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Abstract. The purpose of this paper is to show that a generalized Clifford im-
mersion with non-negative Gaussian curvature has constant contact angle, thus
extending previous results.

1. Introduction

In [4] we introduced the notion of contact angle, which can be considered as a new
geometric invariant useful for investigating the geometry of immersed surfaces in
S3. Geometrically, the contact angle 3 is the complementary angle between the
contact distribution and the tangent space of the surface. Also in [4], we derived
formulae for the Gaussian curvature and the Laplacian of an immersed minimal
surface in S3, and we gave a characterization of the Clifford Torus as the only
minimal surface in S with constant contact angle.

Recently, in [5], we constructed a family of minimal tori in S® with constant
contact and holomorphic angles. These tori are parametrized by the following

circle equation

a® + <b - >2 S (1)

1 +sin g3 (14 sin? 3)2

where a and b are given in Section 3 (equation (9)). In particular, when a = 0,
we recover the examples found by Kenmotsu [3]. These examples are defined for
0 < B8 < 5. Also, when b = 0, we find a new family of minimal tori in S5, and
these tori are defined for % < B < g Also, in [5], when § = %, we give an
alternative proof of this classification of a Theorem proved by Blair in [1], and
Yamaguchi, Kon and Miyahara in [6] for Legendrian minimal surfaces in S° with
constant Gaussian curvature.

The immersions that we investigate in this paper are those that satisfy the follow-
ing conditions:
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1) S is compact
2) 7 1s a minimal immersion
3) « is constant on .S, and

4) The principal curvatures of the immersion in the direction of e3 are constant
and correspond to the directions e; and es.

We will call generalized Clifford immersion as the immersions 2 of S into S°
that verifies the conditions from 1) until 4).

As a consequence of the Gauss equation and using the above notation, supposing
that S has non-negative Gaussian curvature, we have proved the main result:

Theorem 1. Suppose that S is a generalized Clifford immersion with non-negative
Gaussian curvature (K > 0), then the contact angle (3 must be constant.

2. Contact Angle For Immersed Surfaces In S°

Consider in C? the following objects:

e The Hermitian product: (z,w) = Z?:o 2wl

The Inner product: (z,w) = Re(z,w).

The Unit sphere: S° = {z € C?; (z,2) = 1}.

The Reeb vector field in S°, given by: £(2) = iz.

e The Contact distribution in S°, which is orthogonal to &
A, ={veT.5; (& v) =0}

Note that A is invariant by the complex structure of C3.

Let now S be an orientable immersed surface in S°.

Definition 2. The contact angle ( is the complementary angle between the con-
tact distribution A and the tangent space T'S of the surface.

Let (e1,e2) be a local orthonormal frame of 7'S, where e; € T'S N A. Then
cos 3 = (£, e2). Finally, let v be the unit vector in the direction of the orthogonal
projection of e5 on A, defined by the following relation

eg = sin Bv + cos B¢ )
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Definition 3. The holomorphic angle « is the angle given by cosa = (iey,v).
The holomorphic angle o is the analogue of the Kdhler angle introduced by Chern

and Wolfson in [2].

3. Equations for Gaussian Curvature and Laplacian of a Minimal

Surface in S° with Constant Holomorphic Angle o

In this section, we derive the equations for the Gaussian curvature and for the
Laplacian of a minimal surface in S° in terms of the contact angle and the holo-

morphic angle.

Let S be a minimal immersed Riemann surface in S° with constant holomorphic

angle. Consider the normal vector fields

e3 = 1icscae; — cotaw

eq = cotae; +icscav

es = cscf€ — cotfes
where 3 # 0,7 and a # 0, 7. Let (e;)1< j<5 be an adapted frame.
Using (2) and (3), we get

v = sin Beg — cos fBes, iv =sinaey —cosaer, &£ = cos fBes + sin Ges.

It follows from (3) and (4) that
ie; = cos arsin Beg + sin aeg — cos « cos fes
ieg = —cos Bz — cos aesin Beq + sin asin Gey.
Let (67) be the coframe of (e;). Connection forms (9%) are given by
Dej = Gfek
and the second fundamental form with respect to this frame is given by
I = ¢l + 6502,  j=3,..,5.

Using (5) and differentiating v and £ on the surface .S, we get

DE = —cosasinfB0%e; + cosasin 30 ey + sin ab'es + sin asin 36%ey

—cosacos 36 es

3

“

&)

(6)

Dv = (sin (63 — cos 36%)e; + cos B(dB — 62)es + (sin 363 — cos 363 )es

+(sin 867 — cos ﬁ0§)€4 + sin B(d3 + 63)es.
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Differentiating e3, e4 and e, we have

03 = —63

02 — & 1 . 1
3 = sin 30 — cos 3 sin af

03 = csc 03 — cot a (03 + csc 365)

63 = cot 03 — csc Bsin ah’

01 = — csc 303 + sin acot 36"

07 = —0;

93 — 1 3 4
41 = csc 3605 + cot a(B7 + csc B0;)

63 = cot 365 — sin ah*

0 = — cos af? — cot (04

02 = dB + cosafd’

03 = — cot 303 + csc Bsin af?

02 = — cot 305 + sin ab?.

(7)

The conditions of minimality and of symmetry are equivalent to the following
equations

NG 03 N0 =07 NO? — 05 NOE =0. (8)
On the surface S, we consider
03 = ab' + 6>
It follows from (8) that
63 =af! + b6?
03 =bo! — ab?
0} =(bcsc B — sina cot §)8' — acsc 362
03 = — acsc 36" — (besc 8 — sin a cot 3)6>
07 =dB o J — cos ab?
05 = —df — cos ab’
0§ = —sec 8d3 o J 4 acot o cot? 36"
+ (bcot accot? B — cos acot B esc 4 2sec 3 cos ar)6?
95’ =(bcot B — csc Bsina)ft — a cot 56>
63 = — acot Besc B0 + (sinafcot? B — 1) — bese f cot 3)62.

©)
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We suppose that the second fundamental forms in the direction eg are constant.

The purpose of this paper is to study the case b = 0. Therefore, we have

03 = abl.
It follows from (9) that
03 = ab!
05 = —ab?
Hil = —sinacot 301 — acsc 36? (10)
03 = —a csc 301 + sin « cot 36>
07 = dB o J — cos af?
05 = —dB — cos af?
where J is the complex structure of S is given by Je; = e and Jes = —e;.
Moreover, normal connection forms are given by
0§ = —sec3dB o J + acot a cot? 36"
+ (2sec  cos a — cos arcot [ esc 362 an
05;’ — — csc Bsin af' — acot 362
63 = — acot fesc O + sin a(cot? § — 1)6?
while the Gauss equation is equivalent to the equation
do3 +0: nos = o' n62 (12)
Therefore, using equations (10) and (12), we have
K = 1—(1+csc*B)a* — |V + cosaer|* —sin® acot? 3
where 31 and (3 are defined by 5; = df(e1) and B2 = df(es).
Using (7) and the complex structure of S, we get
03 = tanB(dBoJ — 2cosab?). (13)

Differentiating (13), we conclude that

do; = —((1+tan’B3)|VB|* + tanBAS + 2cos a(1 + 2tan’B) By
+4tan? 3 cos® )0t A 62
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where A = trV? is the Laplacian of S. The Gaussian curvature is therefore given
by

K = — (1 +tan?B)|V|? — tanBASB — 2 cos a(1 + 2tan’3) 3y

(14)
— 4tan’f cos?® a.
From (13) and (14), we obtain the following formula for the Laplacian of S
tanBAS =(1 + csc? B)a? + sin? a1 — tan?p) {15)

— tan®*3(|VB 4 2cos aey | — | sina(1 — cot® B) ).

4. Proof of Theorem 1

In this section, in order to compute Gauss-Codazzi-Ricci equations, we consider
that the holomorphic angle « is constant, and suppose that the principal curvature
in the direction of eg is constant, that is, a is constant. The following Codazzi-
Ricci equations

A3 + 03 N0+ 03 N0 +O2N07 =

Aoy + 07 A 63+ 05 A O3 + 02 A 63

Ao + 03 N0+ 05 N 02 O3 N05 =

simplify to

2
W(—2sinacscﬂﬁ1 — sina cos a csc B(3 — cot? ) (16)

+ a? cot avesc B cot? ).

B =

Moreover, the system of Codazzi-Ricci equations

d03 + 03 A0S+ 03 N05+02N05 =
Ao} + 03 N 607 4+ 05 N O3 + 02N 607
d05 + 63 A 05 + 03 A O3 + 605 A 63
dos + 603 A0S+ 05 N O3 +05 N05 =

Il
o o o o

reduces to
B1 = —2cosa. (7
Also using (17) in equation (14), we have

K = —(1+tan?B)35 — tanBAp. (18)
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Therefore
tanBAB = —K — (1 + tan®B) 5. (19)

Now using the condition that X' > 0 and the Hopf’s Lemma (for 0 < § < 7/2),
we get that the contact angle (3 is constant, which prove Theorem 1. [J

Theorem 1 of [5] states that any generalized Clifford immersion of constant con-
tact and holomorphic angles is a flat torus. Combining this with Theorem 1 of this
paper, we have the following

Corollary 4. Any generalized Clifford immersion of a compact Riemann surface
with non-negative Gaussian curvature is a flat torus.
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