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Abstract. The purpose of this paper is to show that a generalized Clifford im-

mersion with non-negative Gaussian curvature has constant contact angle, thus

extending previous results.

1. Introduction

In [4] we introduced the notion of contact angle, which can be considered as a new

geometric invariant useful for investigating the geometry of immersed surfaces in

S3. Geometrically, the contact angle β is the complementary angle between the

contact distribution and the tangent space of the surface. Also in [4], we derived

formulae for the Gaussian curvature and the Laplacian of an immersed minimal

surface in S3, and we gave a characterization of the Clifford Torus as the only

minimal surface in S3 with constant contact angle.

Recently, in [5], we constructed a family of minimal tori in S5 with constant

contact and holomorphic angles. These tori are parametrized by the following

circle equation

a2 +

(
b−

cosβ

1 + sin2 β

)2

= 2
sin4 β

(1 + sin2 β)2
(1)

where a and b are given in Section 3 (equation (9)). In particular, when a = 0,

we recover the examples found by Kenmotsu [3]. These examples are defined for

0 < β < π
2 . Also, when b = 0, we find a new family of minimal tori in S5, and

these tori are defined for π
4 < β < π

2 . Also, in [5], when β = π
2 , we give an

alternative proof of this classification of a Theorem proved by Blair in [1], and

Yamaguchi, Kon and Miyahara in [6] for Legendrian minimal surfaces in S5 with

constant Gaussian curvature.

The immersions that we investigate in this paper are those that satisfy the follow-

ing conditions:
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1) S is compact

2) ı is a minimal immersion

3) α is constant on S, and

4) The principal curvatures of the immersion in the direction of e3 are constant

and correspond to the directions e1 and e2.

We will call generalized Clifford immersion as the immersions ı of S into S5

that verifies the conditions from 1) until 4).

As a consequence of the Gauss equation and using the above notation, supposing

that S has non-negative Gaussian curvature, we have proved the main result:

Theorem 1. Suppose that S is a generalized Clifford immersion with non-negative
Gaussian curvature (K ≥ 0), then the contact angle β must be constant.

2. Contact Angle For Immersed Surfaces In S
5

Consider in C
3 the following objects:

• The Hermitian product: (z, w) =
∑2

j=0 z
jw̄j .

• The Inner product: 〈z, w〉 = Re(z, w).

• The Unit sphere: S5 =
{
z ∈ C

3 ; (z, z) = 1
}

.

• The Reeb vector field in S5, given by: ξ(z) = iz.

• The Contact distribution in S5, which is orthogonal to ξ

Δz =
{
v ∈ TzS

5 ; 〈ξ, v〉 = 0
}
.

Note that Δ is invariant by the complex structure of C
3.

Let now S be an orientable immersed surface in S5.

Definition 2. The contact angle β is the complementary angle between the con-
tact distribution Δ and the tangent space TS of the surface.

Let (e1, e2) be a local orthonormal frame of TS, where e1 ∈ TS ∩ Δ. Then

cosβ = 〈ξ, e2〉. Finally, let v be the unit vector in the direction of the orthogonal

projection of e2 on Δ, defined by the following relation

e2 = sinβv + cosβξ (2)
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Definition 3. The holomorphic angle α is the angle given by cosα = 〈ie1, v〉.
The holomorphic angle α is the analogue of the Kähler angle introduced by Chern
and Wolfson in [2].

3. Equations for Gaussian Curvature and Laplacian of a Minimal
Surface in S

5 with Constant Holomorphic Angle α

In this section, we derive the equations for the Gaussian curvature and for the

Laplacian of a minimal surface in S5 in terms of the contact angle and the holo-

morphic angle.

Let S be a minimal immersed Riemann surface in S5 with constant holomorphic

angle. Consider the normal vector fields

e3 = i cscαe1 − cotαv

e4 = cotαe1 + i cscαv (3)

e5 = cscβξ − cotβe2

where β �= 0, π and α �= 0, π. Let (ej)1≤ j≤5 be an adapted frame.

Using (2) and (3), we get

v = sinβe2 − cosβe5, iv = sinαe4 − cosαe1, ξ = cosβe2 +sinβe5. (4)

It follows from (3) and (4) that

ie1 = cosα sinβe2 + sinαe3 − cosα cosβe5

ie2 = − cosβz − cosα sinβe1 + sinα sinβe4.
(5)

Let (θj) be the coframe of (ej). Connection forms (θj
k) are given by

Dej = θk
j ek

and the second fundamental form with respect to this frame is given by

IIj = θj
1θ

1 + θj
2θ

2, j = 3, ..., 5.

Using (5) and differentiating v and ξ on the surface S, we get

Dξ = − cosα sinβθ2e1 + cosα sinβθ1e2 + sinαθ1e3 + sinα sinβθ2e4

− cosα cosβθ1e5 (6)

Dv = (sinβθ1
2 − cosβθ1

5)e1 + cosβ(dβ − θ2
5)e2 + (sinβθ3

2 − cosβθ3
5)e3

+(sinβθ2
4 − cosβθ4

5)e4 + sinβ(dβ + θ5
2)e5.
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Differentiating e3, e4 and e5, we have

θ1
3 = −θ3

1

θ2
3 = sinβθ1

4 − cosβ sinαθ1

θ4
3 = cscβθ2

1 − cotα(θ3
1 + cscβθ4

2)

θ5
3 = cotβθ3

2 − cscβ sinαθ1

θ1
4 = − cscβθ3

2 + sinα cotβθ1

θ2
4 = −θ4

2

θ3
4 = cscβθ1

2 + cotα(θ3
1 + cscβθ4

2)

θ5
4 = cotβθ4

2 − sinαθ2

θ1
5 = − cosαθ2 − cotβθ1

2

θ2
5 = dβ + cosαθ1

θ3
5 = − cotβθ3

2 + cscβ sinαθ1

θ4
5 = − cotβθ4

2 + sinαθ2.

(7)

The conditions of minimality and of symmetry are equivalent to the following

equations

θλ
1 ∧ θ1 + θλ

2 ∧ θ2 = θλ
1 ∧ θ2 − θλ

2 ∧ θ1 = 0. (8)

On the surface S, we consider

θ3
1 = aθ1 + bθ2.

It follows from (8) that

θ3
1 =aθ1 + bθ2

θ3
2 =bθ1 − aθ2

θ4
1 =(b cscβ − sinα cotβ)θ1 − a cscβθ2

θ4
2 = − a cscβθ1 − (b cscβ − sinα cotβ)θ2

θ5
1 =dβ ◦ J − cosαθ2

θ5
2 = − dβ − cosαθ1

θ4
3 = − secβdβ ◦ J + a cotα cot2 βθ1

+ (b cotα cot2 β − cosα cotβ cscβ + 2 secβ cosα)θ2

θ5
3 =(b cotβ − cscβ sinα)θ1 − a cotβθ2

θ5
4 = − a cotβ cscβθ1 + (sinα(cot2 β − 1) − b cscβ cotβ)θ2.

(9)
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We suppose that the second fundamental forms in the direction e3 are constant.

The purpose of this paper is to study the case b = 0. Therefore, we have

θ3
1 = aθ1.

It follows from (9) that

θ3
1 = aθ1

θ3
2 = −aθ2

θ4
1 = − sinα cotβθ1 − a cscβθ2

θ4
2 = −a cscβθ1 + sinα cotβθ2

θ5
1 = dβ ◦ J − cosαθ2

θ5
2 = −dβ − cosαθ1

(10)

where J is the complex structure of S is given by Je1 = e2 and Je2 = −e1.

Moreover, normal connection forms are given by

θ4
3 = − secβdβ ◦ J + a cotα cot2 βθ1

+ (2 secβ cosα− cosα cotβ cscβ)θ2

θ5
3 = − cscβ sinαθ1 − a cotβθ2

θ5
4 = − a cotβ cscβθ1 + sinα(cot2 β − 1)θ2

(11)

while the Gauss equation is equivalent to the equation

dθ1
2 + θ1

k ∧ θk
2 = θ1 ∧ θ2. (12)

Therefore, using equations (10) and (12), we have

K = 1 − (1 + csc2β)a2 − |∇β + cosαe1|
2 − sin2 α cot2 β

where β1 and β2 are defined by β1 = dβ(e1) and β2 = dβ(e2).

Using (7) and the complex structure of S, we get

θ1
2 = tanβ(dβ ◦ J − 2 cosαθ2). (13)

Differentiating (13), we conclude that

dθ1
2 = −((1 + tan2β)|∇β|2 + tanβΔβ + 2 cosα(1 + 2tan2β)β1

+4tan2β cos2 α)θ1 ∧ θ2
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where Δ = tr∇2 is the Laplacian of S. The Gaussian curvature is therefore given

by

K = − (1 + tan2β)|∇β|2 − tanβΔβ − 2 cosα(1 + 2tan2β)β1

− 4tan2β cos2 α.
(14)

From (13) and (14), we obtain the following formula for the Laplacian of S

tanβΔβ =(1 + csc2 β)a2 + sin2 α(1 − tan2β)

− tan2β(|∇β + 2 cosαe1|
2 − | sinα(1 − cot2 β)|2).

(15)

4. Proof of Theorem 1

In this section, in order to compute Gauss-Codazzi-Ricci equations, we consider

that the holomorphic angle α is constant, and suppose that the principal curvature

in the direction of e3 is constant, that is, a is constant. The following Codazzi-

Ricci equations

dθ3
1 + θ3

2 ∧ θ
2
1 + θ3

4 ∧ θ
4
1 + θ3

5 ∧ θ
5
1 = 0

dθ4
2 + θ4

1 ∧ θ
1
2 + θ4

3 ∧ θ
3
2 + θ4

5 ∧ θ
5
2 = 0

dθ5
4 + θ5

1 ∧ θ
1
4 + θ5

2 ∧ θ
2
4 + θ5

3 ∧ θ
3
4 = 0

simplify to

β2 =
(3 − cos2 β)a

sinβ cosβ
(−2 sinα cscββ1 − sinα cosα cscβ(3 − cot2 β)

+ a2 cotα cscβ cot2 β).

(16)

Moreover, the system of Codazzi-Ricci equations

dθ3
2 + θ3

1 ∧ θ
1
2 + θ3

4 ∧ θ
4
2 + θ3

5 ∧ θ
5
2 = 0

dθ4
1 + θ4

2 ∧ θ
2
1 + θ4

3 ∧ θ
3
1 + θ4

5 ∧ θ
5
1 = 0

dθ5
3 + θ5

1 ∧ θ
1
3 + θ5

2 ∧ θ
2
3 + θ5

4 ∧ θ
4
3 = 0

dθ5
2 + θ5

1 ∧ θ
1
2 + θ5

3 ∧ θ
3
2 + θ5

4 ∧ θ
4
2 = 0

reduces to

β1 = −2 cosα. (17)

Also using (17) in equation (14), we have

K = −(1 + tan2β)β2
2 − tanβΔβ. (18)
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Therefore

tanβΔβ = −K − (1 + tan2β)β2
2 . (19)

Now using the condition that K ≥ 0 and the Hopf’s Lemma (for 0 < β < π/2),

we get that the contact angle β is constant, which prove Theorem 1. �

Theorem 1 of [5] states that any generalized Clifford immersion of constant con-

tact and holomorphic angles is a flat torus. Combining this with Theorem 1 of this

paper, we have the following

Corollary 4. Any generalized Clifford immersion of a compact Riemann surface
with non-negative Gaussian curvature is a flat torus.
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