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Abstract. The two centre problem is studied both in the phase plane and in

spacetime, assuming first a trajectory collinear, and, as a second case, a circular

one through the newtonian attractors, finding a saddle equilibrium. For the lat-

ter problem a probably new differential equation is met and solved. Time is then

obtained in both cases through elliptic integrals of all kinds and Jacobian functions.

1. Introduction

This problem consists of computing the motion of a test particle in the field of

two fixed centres of newtonian attraction. It was first considered by Euler in 1760,

who showed its integrability (see [7] for the early history of this problem). Nowa-

days, the system plays an important role both in macro and microphysics. In the

past it represents a body moving under the attraction of two fixed stars. Passing to

relativistic implications, Contopoulos et al., [3], [4], have discovered, through nu-

merical experiments, that in contrast with the classic two-centre problem, whose

dynamics is completely integrable, relativistic motion of two black-holes in space-

time exhibits chaotic behavior. In the latter, the system is the simplest model of a

diatomic molecule, since Pauli had applied it to the hydrogen molecular ion H+
2

in his doctoral thesis, 1922, well before the birth of wave mechanics. Anyway,

the assumption that their nuclei are fixed is known as “Born-Oppenheimer ap-

proximation” whose paper Zur Quantentheorie der Molekeln, 1927, describes the

separation of electronic motion, nuclear vibrations, and molecular rotation. Such

approximation is ubiquitous in quantum chemical calculations, the test particles

being electrons which are assumed to “feel” the Coulomb attractive potential V of

the nuclei clamped at certain space positions. Generalizing the attraction law to

V = ar2n, where r is a distance and n a real number, it has recently proved, [6],

that a two fixed attractors problem is integrable when:
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1. n = 0, trivial case of free motion

2. n = −1, the classic two-centre problem which is separable (Jacobi) in

elliptic coordinates

3. n = 1, case of two uncoupled harmonic oscillators

4. n = 2, the case of Hamiltonian system with a non-homogeneous fourth

degree potential is integrable and separable in elliptic coordinates [5].

The classic bicentral problem can be thought as a “soft” version of the “hard”

planar three-body problem whenever the third mass is so small that it can not

appreciably affect the remaining ones which can properly be assumed as fixed.

Several approaches to it are possible, according to whether the third body trajec-

tory is imposed or not, and which one, and/or if we there is either a 1-D motion

or a 2-D one depending on the initial conditions nature. E. g. in [7] we assumed

the body to move along the normal to the joint of two attractors, so that oscillat-

ing and non oscillating behaviors were detected. In the present work, we analyze

the simplest conceivable three masses set, the collinear one. Going on with the

1-D task, we supplement this article with our research on the half circular path

whose diameter is drawn through the attractors. After a phase portrait analysis,

time equation – for both cases, thanks to their symmetries is integrated in closed

form, through the Jacobi elliptic functions.

2. The Collinear Problem

For a ∈ R
+, we consider, see for instance [1] page 418, the two-centre collinear

motion (Figure 1), which leads to the following differential equation:

ẍ =
B2

(a− x)2
−
A2

x2
:= f(x), A,B > 0

x(0) = x0 ∈ (0, a) , ẋ(0) = v0 ∈ R

(1)

First we assume A �= B, so (1) has a Weierstraß function given by

Φ(x) := 2

x∫
x0

f(ξ)dξ + v2
0 = 2

(
B2

a− x
+
A2

x

)
− 2

(
B2

a− x0
+
A2

x0

)
+ v2

0

so that the equation for time reads

t = sign (v0)

x∫
x0

du√
Φ(u)

· (2)
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Figure 1. The two-centre collinear problem.

When v0 = 0, the sign shall be chosen according to that of f(x0).

2.1. No Periodic Behavior Occurs

The motion is possible if Φ(x) ≥ 0. Owing to Φ(x) → ∞ as x → 0+ and

x→ a−, and in such a way the absolute minimum of Φ(x) for any x ∈ (0, a) is

Φ

(
a

A

A+B

)
= v2

0 −
2 (aA− (A+B) x0)

2

a (a− x0) x0
·

In order to establish if the motion ruled by (1) is periodic or not, it is necessary

to examine the roots of its Weierstraß function Φ(x) for x∈ (0, a). A possible

oscillation would take place between the Φ(x)’s real roots

x1,2 =
1

2K

[
aK + 2B2 − 2A2 ±

√
(aK + 2B2 − 2A2)2 + 8KaA2

]
K = v2

0 − 2

(
B2

a− x0
+
A2

x0

)
.

Since Φ(x) is convex for each x ∈ (0, a), either Φ(x) has no real root in (0, a)
and then the motion turns out to be aperiodic, or it has two real roots x1 and x2,

but its convexity implies that Φ(x) < 0 for x∈ (x1, x2), so that no motion at all

occurs between the roots. In any case, periodic motions between the fixed stars

shall be excluded.

2.2. Phase Portrait Analysis

Before the exact integration of (2), let us discuss the features of the dynamic

system. By setting

ẋ = g1(x, y) = y, ẏ = g2(x, y) =
B2

(a− x)2
−
A2

x2
(3)
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the equilibria turn out to be just at the Φ(x) stationary points, namely

(x1, 0) =

(
aA

A−B
, 0

)
, (x2, 0) =

(
aA

A+B
, 0

)
x1 /∈ (0, a), since it contradicts also x1 < a if A > B, and contradicts x1 > 0
if A < B. Hence, the only feasible critical point is E ≡ (x2, 0), one of the La-

grangian points, which is well-known in Celestial Mechanics. Their construction

is shown at Figure 2. The eigenvalues of the Jacobian matrix of (3) evaluated at E
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Figure 2. How to construct points E and E ′ = (x1, 0) on the phase plane.

have opposite signs: E is then a saddle point for the system for any choice of the

parameters a, A and B, namely regardless of distances and masses the attractors

can have. The phase plane orbit can be detected by eliminating time from (3) and

in such a way one gets

y(x) = ∓

√
K + 2

(
B2

a− x
+
A2

x

)
where K was introduced before. By taking E instead of (x0, y0) as the initial

point, then we will get y = y(a,A,B,KE ;x), i.e., the cartesian equation of the

separatrix σ, which has four different branches (see Figure 3). Looking at σ, the

strip (0, a) × R can be divided in three regions
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Figure 3. A phase portrait of the collinear motion with the separatrix and the

basins BA and BB relevant to each centre A, B.

1. the free zones, namely that one above σ, with ẋ > 0 and that one below σ,

with ẋ < 0. No dominant massive effect is present over there.

2. the attraction basin BA of the mass A, as a part of the plane bounded by the

σ−branches with 0 < x < x2 and the vertical axis x = 0, their asymptote.

3. the attraction basin BB of the mass B, as a part of the plane bounded by the

σ−branches with x2 < x < a, and the vertical axis x = a, their asymptote.

Notice that each trajectory cuts the x-axis, as shown in Figure 3, providing a

complete phase portrait of (3). We will restrict our considerations to the following

points.

1. The point P1 belongs to the attraction basin BA of the mass A which attracts

it. P1 starts from the rest position so that xP1
decreases, all the motion takes

place in the down side of BA, tending asymptotically to x = 0.
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2. The phase portrait P2 motion is symmetric to that of P1 and its movement

takes place in the upper side of BB , aiming asymptotically to x = a.

3. At t = 0 the point P6 is already moving, the sign of its velocity tells us that

it is pointing towards A. But A can be never caught because P6 ∈ BB , then

it is attracted by B in two steps: first it is deviated to A, reducing its speed

till the stop P6. Subsequently, the speed will start increasing, but pointing

towards B and x = a will be the asymptotic destination which the state

representative point is aiming to, with a theoretically infinite body speed.

4. The P5 motion description is symmetric to that of P6.

5. P3: at t = 0 the point is moving, and its velocity sign tells us it is pointing

towards B, but P3 /∈ BA, P3 /∈ BB . Then it is free to catch B directly,

without any imposed deviation. Its velocity will keep its sign unchanged,

but in approaching B, first it will decrease till its minimum for x = xE

(the saddle), then it will increase monotonically far from it, aiming to its

asymptotic destination with infinite speed.

6. The P4 motion description is symmetric to that of P3.

2.3. Integration

On the above phase portrait analysis, the motion main features can be sketched

as follows. If the starting point is different from E, the motion will take place

directly towards the predominant mass if its velocity is pointing out towards it.

Alternatively it will deviate from it to a stop, after which it will go back and defi-

nitely, towards the larger mass. If the starting point is E, if v0 �= 0, the point will

impact that of two attractors it meets according to the sense of its initial veloc-

ity. Finally, with a starting speed v0 large enough, namely beyond the threshold

v2
0 > 2

[
B2/(a− x0) −A2/(x0)

]
, then Φ(x) is strictly positive and the initial

(great) impulse succeeds to push the bead towards the fixed star following its

sense of motion, regardless to which star has a prevailing mass. The meaningful

cases are then two: the zero velocity case, including very low velocities, caus-

ing an evolution towards the predominant star and the high velocity case, when

the initial impulsion pushes the bead to move towards one of the attractors, apart

from their mass ratio.

2.4. Integration if v0 = 0

When the body starts at zero speed, then Φ(x∗) < 0, so x1 and x2 are two zeros

to Φ in (0, a), then integration may have sense only in (0, x1) ∪ (x2, a). Let us
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see the effect of the possible x0 values: Φ(x∗) < 0 ⇐⇒ x0 ∈ (0, ξ1) ∪ (ξ2, a)
where

ξ1,2 =
4aA2 + 4aAB + a2v2

0 ± av0

√
a2v2

0 + 8aAB

4(A+B)2 + 2av2
0

·

When the motion starts from the quiet (v0 = 0) , then x0 cannot be whatsoever,

but shall lie outside of (ξ1, ξ2) . On the other hand, if x0 ∈ (ξ1, ξ2), Φ(x) is

nonnegative and the motion will either occur directly towards the predominant

mass, if that is the direction of the velocity vector, or away from that mass, till

it stops and goes back to the most attractive center. Notice that in special case

x0 = x∗, an unstable equilibrium solution occurs, since if v0 �= 0 the particle will

point towards one of the two attractors according to the initial velocity direction.

When v0 = 0, the Weierstraß function zeros are

x1 = x0, x2 =
(a− x0)aA

2

aA2 − (A2 −B2)x0
·

The case of their coincidence leads to two possibilities

• x1 = x2 = x0 = x1, not acceptable

• x1 = x2 = x0 = x2, in which f(x) vanishes and no motion occurs.

Time equation has the same sign of f(x0)

f(x0) =
B2

(a− x0)2
−
A2

x2
0

⎧⎨⎩< 0 if 0 < x0 < x2 < a

> 0 if 0 < x2 < x0 < a

in such a way we find

t = sign ( f(x0))

√√√√ x0(a− x0)

2
[
aA2 − (A2 −B2)x0

] x∫
x0

√
ξ(a− ξ)

(ξ − x0)(ξ − x2)
dξ (4)

Lemma 1. The sign of (4) does not depend on the mass coefficients.

Proof: If A > B: x2 < x0 ⇐⇒ 0 < x2 < x2 < x0 < a < x1 ⇐⇒
f(x0) > 0. On the other hand, x2 > x0 ⇐⇒ 0 < x0 < x2 < x2 < a <
x1 ⇐⇒ f(x0) < 0.

If A < B, by repeating the previous procedure: x2 < x0 ⇐⇒ x1 < 0 < x2 <
x2 < x0 < a ⇐⇒ f(x0) > 0. Vice versa, x2 > x0 ⇐⇒ x1 < 0 < x0 <
x2 < x2 < a ⇐⇒ f(x0) < 0. �

So we can state
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Theorem 2. Integral (4) can be evaluated

t =
a− x0

B

√
x0(a− x0)

2a
I1(φ, α1, k1), if x2 < x0

t =
x0

A

√
x0(a− x0)

2a
I2(ψ, α2, k2), if x2 > x0

where I1(φ(x), α1, k1) denotes some combination between incomplete elliptic in-
tegrals of all three kinds, being φ a function of x, see below and k1,α1 belong
to the problem data set. A fourth and last term within I1 is a purely goniometric
function of φ and then of x. The same for I2(ψ(x), α2, k2) with some adjustments

k2
1k

2
2 = 1,

α2
1

α2
2

=
(a− x0)

2A2

B2x2
0

= k2
2 =

1

k2
1

(5)

Proof: Case x2 < x0: (4) has the unique singularity x0. This integral can be

computed (see [2], page 122 formula 256.19 with b = 0)

t =
(a− x0)x0

B

√
a− x0

2ax0

F (φ,k1)∫
0

cn2u dn2udu(
1 − α2

1 sn2u
)2

where

φ(x) = arcsin

√
(a− x2)(x− x0)

(a− x0)(x− x2)
, k2

1 =
(a− x0)

2A2

B2x2
0

α2
1 =

[aA2 − (A2 −B2)x0](a− x0)

aB2x0

and F (φ, k1) is the first kind incomplete elliptic integral of amplitude φ and mod-

ulus k1 while sn u, cn u and dn u denote the Jacobi elliptic functions of amplitude

φ = am(u, k1). Consequently, (4) turns out to be

t =
a− x0

B

√
x0(a− x0)

2a

[
−
E(φ, k1)

α2
1

+

(
α2

1 + k2
1

α4
1

)
F (φ, k1)

+

(
1 −

k2
1

α4
1

)
Π(φ, α1, k1) +

sin(2φ)
√

1 − k2
1 sin2 φ

2(1 − α2
1 sin2 φ)

⎤⎦
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where E(φ, k1) and Π(φ, α1, k1) denote the second and the third kind incomplete

elliptic integrals of amplitude φ, modulus k1 and parameter α1.

Case x2 > x0: by formula 253.20, b = 0 (see [2], page 109) the integral in (4)

can be represented as

t =
x0

A

√
(a− x0)x0

2a

F (ψ,k2)∫
0

cn2u dn2udu(
1 − α2

2 sn2u
)2

=
x0

A

√
x0(a− x0)

2a

[
−
E(ψ, k2)

α2
2

+

(
α2

2 + k2
2

α4
2

)
F (ψ, k2)

+

(
α4

2 − k2
2

α4
2

)
Π(ψ, α2, k2) +

sin(2ψ)
√

1 − k2
2 sin2 ψ

2(1 − α2
2 sin2 ψ)

⎤⎦
where

ψ(x) = arcsin

√
x2(x0 − x)

x0(x2 − x)
, k2

2 =
B2x2

0

(a− x0)2A2

α2
2 =

[aA2 − (A2 −B2)x0]x0

(a− x0)aA2
.
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Figure 4. Some solutions x(t) coming from inverting t = I2(ψ(x)) and

t = I1(φ(x)), a = 15, A > B, where the bead starts from a state of rest.

�



58 Giovanni Mingari Scarpello, Arsen Palestini and Daniele Ritelli

2.5. Integration if v0 > 0

Passing to a high initial speed, Φ(x) is seen to remain strictly positive. The initial

impulsion is strong enough to push the body towards the star according to its ve-

locity. The stationary unstable case always leads to some of the attractors without

2 4 6 8
t

2

4

6

8

10

12

14

x�t�

Figure 5. A sketch of some different solutions when a = 15, v0 = 1, A > B.

any periodicity. The relevant formulæ are not much different. In the Φ(x) expres-

sion there will be a further numerical term v0 > 0 and x1 �= x0. Figure 5 displays

the solutions when the initial velocity is equal to 1 and the predominant mass isA.

The first curve of Figure 5 from the bottom describes a behavior like that of point

P5 of Figure 3, while the second one could be referred to P3.

2.6. The Case A = B

Should the mass coefficients coincide, the problem gets simpler

ẍ =
aA2(2x− a)

(a− x)2x2
:= f(x), x(0) = x0 ∈ (0, a), ẋ(0) = v0 ∈ R

Q ≡ (a/2, 0) is the unique equilibrium (saddle) point. When v0 = 0, the analysis

carried out in the case A �= B can be repeated: x2 > x0 ⇐⇒ x0 ∈ (0, a/2) so
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that

t =
x0

A

√
x0(a− x0)

2a

[
−
E(ψ, k2)

α2
2

+

(
α2

2 + k2
2

α4
2

)
F (ψ, k2)

+

(
α4

2 − k2
2

α4
2

)
Π(ψ, α2, k2) +

sin(2ψ)
√

1 − k2
2 sin2 ψ

2(1 − α2
2 sin2 ψ)

⎤⎦ ·
When x2 < x0 ⇐⇒ x0 ∈ (a/2, a)

t = −
a− x0

A

√
x0(a− x0)

2a

[
−
E(φ, k1)

α2
1

+

(
α2

1 + k2
1

α4
1

)
F (φ, k1)

+

(
1 −

k2
1

α4
1

)
Π(φ, α1, k1) +

sin(2φ)
√

1 − k2
1 sin2 φ

2(1 − α2
1 sin2 φ)

⎤⎦ ·
Moduli and parameters are

k2
1 =

(a− x0)
2

x2
0

, k2
2 =

x2
0

(a− x0)2
, α2

1 = a− x0, α2
2 =

x0

a− x0
·

3. Circular Path with Two Attractors on a Chord

When the system is a planar one, for the mobile point P(x, y) of mass m it is

compulsory to choose bi-polar coordinates, such as ρA and ρB , Figure 6. We deal

with the special case of the circular trajectory. The attractors A and B are fixed at

the ends of the chord whose length is a, being C the center and R the radius of the

circle, with the plane through P, A, B normal to the (m, P) weight direction.

As before, no resistance will withdraw the P-motion which is entirely due to the

forces �FA and �FB exerted by masses MA and MB . We assume as x−reference

axis the AB direction and put the origin O in A. By ψ(t) and θ(t) we denote now

the variable angles of PA and PB with Ox, while α0 is the constant inclination

of the chord with respect to AC. The mobile point has to be thought on a hori-
zontal smooth plane so that its weight is balanced by plane’s normal reaction, a

plane where a round track C is cut so that P moves along it under the attractions.

Minding Figure 6, if ρA and ρB are the P-distances from the centres A and B, we

have

ρ2
A

= 4R2 cos2 (ψ + α0) , ρ2
B

= (a− x)2 + y2



60 Giovanni Mingari Scarpello, Arsen Palestini and Daniele Ritelli

�

�

�

�

����	�
�

�

�

�

�

�

�

��

�

�
� �

Figure 6. Circular path of a bead under two attractors on a chord.

so that the scalar x−equation is

ẍ(t) = −
GMA

4R2

cosψ

cos2 (ψ + α0)
+
GMB

ρ2
B

cos θ.

Then knowing that cos θ = a− x/ρ
B

with

x = 2R cos (ψ + α0) cosψ, y = 2R cos (ψ + α0) sinψ

we will eliminate all the remaining state variables butψ, obtaining the autonomous

ψ-equation

2R
d2

dt2
[cos (ψ + α0) cosψ] = −

GMA

4R2

cosψ

cos2 (ψ + α0)

+GMB
a− 2R cos (ψ + α0) cosψ

[a2 + 4R cos2 (ψ + α0) − 4aR cos (ψ + α0) cosψ]3/2

which we do not deem having any hope of being solved in closed form.

3.1. Attractors at the Ends of a Diameter

Let the chord is AB rotated counterclockwise by α0. The attractors will be at the

end contrivances of a diameter |AB| = a, as in Figure 7. Doing in theψ−equation
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Figure 7. Sketch of the half circular path bicentral motion, and its equilib-

rium point.

α0 �→ 0+ and a
2 �→ R, it becomes

d2

dt2
(
cos2 ψ

)
= −

A

cosψ
+

B

sinψ

where A = MAG/a
3, B = MBG/a

3 are positive invariable quantities and ψ =
PÂB is our unknown function of time. If we look at Figure 7, where AB now is

a diameter, we get: ψ + θ = π/2. Then, passing to θ, the following differential

equation to θ(t) is obtained

d2

dt2
(
sin2 θ

)
=

B

cos θ
−

A

sin θ
, θ(0) = θ0, θ̇(0) = θ̇0.

Such a equation does not seem to have been met before. Anyway, putting sin2 θ(t) =
z(t) we get

ż = v, v̇ =
B

√
1 − z

−
A
√
z

z(0) = z0 = sin θ0, v(0) = ż0 = 2θ̇0 cos θ0 sin θ0.

(6)

The equilibrium point detection in Figure 7, say E, leads to

E ≡ (v̄, z̄) ≡

(
0,

A2

√
B2 +A2

)
and then to the construction of θ̄ such that

sin θ̄ =
MA√

M2
B +M2

A

·
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The orbit equation v = v(z) can be easy integrated, as the reader can check. The

eigenvalues of the (6) Jacobian matrix at E are: λ1,2 = ∓ 4
√
B2 +A2, so that E

has a saddle nature for every choice of B and A. The z(t) behavior depends on

the roots of the Weierstraß function Φ̃(z)

Φ̃(z) := 4
[
A
√
z0 +B

√
1 − z0

]
− 4
[
A
√
z +B

√
1 − z

]
+ v2

0

so that, assuming v0 = ż0 > 0, the equation for time reads

1

2
t =

z∫
z0

du√
−A

√
u−B

√
1 − u+ 1

2

[
ż2
0

2 + 2
(
A
√
z0 +B

√
1 − z0

)] ·
The expression within the square brackets is the unitary mass “energy excess”,

namely the difference between the initial kinetic energy and the potential binding

start-up ones due to the gravitating masses MB and MA. If such an excess, say

C0, is positive, all the square root content is certainly positive so that all z - and

then all θ - values will be allowed, and no periodic motion will occur, regardless

to the initial conditions. On the contrary, if C0 < 0, the initial kinetic energy is

not enough, and the motion will have more restricted features. Namely, not all z-

values will be free, so that the quadratic equation giving Φ̃(z) zeros will provide

real and complex roots, and then periodic and/or aperiodic behaviors, according

to the initial position and speed. Coming back to variable θ, time equation will

assume its final form:

t = −2

arcsin
√

z0∫
arcsin

√
z

sin(2θ) dθ
√
A cos θ +B sin θ + C0

(7)

where C0 := 1
2 [ż2

0/2 − 2(A
√
z0 +B

√
1 − z0)]. Two possibilities can occur

1. 0 < |C0| <
√
B2 +A2. The integral (7) does not appear in [2], but it can be

calculated through the contrivance:∫
sin(2θ) dθ

√
B cos θ +A sin θ + C0

= −
1

BA

[∫
(B cos θ −A sin θ)2 dθ
√
A cos θ +B sin θ + C0

−

∫
B2 cos2 θ dθ

√
A cos θ +B sin θ + C0

−

∫
B2 sin2 θ dθ

√
A cos θ +B sin θ + C0

]
·

The first of the right hand side integrals is given by formula 293.04 page 179 of

[2]. The second and third can be solved by means of formulæ 293.06 and 293.07,
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page 180, which allow to integrate the product of

1
√
A cos θ +B sin θ + C0

to a rational function of cos θ and sin θ respectively. In such a way, we obtain

t =
4

(A2 +B2)2

√
2

√
A2 +B2

∫ u1

0
[BAH2(C0, B,A) cn4u+BAC2

0

−2
√
B2 +A2H(C0, B,A)BAsn2u dn2u− 2C0H(C0, B,A)cn2u

−(

√
2
√
B2 +A2H(C0, B,A)(B2 −A2)dnu snu)(C0 +H(C0, B,A) cn2u)] du

where H(C0, B,A) = C0 +
√
B2 +A2.

2. C0 >
√
B2 +A2 > 0, see [2], page 180

t =
8√

H(C0, B,A)(B2 +A2)2

∫ u1

0

[
BAH2(C0, B,A)dn4u+BAC2

0

−4BA(B2 +A2) sn2u cn2u+ C0

√
B2+A2(B2+A2)H(C0, B,A) snu cnu

−2BAC0H(C0, B,A) dn2u+ (B4 −A4)H(C0, B,A) snu cnu dn2u
]

du.

The above expressions of time require in both cases

i) C0 <
√
B2 +A2 ii) C0 >

√
B2 +A2

the evaluation of ten integrals of Jacobian elliptic functions between 0 and u1,

where

u1 = u1(z) = arcsin

√√
B2 +A2 +A

√
z − C0 cos (arcsin

√
z)

C0 +
√
B2 +A2

·

For convenience of the reader we detail the location of the required integrals avail-

able in [2].

i1)

∫
cn4udu, formula 312.04, page 193

i2)

∫
sn2u dn2 du, formula 361.02, page 212
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i3)

∫
cn2udu, formula 312.02, page 193

i4)

∫
dnu snudu, formula 360.02, page 211

i5)

∫
dnu snu cn2udu, formula 360.13 (with m = 2), page 211

ii1)

∫
dn4udu, formula 314.04, page 194

ii2)

∫
sn2u cn2 du, formula 361.01, page 212

ii3)

∫
dn2udu, formula 314.02, page 194

ii4)

∫
cnu snudu, formula 360.03, page 211

ii5)

∫
snu cnu dn2udu, formula 360.11 (with n = 2), page 211.

In such a way the problem has been solved completely.

4. Conclusions

The motion of a test particle in the field of two fixed newtonian attractors exhibits

a very complex and rich dynamics. The collinear system is found to have an equi-

librium point whose nature is a saddle and whose orbit can be easily integrated.

The phase analysis highlights the existence of special attraction basins. Despite

its apparent simplicity, the relevant time equation is much involved and our closed

form integration provides time as addition (I1or I2) of elliptic integrals of I, II and

III kind. Assuming as a trajectory an arc of a circle C, we obtain a second order

autonomous ψ−equation, of intractable nature. But if not a chord anymore, but a

diameter connects the fixed centres, then a different nonlinear θ−ODE probably

new, is met, tractable, even if quite heavy. In fact, we are led to the integral∫
sin(2θ) dθ

√
A cos θ +B sin θ + C0
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which can not be found in the classic literature on elliptic functions. A way has

been found for reducing it (for each of the two possibilities) to the sum of five

known integrals of Jacobian elliptic functions. The motion, namely time equation

t = f(θ) is then computable through a long expression (we do not provide) in-

volving elliptic integrals of I and II kind, and the Jacobian functions cn, sn, dn

whose arguments hold u1 and then θ, being u1 = u1(z) with z = sin2 θ. Let

us observe finally that integrability of the circular system is founded upon the

special symmetry of the C-diameter passing through the attractors so that the C-

centre falls exactly into the middle of the attractors. The special symmetry made

the problem solvable.

Acknowledgements

The authors are indebted to their friend Aldo Scimone who drew some figures of

this paper, they hereby take the opportunity to thank him warmly.

References

[1] Agostinelli C. and Pignedoli A., Meccanica Razionale (Classical Mechanics),

vol. 1, Zanichelli, Bologna, 1978.

[2] Byrd P. and Friedman M., Handbook of Elliptic Integrals for Engineers and
Scientists, Springer, Berlin, 1971.

[3] Chandrasekhar S. and Xanthopoulos B., Two Black Holes Attached to Strings,

Proc. R. Soc. Lond. A 423 (1989) 387–400.

[4] Contopoulos G., Periodic Orbits and Chaos Around Two Black Holes, Proc.

R. Soc. Lond. A 431 (1990) 183–202.

[5] Lakshmanan M. and Sahadevan R., Painlevé Analysis, Lie Symmetries and
Integrabiliy of Coupled Nonlinear Oscillators of Polynomial Type, Phys. Rep.

224 (1993) 1–93.

[6] Maciejewski A. and Przybylska M., Non-integrability of the Generalized two
Fixed Centres Problem, Celestial Mech. Dynam. Astronom. 89 (2004) 145–

164.

[7] Scarpello G. and Ritelli D., A Nonlinear Oscillation Induced by two Fixed
Gravitating Centers, Int. Math. J. 4 (2003) 337 –350.



66 Giovanni Mingari Scarpello, Arsen Palestini and Daniele Ritelli

Giovanni Mingari Scarpello

Dipartimento di Matematica

per le Scienze Economiche e Sociali

viale Filopanti, 5 40126 Bologna

ITALY

E-mail address: giovannimingari@yahoo.it

Arsen Palestini

Dipartimento di Scienze Economiche

Strada Maggiore 45, 40125 Bologna

ITALY

E-mail address: palestini@math.unifi.it

Daniele Ritelli

Dipartimento di Matematica

per le Scienze Economiche e Sociali

viale Filopanti, 5 40126 Bologna

ITALY

E-mail address: daniele.ritelli@unibo.it


