolution of the quintic would be a special case of a

more general theorem which might exist. This hypothesis was realized in a few

cases by Klein [12] and Jordan [11] showed that any algebraic equation is solvable

by modular functions.

In 1984 Umemura [14] (see Appendix 1 in Mumford’s book) realized Kronecker’s

idea, deducing from a formula of Thomae [17] a root of arbitrary polynomial by

Siegel modular forms. This solution was expressed by genus
[

n+2
2

]
theta con-

stants related with the hyperelliptic curve

Rn :

{
w2 = z(z − 1)Pn(z) if n is odd

w2 = z(z − 1)(z − 2)Pn(z) if n is even

where Pn(z) is a nth degree polynomial, whose roots are to be found. Especially

R6 is a genus four hyperelliptic curve and its period matrix depends on ten para-

meters which, however, are not free: there exists one Schottky relation between

them and two Schottky–type relations extracting hyperelliptic between general

genus four curves.

The aim of this paper is to resolve the equation P6(z) = 0 by genus two theta

constants. In contrast to Umemura’s solution in theta constants of genus four, our

genus two theta functions are free of any restrictions. More precisely, any (2× 2)
Riemann matrix fits in the formulas. It seems that these formulas (Theorem 1)

could not be simplified.

Similar formulae were derived by Guàrdia [8] without mentioning that all con-

stants in Theorem 1 are free. Moreover, we resolve each algebraic equation of

degree five, four or three, specifying correspondingly {∞}, {∞, 0} or {∞, 0, 1}
to be the roots of P6(z).

We give both easy and transparent proof that the expressions in Theorem 1 are the

roots of P6(z) indeed and in particular, Thomae’s formulas have been avoided. A

simple idea will be used: if Δ denotes the Riemann theta divizor for genus two

algebraic curve R : w2 = P6(z) and A denotes Abel’s map, then the Riemann

theta function f(q) := θ
(A(q −Δ)

)
vanishes identically for q ∈ R. Differentiat-

ing f(q) and setting q = (z, w) = (zj , 0) gives explicitly the root zj of P6(z).

In Section 4 we study the monodromy group of the general sextic. This group

turns out to be the second congruence sub-group Γ(2) of the symplectic group

Sp4(F2). In Section 6 we discuss the theorem of Torelli in the case of genus two

Riemann surfaces.
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2. Explicit Roots of Degree Six Polynomials

In this section we establish explicit expressions for the roots z1, z2, . . . , z6 of an

arbitrary sextic

P6(z) := c0z
6 + c1z

5 + · · · + c6 , cj ∈ C , c0 �= 0

by means of genus two theta constants.

The complex Sturm theorem [18] says that there exists an algorithm of separation

the roots of P6(z). Further we shall consider each root zj to be simple and located

inside some circle Uj ∈ C.

Choose an arbitrary order z1, z2, . . . , z6 of the already localized roots and fix some

paths γ12, γ34 and γ56 to join correspondingly U1 with U2, U3 with U4 and U5 with

U6, as in figure (1b) below. This defines two branches of the function

w = ±
√

P6(z) for all z ∈ C − U1 − · · · − U6 − γ12 − γ34 − γ56

and when z crosses some γij , the sign of w has to be chanced. More generally, w

is a well-defined meromorphic function on the genus two Riemann surface

R : w2 = P6(z) .

Let us fix a canonical basis of cycles a1, a2, b1, b2 on R with intersection indexes

ak ◦ al = bk ◦ bl = 0 , ak ◦ bl = δkl

and such that the projection on the z-plane z∗b1 surrounds U1 and U2, while z∗a1

surrounds U2 and U3, z∗a2 surrounds U4 and U5, z∗b2 surrounds U5 and U6.

Alternatively, chosen first the projections z∗ak and z∗bk, then the cycles ak ⊂
z−1(z∗ak) and bk ⊂ z−1(z∗bk).

a1 a2

.................
b2

..................

b1

Figure 1a. A Riemann surface R.
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U6U5U4U1 U2 U3

z∗b1 z∗b2
z∗a2

............ .
............

z∗a1

.............
............

Figure 1b. Cycles in the z–plane.

C

Now we can define the following first kind complete Abelian integrals

σ11 =

∮
a1

dz

w
, σ12 =

∮
a2

dz

w
, ρ11 =

∮
b1

dz

w
, ρ12 =

∮
b2

dz

w

σ21 =

∮
a1

z dz

w
, σ22 =

∮
a2

z dz

w
, ρ21 =

∮
b1

z dz

w
, ρ22 =

∮
b2

z dz

w
·

It turns out that the numbers σ11, σ12, σ21, σ22, ρ11, ρ12, ρ21 and ρ22 contain all

information we need and even arbitrary seven of them do.

Denote by σ11, σ12, σ21, σ22 the normalizing constants, i.e.,(
σ11 σ12

σ21 σ22

)(
σ11 σ12 ρ11 ρ12

σ21 σ22 ρ21 ρ22

)
=

(
1 0 Ω11 Ω12

0 1 Ω21 Ω22

)
and, therefore∮

ak

σs1 + σs2z

w
dz = δks ,

∮
bk

σs1 + σs2z

w
dz = Ωsk , k, s = 1, 2.

It is a standard fact [7] that the period matrix

Ω :=

(
Ω11 Ω12

Ω21 Ω22

)
is a (2 × 2) symmetric matrix and Im Ω > 0.

This enables to define the Riemann theta function with argument u = (u1, u2) ∈
C2 and characteristics α = (α1, α2), β = (β1, β2) ∈ Q2 by the Fourier expansion

θ
[

α

β

]
(u , Ω) :=

∑
n∈Z2

exp 2πi
(

1
2(n + α)Ω + u + β

)(
n + α

)t
.
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This classical function obeys the laws

θ
[

α

β

]
(u+M+NΩ , Ω) = θ

[
α

β

]
(u, Ω)

× exp 2πi
(− 1

2NΩN t− uN t+ αM t− βN t
)

θ
[

α

β

]
(u , Ω) = θ

(
u +
[

α

β

]
, Ω
)
. exp 2πi

(
1
2αΩ + u + β

)
αt

for all M, N ∈ Z2, u ∈ C2, θ(u, Ω) := θ
[

00
00

]
(u, Ω) and since every u ∈ C2 can

be written uniquely by its characteristics α, β ∈ R2 as

u = α + βΩ :=
[

α

β

]
=
[

α1 α2

β1 β2

]
the use of the notation

[
α

β

]
for the points of C2 if not misleading.

When α and β are half–integers, an and if 4αβt ≡ 0 mod 2, then the point[
α

β

] ∈ C2 is called even half–period and θ
[

α

β

]
(u, Ω) is an even function with

regard to u, else if 4αβt ≡ 1 mod 2, the point
[

α

β

]
is called odd half–period and

θ
[

α

β

]
(u, Ω) is an odd function.

Recall also that the two–dimensional complex torus

J(R) := C2
/{

M + NΩ ; M, N ∈ Z2
}

is named Jacobian of R and the Abel’s map is defined by

A : R → J(R)

q 
→ A(q) :=

⎛⎝ q∫
q0

σ11 + σ12z

w
dz ,

q∫
q0

σ21 + σ22z

w
dz

⎞⎠
where q0 is an arbitrary but fixed point on R. An easy computation shows that

z2∫
z1

σs1 + σs2z

w
dz =

1

2

∮
z∗b1

σs1 + σs2z

w
dz =

1

2
Ωs1 , s = 1, 2

and hence if qm :=
(
z = zm, w = 0

)
denotes the mth Weierstrass point on R,

A(q2) −A(q1) =
[ 1

2
0

0 0

]
on J(R).



82 Angel Zhivkov

Likewise, we have next identities on J(R)

A(q3) −A(q2) =
[

0 0
1

2
0

]
, A(q4) −A(q3) =

[ 1

2

1

2

0 0

]
A(q5) −A(q4) =

[
0 0

0 1

2

]
, A(q6) −A(q5) =

[
0 1

2

0 0

]
which suggests to associate each Weierstrass points qj with an odd half–period as

follows:

q1 ↔ [η1

]
:=
[ 1

2

1

2

0 1

2

]
, q2 ↔ [η2

]
:=
[

0 1

2

0 1

2

]
, q3 ↔ [η3

]
:=
[

0 1

2
1

2

1

2

]
q4 ↔ [η4

]
:=
[ 1

2
0

1

2

1

2

]
, q5 ↔ [η5

]
:=
[ 1

2
0

1

2
0

]
, q6 ↔ [η6

]
:=
[ 1

2

1

2
1

2
0

]
.

Consequently for all m, s = 1, 2, . . . , 6,

A(qm − qs) := A(qm) −A(qs) =
[
ηm

]− [ηs

]
on J(Γ) .

To have more compact expressions for the roots of P6(z), we shall write

θs

[
ηm

]
:=

∂

∂us
θ
[
ηm

](
(u1, u2), Ω

)∣∣u1=u2=0
, s = 1, 2

for the first partial derivatives of the thetas, taken at u = 0.

Theorem 1. The roots of the sextic P6(z) are given by

zm =
σ22 θ1[ηm] − σ21 θ2[ηm]

σ12 θ1[ηm] − σ11 θ2[ηm]
, m = 1, 2, . . . , 6 .

Proof: According to Riemann’s theorem on the theta divisor [7], either the section

f(q) := θ[η1]
(A(q − q1) , Ω

)
, q ∈ R

vanishes identically, or it has exactly two zeros on R (integrating the logarithmic

derivative d ln f(q) taken within the Riemann surface R dissected along the cycles

a1, a2, b1 and b2 verifies this assertion). But for any m ≤ 6

f(qm) = θ[η1]
(A(qm − q1) , Ω

)
= const1 . θ

(
[ηm] , Ω

)
= const2 . θ[ηm](0 , Ω)

= 0
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since θ[ηm](u, Ω) is an odd function with regard to u subject [ηm] be an odd half–

period. These six zeros can happen only if f(q) vanishes identically.

A chain of implications finishes the proof: for each m = 1, . . . , 6

f(q) = θ[η1]
(A(q − q1), Ω

) ≡ 0

⇒ d

dw(q)
f(q)∣∣q=qm

= 0

⇔
2∑

s=1

θs[η1]
(A(qm − q1), Ω

)· d

dw(q)

z(q)∫
z(q1)

σs1 + σs2z(q)

w(q)
dz(q)∣∣q=qm

= 0

⇔
2∑

s=1

θs[ηm] · d

dw(q)

w(q)∫
w(q1)

σs1 + σs2z(q)

w(q)
· 2w(q) dw(q)

P ′
6

(
z(q)
) ∣∣q=qm

= 0

⇔
2∑

s=1

θs[ηm]
σs1 + σs2z(qm)

P ′
6

(
z(qm)

) =
1

P ′
6(zm)

2∑
s=1

θs[ηm].(σs1 + σs2zm) = 0

⇔ zm = −σ11 θ1[ηm] + σ21 θ2[ηm]

σ12 θ1[ηm] + σ22 θ2[ηm]
=

σ22 θ1[ηm] − σ21 θ2[ηm]

σ12 θ1[ηm] − σ11 θ2[ηm]

and we have used w2 = P6(z) to deduce 2w dw = P ′
6(z) dz. �

3. The Algorithm of Extracting the Roots

In this short section we briefly recall the procedure for computing the roots of any

fixed sextic P6(z) with complex coefficients and simple roots.

• Apply the complex Sturm theorem to localize the roots z1, z2, . . . , z6 of

P6(z).

• Fix z–images z∗a1, z∗a2, z∗b1, z∗b2 of the cycles a1, a2, b1, b2 as in Fig. 1b.

For w =
√

P6(z) , compute the integrals

σ11 =

∮
z∗a1

dz

w
, σ12 =

∮
z∗a2

dz

w
, ρ11 =

∮
z∗b1

dz

w
, ρ12 =

∮
z∗b2

dz

w

σ21 =

∮
z∗a1

z dz

w
, σ22 =

∮
z∗a2

z dz

w
, ρ21 =

∮
z∗b1

z dz

w
, ρ22 =

∮
z∗b2

z dz

w
·
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• Compute the period matrix

Ω :=

(
σ11 σ12

σ21 σ22

)−1(
ρ11 ρ12

ρ21 ρ22

)
.

• Write down the roots

zm =
σ22 θ1[ηm] − σ21 θ2[ηm]

σ12 θ1[ηm] − σ11 θ2[ηm]
, m = 1, 2, . . . , 6

where[
η1

]
,
[
η2

]
, . . . ,

[
η6

]
=
[ 1

2

1

2

0 1

2

]
,
[

0 1

2

0 1

2

]
,
[

0 1

2
1

2

1

2

]
,
[ 1

2
0

1

2

1

2

]
,
[ 1

2
0

1

2
0

]
,
[ 1

2

1

2
1

2
0

]
θs

[
α1 α2

β1 β2

]
= −2π

∑
n1, n2 ∈Z

(−1)2β1n1+2β2n2(ns + αs) ×

× q
(n1+α1)2

11 q
2(n1+α1)(n2+α2)
12 q

(n2+α2)2

22

and qrs := exp
(
πiΩrs

)
for r, s = 1, 2.

4. Monodromy Group

The algorithm of computing the roots of a polynomial P6(z) requires to fix their

order z1, z2, . . . , z6. Intending to study arising monodromy, we introduce certain

groups, normal sub-groups, factor-groups, exact sequences and homomorphisms

1 → Bcol
6 → B6 → S6 → 1 εi

� � � �

1 → Γ(2, π1) → π1(C
6−D) → π1(C

6−D)
Γ(2, π1)

→ 1 νi

↓ ↓ � �
1 → Γ(2) → Sp4(Z) → Sp4(F2) → 1 , μi.

↓ ↓
1 1

By B6 we have denoted the braid group [2], [5] with six (braid) strings, five gen-

erators ε1, ε2, . . . , ε5 and ten relations

εs εs+1 εs = εs+1 εs εs+1 for s = 1, 2, 3, 4

εi εs = εs εi for i − s > 1, i, s = 1, . . . , 5 .
(1)
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Each braid can be considered as a continuous map

f : [0, 1] → C6−D :=
{
(z1, . . . , z6) ∈ C6 ; zi �= zs for i �= s

}
f(0) = f(1)

modulo homotopy of f , which implies the braid group B6 coincides with the

fundamental group π1 = π1(C
6−D) and the points (z1, . . . , z6) from the config-

uration space C6−D are the root tuples of P6(z). Denote by ν1, ν2, . . . , ν5 the

correspondent generators of π1(C
6−D).

Let Bcol
6 be the group of coloured braids with six strings, i.e., the normalizer of the

sub-group of B6, generated by the squares ε2
1, ε

2
2, . . . , ε

2
5. Thus the factor-group

B6

/Bcol
6 has generators ε1, ε2, . . . , ε5 related by

εs εs+1 εs = εs+1 εs εs+1 for s = 1, 2, 3, 4

εi εs = εs εi for i − s > 1, i, s = 1, . . . , 5

ε2
i = 1 for i = 1, . . . , 5 .

(2)

Observe that the same relations (2) but each εs replaced by the elementary trans-

position (
1 ... s s+1 ... 6
1 ... s+1 s ... 6

)
define the symmetric group S6 [5]. This gives rise of a natural surjective homo-

morphism B6 → S6, of the isomorphism

B6

/Bcol
6

∼= S6

as well as the exact sequence 1 → Bcol
6 → B6 → S6 → 1 .

Recall now that the symplectic group Sp4(Z) consists of all 4×4 integer matrises

μ :=
(

A B
C D

)
, (A, B, C and D are 2×2 matrices), which change every canonical

basis of cycles a1, a2, b1, b2 by the canonical basis(
â

b̂

)
:=

(
A B

C D

)(
a

b

)
,

(
â, b̂, a, b

)
:=

(
â1 â2 a1 a2

b̂1 b̂2 b1 b2

)
preserving the intersection indexes. Algebraically(

A B

C D

)t(
0 I

−I 0

)(
A B

C D

)
=

(
0 I

−I 0

)
or, equivalently

AtD − CtB = I , AtC = CtA , BtD = DtB .
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Next figures demonstrate the correspondence between the braid ε1, the mon-

odromy ν1 and the symplectic change μ1

•1 •2 •3 •4 •5 •6

•
2

•
1

•
3

•
4

•
5

•
6

Figure 2a. Braid ε1.

• • • • • •1 2 3 4 5 6

C

• • • • • •2 1 3 4 5 6

C

Figure 2b. Monodromy ν1.

•
2

•1 •3 • 4 •5 •6

z∗b1 z∗a1

.........................................
......

...

z∗b2
z∗a2

............ .
............

Figure 2c. μ∗

1
–cycles in the z–plane.

C

After a straightforward computation of intersection indexes we calculate the ma-

trix μ1 ∈ Sp4(Z) and, in the same way, μ2, μ3, μ4, μ5

μ1 =

⎛⎜⎜⎝
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , μ2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0

−1 0 1 0
0 0 0 1

⎞⎟⎟⎠ , μ3 =

⎛⎜⎜⎝
1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠

μ4 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

⎞⎟⎟⎠ , μ5 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

One checks immediately that the relations (1) are fulfilled for μs as well which

allows to conclude that the correspondence εs ↔ μs, s = 1, . . . , 5, defines a

homomorphism of groups B6 → Sp4(Z). Moreover, this is a surjective homo-

morphism, as μ1, μ3,

μ0 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠, μ6 =

⎛⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

⎞⎟⎟⎠, μ7 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠
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generate Sp4(Z), see [3], and

μ0 := μ1μ2μ1μ4μ5μ4

μ6 := μ−1
1 μ−1

3 μ5μ4μ3μ
−1
5 μ−1

4

μ7 := (μ1μ2μ3μ4μ5)
3μ0 .

On the other hand, the second congruence sub-group of Sp4(Z)

Γ(2) :=
{
μ ∈ Sp4(Z) ; μ ≡ I4×4 mod 2

}
can be defined as follows: first μ2

1, . . . , μ
2
5 generate some sub-group Γ ⊂ Γ(2),

then one normalizes Γ to obtain Γ(2) spanned by [14]

μ2
1 , . . . , μ2

5 , μ2
6 = μ−2

1 μ5μ4μ
2
3μ

−2
5 μ−1

4 μ−1
5 and μ7μ

2
6μ

−1
7 .

The factor-group Sp4(Z)
/
Γ(2) will be identified as Sp4(F2) , F2 being the field

with two elements.

Proposition 2. ([15]) The factor-group Sp4(F2) and the symmetric group S6 are
isomorphic via the correspondence εs ↔ μs, s = 1, . . . , 5.

Proof: As we have a surjective homomorphism B6 → Sp4(Z) and the correspon-

dent sub-groups Bcol
6 and Γ(2) are generated in an identical manner, the homo-

morphism S6 → Sp4(F2) is surjective, too.

To establish an isomorphism, we have still to verify that the group Sp4(F2) has

order 720, like S6 does. Indeed, consider a chain of sub-groups

Sp4(F2) ⊃ G1 ⊃ G2 ⊃ G3

G1 =

⎛⎜⎜⎝
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞⎟⎟⎠, G2 =

⎛⎜⎜⎝
1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞⎟⎟⎠, G3 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 ∗ 0 1

⎞⎟⎟⎠
(the stars ∗ stand for 0 or 1). Given an arbitrary symplectic matrix μ, there always

exist suitable left and right multiplications by symplectic matrices to include the

products successively in G1, G2 and G3.

The index of G1 in Sp4(F2) equals 15, since the first column of μ is not equal to

(0, 0, 0, 0) . The index [G1 : G2] = 8. The index [G2 : G3] = 3 as the second

row could be (0, 1, 0, 0), (0, 1, 0, 1) or (0, 0, 0, 1). The group G3 has order two.

Summing up, the order of Sp4(F2) equals 15.8.3.2=720. �
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Remark also next correspondence

Sp4(Z) – a1, a2, b2, b2 are not fixed – z1, z2, . . . , z6 are not fixed

G1 – b1 is fixed – {z1, z2} are fixed

G2 – b1, a1 are fixed – z1, z2, z3 are fixed

G3 – b1, a1, a2 are fixed – z1, z2, z3, z6 are fixed

I – b1, a1, a2, b2 are fixed – z1, . . . , z6 are fixed .

Now we may formulate:

Theorem 3. The monodromy group of the family of genus two algebraic curves
w2 = P6(z) is the second congruence sub-group Γ(2) ⊂ Sp4(Z). The extended
monodromy group for this family coincides with the Siegel modular group Sp4(Z).
More precisely, Γ(2) leaves the roots (z1, . . . , z6) of P6(z) invariant, while the
factor-group

Sp4(F2) = Sp4(Z)
/
Γ(2) ∼= S6

permutes effectively and transitively these roots.

There also exists an exact commutative diagram

1 → Bcol
6 → B6 → S6 → 1

↓ ↓ ↓
1 → Γ(2) → Sp4(Z) → Sp4(F2) → 1

↓ ↓
1 1

which relates the monodromy to the braid groups B6 and Bcol
6 .

To complete the point, let us take a symplectic matrix μ :=
(

A B
C D

)
∈ Sp4(Z)

and give a hat ̂ for every new object arising after the change
(

â

b̂

)
= μ.
(

a
b

)
of

the homology basis on R. Then [10]

σ̂ = σAt + ρBt , ρ̂ = σCt + ρDt , Ω̂ = (C + DΩ)(A + BΩ)−1

Â(q) = A(q).(A + BΩ)−1

û = (û1, û2) := (u1, u2).(A + BΩ)−1 = u.(A + BΩ)−1

[
η̂
]

=

[
α̂

β̂

]
:=

[
αAt − βBt

−αCt + βDt

]
+

1

2

[
(ABt)11 (ABt)22

(CDt)11 (CDt)22

]
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θ̂
[
η̂
](

û, Ω̂
)

= κ.
√

det(A + BΩ) . exp(πi û B ut). θ
[
η
]
(u, Ω)(

θ̂1

[
η̂
]
, θ̂2

[
η̂
])

= κ.
√

det(A + BΩ) .
(
θ1

[
η
]
, θ2

[
η
])

.
(
At + ΩBt

)
where κ is certain eight root of unity, independent on u and Ω. The last relation

between theta-function-gradients yields for each m = 1, 2, . . . , 6(
θ̂1

[
η̂m

]
, θ̂2

[
η̂m

])
. σ̂−1 = κ.

√
det(A + BΩ) .

(
θ1

[
ηm

]
, θ2

[
ηm

])
. σ−1

and, henceforth, the invariant equality

ẑm = − σ̂11 θ̂1

[
η̂m

]
+ σ̂21 θ̂2

[
η̂m

]
σ̂12 θ̂1

[
η̂m

]
+ σ̂22 θ̂2

[
η̂m

] = −σ11 θ1

[
ηm

]
+ σ21 θ2

[
ηm

]
σ12 θ1

[
ηm

]
+ σ22 θ2

[
ηm

] = zm

where m̂ := (εi1εi2 . . . εin)(m) subject μ = μi1μi2 . . . μin .

5. A Resolution of Degree < 6 Algebraic Equations

1. All derived formulas about the roots of a sextic remain true for each quintic

P5(z) = c1z
5 + c2z

4 + · · · + c6

with simple roots and c1 �= 0. Letting c0 = 0 implies a root, say z6 = ∞ and

then the denominator σ12 θ1[η6]−σ11 θ2[η6] vanishes, which defines both integrals

σ11 , σ12 up to a multiplicative constant ξ.

According to the classical Rosenhain formula [16], for 1 ≤ m < s ≤ 6

θ1[ηm] θ2[ηs] − θ2[ηm] θ1[ηs] = π2 θ[em,s
1 ] θ[em,s

2 ] θ[em,s
3 ] θ[em,s

4 ]

where [em,s
1 ], . . . , [em,s

4 ] are the even half–periods for which [em,s
i ] + [ηm] + [ηs]

is an odd half–period, θ[e] := θ[e](0, Ω). Using z1 + · · · + z5 = − c2
c1

to evaluate

the constant ξ, we compute explicitly the roots of P5(z)

z1 =
σ22 θ1

[ 1

2

1

2

0 1

2

]
− σ21 θ2

[ 1

2

1

2

0 1

2

]
ξ θ
[ 1

2
0

0 1

2

]
θ
[ 1

2
0

0 0

]
θ
[

0 1

2
1

2
0

]
θ
[

0 1

2

0 0

] , z2 =
σ22 θ1

[
0 1

2

0 1

2

]
− σ21 θ2

[
0 1

2

0 1

2

]
ξ θ
[

0 0

0 1

2

]
θ
[

0 0

0 0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 1

2
1

2
0

]

z3 =
σ22 θ1

[
0 1

2
1

2

1

2

]
− σ21 θ2

[
0 1

2
1

2

1

2

]
ξ θ
[

0 0
1

2

1

2

]
θ
[

0 0
1

2
0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 1

2

0 0

] , z4 =
σ22 θ1

[ 1

2
0

1

2

1

2

]
− σ21 θ2

[ 1

2
0

1

2

1

2

]
ξ θ
[ 1

2

1

2
1

2

1

2

]
θ
[

0 0

0 0

]
θ
[

0 0
1

2
0

]
θ
[ 1

2
0

0 0

]
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z5 =
σ22 θ1

[ 1

2
0

1

2
0

]
− σ21 θ2

[ 1

2
0

1

2
0

]
ξ θ
[ 1

2

1

2
1

2

1

2

]
θ
[

0 0

0 1

2

]
θ
[

0 0
1

2

1

2

]
θ
[ 1

2
0

0 1

2

]
ξ := −c1

c2

5∑
m=1

σ22 θ1[ ηm ] − σ21 θ2[ ηm ]

θ[em,6
1 ] θ[em,6

2 ] θ[em,6
3 ] θ[em,6

4 ]
·

In the case c2 = 0 we define ξ with the help of another formula of Viète.

2. Similar arguments hold for the polynomials

P4(z) = c1z
4 + c2z

3 + · · · + c5

with c1c5 �= 0, c6 = 0 and simple roots. In addition to z6 = ∞, we shall consider

z5 = 0, that is the above z5–numerator vanishes. Hence

σ21 : σ22 = θ1[ η5 ] : θ2[ η5 ]

to conclude (using again Rosenhain’s formula) the quartic P4(z) has roots

z1 = ζ ·
θ
[

0 0
1

2
0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 0

0 0

]
θ
[

0 1

2
1

2
0

]
θ
[ 1

2
0

0 0

]
θ
[

0 1

2

0 0

] , z2 = ζ ·
θ
[

0 0
1

2
0

]
θ
[ 1

2
0

0 0

]
θ
[

0 1

2

0 0

]
θ
[

0 1

2
1

2
0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 0

0 0

]

z3 = ζ ·
θ
[

0 1

2
1

2
0

]
θ
[ 1

2
0

0 0

]
θ
[

0 0

0 0

]
θ
[

0 0
1

2
0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 1

2

0 0

] , z4 = ζ ·
θ
[

0 1

2
1

2
0

]
θ
[ 1

2

1

2

0 0

]
θ
[

0 1

2

0 0

]
θ
[

0 0
1

2
0

]
θ
[ 1

2
0

0 0

]
θ
[

0 0

0 0

]
where z1 + z2 + z3 + z4 = − c2

c1
(or another formula of Viète if c2 = 0) defines

unambiguously the constant ζ.

Multiplying by the least common denominator of z1, z2, z3, z4 simplifies the abo-

ve expressions

z1 = ζ1 · θ
[

0 0
1

2
0

]2
θ
[ 1

2

1

2

0 0

]2
θ
[

0 0

0 0

]2
, z2 = ζ1 · θ

[
0 0
1

2
0

]2
θ
[ 1

2
0

0 0

]2
θ
[

0 1

2

0 0

]2
z3 = ζ1 · θ

[
0 1

2
1

2
0

]2
θ
[ 1

2
0

0 0

]2
θ
[

0 0

0 0

]2
, z4 = ζ1 · θ

[
0 1

2
1

2
0

]2
θ
[ 1

2

1

2

0 0

]2
θ
[

0 1

2

0 0

]2
with a constant ζ1 specified like ζ did.
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3. In order to resolve the cubic equation

P3(z) = c2z
3 + c3z

2 + c4z + c5 = 0

(c2c5 �= 0, the roots z1, z2, z3 are simple and �= 1) via two-dimensional theta

constants, we regard the quartic P4(z) := (z − 1)P3(z), namely suppose the

above constant ζ1 specified upon z4 = 1, whence

z1 =
θ
[

0 0
1

2
0

]2
θ
[

0 0

0 0

]2
θ
[

0 1

2
1

2
0

]2
θ
[

0 1

2

0 0

]2 , z2 =
θ
[

0 0
1

2
0

]2
θ
[ 1

2
0

0 0

]2
θ
[

0 1

2
1

2
0

]2
θ
[ 1

2

1

2

0 0

]2 , z3 =
θ
[ 1

2
0

0 0

]2
θ
[

0 0

0 0

]2
θ
[ 1

2

1

2

0 0

]2
θ
[

0 1

2

0 0

]2 · (3)

Let us remark that these exact squares coinside with the roots of the cubic P3(z)
due to Umemura [14], compare also with [4].

6. Torelli Theorem for Genus Two Curves

Every genus two Riemann surface R is hyperelliptic and there always exist two

meromorphic functions w, z : R → CP1 such that w2 = P6(z) for certain sextic

P6(z) with simple roots [7]. In accordance with our construction, fix an order of

these roots and compute the period matrix Ω = Ω(R) to define a rank four lattice

Λ(Ω) :=
{
M + NΩ ; M, N ∈ Z2

} ⊂ C2.

Then the classical Torelli theorem [7] claims that the Riemann surface R can be

restored by its Jacobian J(R) = C2
/
Λ(Ω), or, what is the same, by Λ(Ω).

On the other side, each (2 × 2) symmetric matrix Ω with ImΩ > 0 defines a

two–dimensional complex torus T := C2
/
Λ(Ω) and then the Riemann surface

R(Ω) : w2 =
6∏

m=1

(
z − θ1

[
ηm

]
θ2

[
ηm

]) (4)

has a Jacobian J(R) = T [4]. This formula effectively solves Torelli’s theorem

for genus two Riemann surfaces.

Notice that the symplectic group Sp4(Z) preserves Λ(Ω) and thus the Riemann

surface R(Ω) invariant, while the group–action

z 
→ h11z + h12

h21z + h22
, h :=

(
h11 h12

h21 h22

)
∈ PGL2(C) ∼= Aut(CP1)
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leaves R(Ω) invariant in the sense that any Riemann surface

Rh(Ω) : w2 =
6∏

m=1

(
h11z + h12

h21z + h22
− θ1

[
ηm

]
θ2

[
ηm

])
remains algebraically isomorphic to R(Ω).

Conversely, if Ω and Ω′ are two period matrices such that the lattices Λ(Ω) and

Λ(Ω′) are different, then they define by (4) two algebraically non–isomorphic

Riemann surfaces R(Ω) and R(Ω′). The variety of moduli of all algebraically

non–isomorphic genus two Riemann surfaces can be written as

M2 =
{
2 × 2 symmetric matrix Ω ; Im Ω > 0

}
modulo Sp4(Z)−action

= PGL2(C)
∖{

degree six polynomials with simple roots
}/S6

=
{
(ξ1, ξ2, ξ3) ∈ (C − {0, 1})3; ξi �= ξj if i �= j

}
modulo S ′

6−action

where S6–elements reorder the roots of P6(z), the elements of PGL2(C) nor-

malize the roots in the form (0, 1,∞, ξ1, ξ2, ξ3) and then we forget 0, 1 and ∞
to obtain a S ′

6–action on the triples (ξ1, ξ2, ξ3). In general, there exist 720 S ′
6–

equivalent such triples. Each of them brings the curve R(Ω) in a Rosenhain nor-

mal form, say

w2 = z (z − 1)(z − ξ1)(z − ξ2)(z − ξ3)

ξ1 :=
θ
[

0 0
1

2
0

]2
θ
[

0 0

0 0

]2
θ
[

0 1

2
1

2
0

]2
θ
[

0 1

2

0 0

]2 , ξ2 :=
θ
[

0 0
1

2
0

]2
θ
[ 1

2
0

0 0

]2
θ
[

0 1

2
1

2
0

]2
θ
[ 1

2

1

2

0 0

]2 , ξ3 :=
θ
[ 1

2
0

0 0

]2
θ
[

0 0

0 0

]2
θ
[ 1

2

1

2

0 0

]2
θ
[

0 1

2

0 0

]2
according to (3) with zi = ξi , i = 1, 2, 3.
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