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Abstract. We show that the Bakamjian-Thomas construction for relativistic di-

rect interactions can be extended to describe resonances by irreducible representa-

tions of the causal Poincaré semigroup. These representations are generated by a

Poincaré algebra that incorporates interactions and are characterized by the com-

plex pole position and spin of the resonance.

1. Inroduction

Unitary representations of the Poincaré group P underlie all physical theories that

obey the principles of special relativity and quantum mechanics. The Poincaré

group is also fundamental to classical relativistic physics. In this context, Dirac

considered the problem of describing interactions between classical relativistic

particles [4]. He worked within the framework of a Poincaré algebra realized by

Poisson brackets of dynamical variables and did not make ancillary assumptions

such as the existence of fields that mediate the interactions. In classical relativistic

mechanics, Dirac’s problem does not have a non-trivial solution if the particles are

subjected to the (unphysical) constraint of having covariant world-lines. World-

line constraints do not certainly hold in the quantum setting, and Bakamjian and

Thomas (BT) gave the first explicit construction of a class of relativistic quan-

tum direct interaction theories for two particles [2]. The key theoretical idea of

this work, which we will refer to as the BT construction, is that interactions can

be introduced as a perturbation to the invariant mass operator M = M0 + ΔM ,

much like in the non-relativistic case where the Hamiltonian absorbs the interac-

tions, H = H0 + V . Interaction incorporating self-adjoint operators that furnish

a realization of the Poincaré algebra can be induced from this interacting mass

operator M and the interaction-free two particle generators of the Poincaré trans-

formations. Here, it is possible to choose a kinematic subalgebra that remains un-

affected by the interactions, leading to different forms of dynamics [4]. Sokolov

67



68 Sujeev Wickramasekara

extended the BT construction to more than two particles, the number of which

is conserved or not, in a manner that satisfies the principle of cluster decomposi-

tion [13]. See [6] for the development of relevant ideas and [8] for an excellent

comprehensive review of the subject and some interesting original results.

The purpose of this paper is to examine how the BT construction may be extended

for the description of quasistable states. To illustrate the basic ideas, we consider

the scattering of two stable particles leading to the formation of a resonance. The

main technical result we report is the existence of an irreducible representation of

the causal Poincaré semigroup, the semidirect product of the Lorentz group and

the semigroup of spacetime translations into the forward lightcone, that describes

the resonance. This representation is characterized by the position of the S-matrix

resonance pole and the spin-value of the partial wave in which the pole appears.

Thus, a state vector description with well-defined transformation properties under

symmetry operations appears possible for a resonance, and the spacetime transla-

tions of these state vectors lead to a fundamental criterion by which unique mass

and width values of the resonance can be extracted from the pole position.

2. Bakamjian-Thomas Construction

The Hilbert space Hn(m, s) of a stable elementary quantum system of mass m,

spin s and species labels n furnishes a unitary, irreducible representation (UIR)

of P [16]. Under the operators U(Λ, a), (Λ, a) ∈ P , of this UIR, the generalized

eigenvectors |p, s3[m, s]n〉 transform as

U(Λ, a)|p, s3[m, s]n〉 = e−ia.p
∑
s′
3

Ds
s′
3
s3

(W (Λ−1, p))|Λp, s′3[m, s]n〉 (1)

where Λp is the spatial part of the four vector Λp andW (Λ, p) = L−1(Λp)ΛL(p)
is a Wigner rotation. The vectors |p, s3[m, s]n〉 are not elements of the Hilbert

space Hn(m, s) and they should be defined as continuous functionals on a proper

subspace (test functions) of H(m, s). Below, we will consider test function spaces

for two particle scattering.

The Hilbert space of two particles is the direct product

H = Hn1(m1, s1) ⊗Hn2(m2, s2). (2)

The direct product operators U0(Λ, a) = U1(Λ, a)⊗U2(Λ, a), where Ui(Λ, a) are

defined by (1) for the particle of mass mi and spin si, i = 1, 2, furnish a unitary
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representation of P in H (2). The Poincaré algebra that integrates to this direct

product representation is spanned by the sum of one particle operators

P0μ := P (1)
μ + P (2)

μ , J0μν := J (1)
μν + J (2)

μν . (3)

The subscript 0 in (3) and in the representation U0 indicates that the two particles

are free. Operators (3) fulfill the commutation relations of the Poincaré algebra

[J0μν , J0ρσ] = i(gνρJ0μσ − gμρJ0νσ + gμσJ0νρ − gνσJ0μρ)

[P0μ, P0ν ] = 0, [P0μ, J0ρσ] = i(gμρP0σ − gμσP0ρ)
(4)

The central elements are the mass and spin operators,

M2
0 = P0μP

μ
0 , W0 =

1

M2
0

ω0μω
μ
0 (5)

where ω0μ = 1
2εμνρσP

ν
0 J

ρσ
0 . Unlike the generators (3), M0 and W0 are not the

sums of the one particle operators.

The representation U0 = U1 ⊗ U2 in (2) is not irreducible, but it can be reduced

to a direct sum of UIRs [10]

H = Hn1(m1, s1) ⊗Hn2(m2, s2) =

∞∫
s0

ds

∑
jη

Hη(s, j) (6)

where the integration is over the spectrum of M 2
0 , s0 ≡ (m1 +m2)

2 ≤ s < ∞,

the total angular momentum j = 0, 1, 2, · · · if |s1 − s2| = integer, and j =
1/2, 3/2, · · · if |s1 − s2| = half-odd-integer where η represents the degeneracy

labels that include orbital angular momentum l, total spin s and particle species

indices n. Each Hilbert subspace Hη(s, j) of (6) furnishes a UIR of P correspond-

ing to mass
√

s and spin j. The generalized eigenvectors for this UIR |p, j3[s, j]η〉,
which can be determined from the direct product basis vectors by means of the

Clebsch-Gordan coefficients, transform irreducibly under P .

Let us turn to the problem of introducing interactions into the above two particle

system along the lines of BT construction. To that end, consider a perturbation of

the mass operator (5) of the form

M := M0 + ΔM. (7)

The central idea is to construct a set of ten operators Pμ and Jμν such that the

commutation relations (4) are fulfilled and the defining relationM = PμP
μ holds
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for the M defined by (7). Here we choose the point form dynamics [4]. In terms

of generators, this means that only the momenta are affected by the interactions.

Thus, we define the interacting operators Pμ and Jμν by

Pμ = M
P0μ

M0
= P0μ + ΔM

P0μ

M0
, Jμν = J0μν . (8)

To ensure relativistic invariance of the interacting system, it is necessary that

operators (8) fulfill the commutation relations (4). The first equality of (4) is

automatic since Jμν = J0μν while the last two require
[

P0μ

M0
,ΔM

]
= 0 and

[J0μν ,ΔM ] = 0. This means that the interaction term ΔM must be a function

of only the internal variables, such as the magnitude of the relative momentum

k and the degeneracy labels η (including l and s). It follows from (8) that the

spin operator W = 1
M2ωμω

μ, where ωμ = 1
2εμνρσP

νJρσ, is identical to the free

operator W0 of (5). From these considerations we see that the BT construction

provides a way of inducing perturbations into the 10-parameter group P from the

well established theory of perturbations for the one dimensional Lie group R.

Under the usual integrability conditions for operator Lie algebras [11], the inter-

acting Lie algebra (8) integrates to a unitary representation of P in (2). We denote

this unitary representation by U , as opposed to U0, the one generated by the free

operators (3).

3. Resonance Scattering and Decay

In order to describe the interacting two body system, in particular scattering, we

must solve the eigenvalue problem for a complete system of commuting observ-

ables (CSCO) in the enveloping algebra generated by the operators (8). In antici-

pation of scattering, we will assume that the interaction ΔM is such that the spec-

trum of the full mass operator M is absolutely continuous and coincides with that

of the free mass operator M0. We will further assume that asymptotic complete-

ness holds and Møller operators exist, Ω± = limτ→∓∞ eiMτe−iM0τ . Operators

Ω± map the Hilbert space (2) unitarily onto itself such that, for ϕ ∈ H, Ω+ϕ :=
φ+ are the scattering in-vectors and Ω−ϕ := ψ− are the out-vectors. They also

map the generalized eigenvectors |p, j3[s, j]η〉 into interacting in- and out- gen-

eralized eigenvectors: |pj3[s, j]η
±〉 = Ω±|p, j3[s, j]η〉. Like |p, j3[s, j]η〉, the

vectors |p, j3[s, j]η
±〉 must be properly defined as continuous antilinear function-

als on a suitable (test functions) subspaces of the Hilbert space (2). We will shortly

see that the analyticity properties of the S-matrix provide the clues as to how the

relevant subspaces of H are to be constructed. When so defined as functionals, the
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vectors |p, j3[s, j]η
+〉 and |p, j3[s, j]η

−〉 furnish a basis for the in- vectors φ+ and

out- vectors ψ−, respectively. Therewith, the S-matrix element has the expansion

〈ψ−|φ+〉 =
∑
jj3η

∞∫
s0

ds

∫
dp

2p0
〈ψ−|p, j3[s, j]η

−〉Sj(s)〈p, j3[s, j]η
+|φ+〉 (9)

where the reduced S-matrix Sj(s) is defined by

〈p′, j′3[s
′, j′]η′−|p, j3[s, j]η

+〉 = δ(p′ − p)δ(s′ − s)δj′jδj′
3
j3δη′ηSj(s).

If a resonance forms, then the analytic function Sj=jR
(s), where jR is the spin

of the resonance, has a pair of simple poles at s = sR and its complex conjugate

s = s
∗
R in the second Riemann sheet [5]. Let us take Im(sR) < 0. For the sake

of simplicity, let us also take s1 = s2 = 0 and the spin of the resonance jR = 0.

Therewith, we consider only the j = 0 term in (9).

In order to bring forth the contribution of the resonance, we must consider the

extension of the integral over s in (9) into one defined over a contour that encir-

cles the pole position s = sR on the lower half plane. This in turn requires that

the integrand of (9) have an analytic extension in s. Since S0(s) is already an

analytic function, we only need to demand that the wave functions 〈ψ−|p[s, 0]−〉
and 〈p[s, 0]+|φ+〉 have analytic extensions into the lower half complex s-plane.

This means that we must introduce boundary conditions into the wave functions

in addition to the usual square integrability.

Since pμp
μ = s, complex extensions of wavefunctions in s necessarily leads to

complex extensions in p. However, complications of having to deal with functions

of multiple complex variables can be avoided if we label the generalized eigen-

vectors by the spatial part of the four velocity q = p√
s
, instead of the momenta

p. This choice introduces no loss of generality since it amounts to choosing the

set {
Pμ

M , S3, M, W}, rather than {Pμ, S3, M, W}, as a CSCO. For the CSCO

{
Pμ

M , S3, M, W} and j = 0, the S-matrix has the expansion

〈ψ−|φ+〉 =

∞∫
s0

ds

∫
dq

2q0
〈ψ−|q[s, 0]−〉S0(s)〈q[s, 0]+|φ+〉. (10)

The velocity eigenvectors have the normalization 〈q′, j′3[s
′, j′]η′±|q, j3[s, j]η

±〉 =
2q0δ(s′−s)δ(q′−q)δj′

3
j3δj′jδη′η, so that 〈q′, j′3[s

′, j′]η′−|q, j3[s, j]η
+〉 = 2q0δ(s′−

s)δ(q′ − q)δj′
3
j3δj′jδη′ηSj(s). The velocity wave functions 〈ψ−|q, j3[s, j]

−〉 and

〈q, j3[s, j]
+|φ+〉 have the advantage that they can be analytically extended in the
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square mass s while keeping the velocity variables real. This leads complex mo-

menta of the form
√

sqμ where qμ are real.

Recall that the Hilbert space for the representation U can be always realized as

L2-functions defined on the Cartesian product of the spectra of a CSCO. For the

CSCO {
Pμ

M , S3, M, W} and j = 0, the L2-realization of Hj=0 =
∫
s0

dsH(s, 0)

is L2
(
Rs0

,R3
)
, where Rs0

is the spectrum of M 2. Out of these L2-functions,

we must choose for 〈ψ−|q[s, 0]−〉 and 〈q[s, 0]+|φ+〉 those which admit analytic

extensions into the lower half complex plane. Further, for the contour deformation

of the integral (10) to be defined, these analytic extensions must decrease in the

modulus sufficiently fast for |s| → ∞. These requirements can be fulfilled if we

choose 〈ψ−|q[s, 0]−〉 and 〈q[s, 0]+|φ+〉 to be of Hardy class [9] from below in the

square mass variable s. Specifically, let

{〈q[s, 0]−|ψ−〉} = M∩H2
+

∣∣
Rs0

⊗ S(R3) (11+)

{〈q[s, 0]+|φ+〉} = M∩H2
−

∣∣
Rs0

⊗ S(R3). (11−)

Here, S(R3) is the Schwartz space over R
3, H2

± are Hardy class functions on

C
±, and M is the subspace of Schwartz functions which, along with all of their

derivatives, vanish at the origin. The symbol |
Rs0

indicates the restrictions of the

functions in M∩H2
±, the support of which is the whole real line, to the spectrum

of M2. Since 〈q[s, 0]−|ψ−〉 ∈ H2
+ implies 〈q[s, 0]−|ψ−〉 ∈ H2

−, 〈ψ−|q[s, 0]−〉
has the required analyticity properties on the complex s plane.

The function spaces (11) are dense in the Hilbert space and they can be equipped

with a nuclear Frechét topology leading to a pair of rigged Hilbert spaces [15]. If

we denote by Φ+ = {ψ−} and Φ− = {φ+} the set of vectors in H which have

the L2-realizations (11±), then we have the pair of absract rigged Hilbert spaces

Φ± ⊂ H ⊂ Φ×
± (12)

where Φ×
± are the spaces of continuous antilinear functionals on Φ±. Then, the

generalized eigenvectors |q[s, 0]±〉 are defined as elements of Φ×
∓ and the Dirac

basis vector expansions hold for φ+ and ψ− (Gel’fand-Maurin theorem [7]).

With (11) and Laurent expansion of S0(s) around s = sR, we obtain the contour

deformation of (10) over s

(ψ−, φ+) =

∫
dq

2q0
〈ψ−|q[sR, 0]−〉〈q[sR, 0]+|φ+〉

+

s0∫
−∞

∫
dq

2q0
〈ψ−|q[s, 0]−〉S0(s)〈q[s, 0]+|φ+〉.

(13)
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Like |q[s, 0]−〉, the vectors |q[sR, 0]−〉 appearing in (13) are well defined as ele-

ments of the dual space Φ×
+. They are generalized eigenvectors of the momenta

Pμ with complex eigenvalues
√

sRqμ and for this reason, we call them Gamow

vectors. The linear span of Gamow vectors for q ∈ R
3 defines the vector space

that provides a state vector description for the resonance.

In L2
(
Rs0

,R3
)
, the U(Λ, a) act as (U(Λ, a)f)(s, q) = e−i

√
sq.af(s,Λq). Since

q remains real, it follows from this and the properties of Hardy class functions that

the subspace (11−) of L2(Rs0
,R3) is invariant under U(Λ, a) only if a0 ≥ 0 and

a2 ≥ 0, i.e., only if a is a translation into the forward light cone, T+. The set of

elements P+ := {(Λ, a); (Λ, a) ∈ P, a ∈ T+} is a semigroup under the product

rule of P . We call P+ the causal Poincaré semigroup. Since Φ− is isomorphic to

(11−), we conclude that the restriction of the unitary representation U in H to Φ−

furnishes a representation of the semigroup P+. The restriction of the operators

U † to Φ+ also provides a representation of P+ different from that in Φ−.

By duality, the representations of P+ in Φ± induce representations in Φ×
±. In

particular, the vectors |q[s, 0]−〉 ∈ Φ×
+ and |q[sR, 0]−〉 ∈ Φ×

+ transform as

U(Λ, a)|q[s, 0]−〉 = e−i
√

sq.a|Λq[s, 0]−〉, (Λ, a) ∈ P+ (14)

U(Λ, a)|q[sR, 0]−〉 = e−i
√

sRq.a|Λq[sR, 0]−〉, (Λ, a) ∈ P+. (15)

The representation of P+ defined by (15) on the space spanned by |q[sR, 0]−〉
is irreducible. Therefore, in the same vein as stable elementary systems are rep-

resented by the UIR of P , the irreducible representation of P+ defined by (15)

provides a characterization of the resonance associated with sR as an elementary

quantum system in its own right. It is noteworthy that although the restriction of

U to Φ− yields only a representation of P+, the restriction of the corresponding

Lie algebra to Φ− yields a representation of the Poincaré algebra by continuous,

interaction-incorporating operators. While the operator Lie algebra in H inte-

grates to a representation of the whole group P , only a cone of the Lie algebra in

Φ− integrates to a representation of the semigroup P+ in Φ−. The transformation

properties of |q[sR, 0]−〉 provide a unique, unambiguous criterion for extracting

the resonance mass and width values from the pole position [3].

4. Conclusion

The BT-construction provides a way of introducing interactions into relativistic

quantum systems without the use of fields that mediate them. We have shown

that the BT construction can be extended to describe resonance states formed in
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two particle scattering. The key elements of the construction are the inclusion of

interactions in the mass operator (7) and the use of Hardy class functions (11).

From these considerations, we deduce that there exists an irreducible represen-

tation of the causal Poincaré semigroup uniquely characterized by the resonance

pole position sR and spin value j of the partial S-matrix Sj(s). The use of Poincaré

semigroup for describing resonances has been also considered in [14], though the

interacting generators and the dynamical character of resonance formation has not

been studied in this work. The same semigroup appears in [1] that uses the instant

form dynamics and quantum fields to describe the interactions.
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