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Abstract. We consider the Grassmannian version of the noncommutative U(1)
sigma-model, which is given by the energy functional E(P ) = ‖[a, P ]‖2

HS
, where

P is an orthogonal projection on a Hilbert space H and the operator a : H → H
is the standard annihilation operator. Using realization of H as the Bargmann-
Fock space, we describe all solutions with one-dimensional image and prove that
the operator [a, P ] is densely defined on H for some class of projections P with
infinite-dimensional image and kernel.

1. Introduction

We consider the Grassmannian noncommutative U(1) sigma-model, which is
the noncommutative analogue of the classical C-one-dimensional Grassmannian
sigma-model. Firstly we describe the latter one. By Grk(C

n) denote the complex
Grassmannian (i.e., the manifold of k-dimensional complex planes in C

n). We
will consider its points as orthogonal projections on C

n with k-dimensional im-
age (and (n − k)-dimensional kernel). Then the energy of any map f : CP 1 →
Grk(C

n) (i.e., for every z, f(z) is a matrix of k-dimensional orthogonal projec-
tion on C

n) is

E(f) :=

∫
CP 1

‖∂z̄f‖2
HSdxdy =

∫
CP 1

tr (∂z̄f)∗ ∂z̄fdxdy. (1)

Extremals of E(f) (solutions of this model) are called harmonic maps. (For de-
tails see [7].)

Under the studying of static D0-branes in D2-branes (see [3]) there appears the
noncommutative analogue of the model above. (This analogue is also considered
in [5] and [2].) To describe it, we regard the noncommutative plane R

2
θ. The

transfer is based on the rules of the Weyl calculus of pseudodifferential operators
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and the result is the following. Instead of maps f(·) : CP 1 → Grk(C
n) we

consider orthogonal projections on a Hilbert space H . Moreover, ∂z̄(·) is replaced
by 1

√
2θ

[a, ·], ∂z(·) by − 1
√

2θ
[a∗, ·], and

∫
tr by 2θtr. Here a and a∗ are the standard

annihilation and creation operators respectively (for their definition see Section 2).
Therefore the classical functional E(f) transfers to

E(P ) = ‖[a, P ]‖2
HS . (2)

Extremals of E(P ) (which are analogues for harmonic maps) will be the main
subject of our study.

The aim of the paper is to show how some mathematical difficulties that are
connected with the description of the configuration space and solutions of the
noncommutative sigma-model can be overcomed with the help of the realiza-
tion of H as the Bargmann-Fock space. In Section 4 we describe all solutions
with one-dimensional image (and therefore with one-dimensional kernel, since
E(P ) = E(I − P )). If we consider a projection P with infinite-dimensional im-
age and kernel, then the questions whether the domain of [a, P ] is dense in H (in
Section 2 this property is called admissibility) and whether the energy of P is fi-
nite become non-evident and non-equivalent. In Section 5 we prove admissibility
for some class of such projections.

2. Basic Notions and Definitions

Let H be a separable Hilbert space with an orthonormal basis {e0, e1, . . . }. By
a we denote the standard annihilation operator on H: dom a = {x ∈ H ;∑

∞

j=0
j|xj |2 < ∞}, where xj := (x, ej), and a(ej) =

√
jej−1 for j = 0, 1, 2, . . ..

The basis {e0, e1, . . . } is called canonical. Note that dom a = dom a∗ =: D and
a∗(ej) =

√
j + 1ej+1. Besides that for any α ∈ C there exists a unique (up to

multiplying by θ, where |θ| = 1) normed eigenvector cα corresponding to the

eigenvalue α. Namely, (cα, ej) = e−
|α|

2

2
αj

√
j!

and these cα are called coherent

states. Note also that [a, a∗] = I and the operator a is irreducible.

Definition 1. An orthogonal projection P (that is, P is a bounded operator such
that P = P 2 = P ∗) is called admissible if the subspace DP := {x ∈ D;Px ∈
D} is dense in H . In this case the operator A := [a, P ] is densely defined.

Proposition 2. There is a simple criterion of admissibility: an orthogonal projec-
tion P : H → H is admissible if and only if the spaces D ∩ imP and D ∩ kerP
are dense in imP and in kerP respectively.
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Therefore projections P and I − P are admissible together. Also a projection P
with dim(imP ) < ∞ (or dim(kerP ) < ∞) is admissible if and only if imP ⊂ D
(respectively kerP ⊂ D).

Definition 3. Let a projection P be admissible. Then P is said to be a projection
of finite energy if the operator A = [a, P ] is extended from DP to the whole H by
continuity and this extension is a Hilbert-Schmidt operator. In this case we define
the energy of P by the formula

E(P ) := ‖A‖2
HS = ‖[a, P ]‖2

HS (3)

where ‖ · ‖HS is the Hilbert-Schmidt norm. Otherwise an admissible P is called
a projection of infinite energy and E(P ) := ∞.

Note that E(P ) = E(I − P ).

Definition 4. We say that a projection P0 of finite energy is a solution if for any
smooth curve P (t) (−ε < t < ε) of projections of finite energy such that P (0) =

P0, we have
d

dt

∣∣∣∣
t=0

E(P (t)) = 0. (The smoothness is understood in the sense of

the operator norm.)

Definition 5. BPS-solution is an admissible projection P such that there exists a
system of vectors {g1, g2, . . . } in imP with two properties: Span {g1, g2, . . . } =
imP (Span denotes the closure of linear hull) and agi ∈ imP for any i =
1, 2, . . . .

It is clear that if dim(imP ) < ∞, then P is a BPS-solution if and only if
a(imP ) ⊂ imP (i.e., [a, P ]P = 0).1

In [2] it is proved that if P is admissible and dim(imP ) < ∞, then

E(P ) = dim(imP ) + 2‖[a, P ]P‖2
HS . (4)

Therefore a BPS-solution P with dim(imP ) = n < ∞ is a minimum of the en-
ergy functional on the class of admissible projections with n-dimensional image.
Since projections with different dimension of images are far from each other, BPS-
solutions with finite-dimensional image are local minima of the energy functional
on the space of all admissible projections. (In particular, they are solutions).

1 In the noncommutative Grassmannian sigma-model the term “BPS-solution” was introduced
in [5] for projections P such that a(imP ) ⊂ imP . Since a has no infinite-dimensional invariant
spaces, our definition generalizes the latter one.
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Example 6. The projection P with imP =Span 〈e0, e1, . . . , en〉 is a BPS-solution
and E(P ) = n + 1. (Recall that {ej} is the canonical basis.)

3. Bargmann-Fock Space

Definition 7. The Bargmann-Fock space is the functional space

Fz := {f(z) ∈ O(C) ;

∫
C

|f(z)|2e−|z|2dxdy < ∞} (5)

where O(C) is the space of entire functions.

The space Fz is a Hilbert space with respect to the scalar product

(f, g) :=
1

π

∫
C

f(z)g(z)e−|z|2dxdy. (6)

Besides that the functions
{

zn

√
n!

}∞
n=0

form an orthonormal basis for Fz .

The mapping of canonical basis for a in H to the basis
{

zn

√
n!

}∞
n=0

gives us the

isomorphism between H and Fz . This isomorphism takes the operator a to d

dz (·),
a∗ to the operator of multiplication by z, the coherent state cα to the function

e−
|α|

2

2 eαz .

One can prove the following property of Fz (the proof is straightforward): for any
α ∈ C and for any n = 0, 1, . . . we have

(f, zneαz) = f (n)(ᾱ). (7)

For more details on Fz see [1].

4. Description of Solutions with One-dimensional Image

Let P be an admissible projection on a normed vector p ∈ H . According to the
criterion of admissibility (Proposition 2), p ∈ D = dom a. Using (4), we get
E(P ) = 1 + 2‖[a, P ]P‖2

HS . Choosing an orthonormal basis {pi}∞i=0 in H such
that p0 = p, we easily obtain

‖[a, P ]P‖2
HS = ‖ap‖2 − |(ap, p)|2. (8)
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Let us consider the curve Pt passing through P that consists of the projections on
the vectors pt = p+th

√
1+t2

, where h ∈ D is a normalized and orthogonal to p vector,
t ∈ R, |t| 
 1. Then Pt is admissible and P0 = P . Now we write E(Pt) up to
the second order terms

E(Pt) = E(P ) + 4ReLP (h)t + RP (h)t2 + O(t3) (9)

where
LP (h) = (ah, ap) − (ap, p)(h, ap) − (p, ap)(ah, p) (10)

RP (h) =2[‖ah‖2 + 2|(ap, p)|2 − ‖ap‖2 − |(ap, h)|2 − |(ah, p)|2
− 2Re ((ap, p)(h, ah) + (ap, h)(p, ah))].

(11)

Now suppose that P is a solution. Then ReLP (h) should be zero for any normed
h ∈ D∩(Span p)⊥. Since h can be replaced by ih and LP (h) is a linear function,
we obtain that LP (h) = 0 for these h. We know that p ∈ D and h ∈ D. Therefore
the condition LP (h) = 0 is equivalent to

(ah, ap) = (ap, p)(h, ap) + (p, ap)(h, a∗p). (12)

Note that the right-hand side of (12) is a bounded linear functional of h on the
whole H . Since P is a solution, (12) holds true for all h ∈ D ∩ (Span p)⊥.
Therefore (ah, ap) is extended to a bounded linear functional of h on (Span p)⊥.
Since p ∈ D, (ah, ap) is a linear functional on Span p. Hence (ah, ap) is ex-
tended to a bounded linear functional of h on the whole H . Thus the operator a∗

is defined at the vector ap and (12) can be rewritten as the following condition

(h, a∗ap) = (ap, p)(h, ap) + (p, ap)(h, a∗p), for all h⊥p. (13)

So the vector (a∗ap − (p, ap)ap − (ap, p)a∗p) should be collinear to p. Thus we
get the necessary condition for P to be a solution

a∗ap − (p, ap)ap − (ap, p)a∗p = µp, for some µ ∈ C. (14)

Now use the isomorphism between H and the Bargmann-Fock space Fz con-
structed in the Section 3. Denote (ap, p) by λ and let function f(z) ∈ Fz corre-
spond to the vector p. Then (14) is equivalent to

zf ′(z) − λ̄f ′(z) − λzf(z) = µf(z), for some µ ∈ C.

Choosing only entire and normalized solutions (and denote µ + |λ|2 by m), we
obtain that all solutions with one-dimensional image are contained among the
projections on the vectors

f(z) = Ceλz(z − λ̄)m (15)
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where λ ∈ C, m = 0, 1, . . . and C = (e−|λ|2/m!)1/2. Further on we will show
that all these projections are solutions.

Definition 8. For any λ ∈ C we consider the operator of noncommutative trans-
lation

Uλ : f(z) �→ e−
|λ|

2

2 eλzf(z − λ̄) (16)

which is an automorphism of Fz .

Proposition 9. For any admissible projection P

E(P ) = E(UλPU−1

λ ). (17)

Using Uλ and (15), we obtain that all solutions with one-dimensional image are
among the projections on the vectors Uλ(em), where λ ∈ C, m = 0, 1, 2, . . .

and {ej} is the canonical basis (ej = zj

√
j!

). Moreover, since Uλ is an auto-

morphism and E(P ) = E(UλPU−1

λ ), our problem is reduced to the question
about the description of solutions among the projections on the basis vectors ej ,
j = 0, 1, 2, . . . .

We know that the projection on e0 is a minimum of the energy (because it is a
BPS-solution). Now prove that the projection P on ej , where j = 1, 2, . . . , is a
solution but neither minimum nor maximum.

Let P (t) be an arbitrary smooth curve such that P (0) = P . Then P (t) = P +
tϕ + O(t2), where ϕ ∈ TP Pr(H) (TP Pr(H) is the tangent space to the space
of orthogonal projections at the point P ). TP Pr(H) consists of bounded ϕ such
that P + ϕ = (P + ϕ)2 = (P + ϕ)∗ up to the first order term by ϕ, i.e.,

TP Pr(H) = {bounded ϕ ; Pϕ + ϕP = ϕ = ϕ∗}. (18)

Now we can write up to the first order terms

E(P (t)) = E(P +tϕ+O(t2)) = E(P )+2tRe([a, P ], [a, ϕ])HS +O(t2). (19)

Hence P is a solution if and only if the first variation

E1
P (ϕ) := 2Re([a, P ], [a, ϕ])HS (20)

is equal to zero for any ϕ ∈ TP Pr(H). In our case (imP = Span ej) this holds
true. (It can be checked by straightforward calculation of TP Pr(H) and matrix
elements of [a, P ] and [a, ϕ] in the canonical basis.)
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For proving that P with imP = Span ej for j = 1, 2, . . . is neither minimum
nor maximum it is sufficient to find two vectors h1 and h2 from D ∩ (Span ej)

⊥

such that RP (h1) > 0 and RP (h2) < 0 (RP (h) was defined in (11)). We take
h1 = ej+2 and h2 = e0.

So we obtain the following theorem.

Theorem 10. A projection P with one-dimensional image is a solution if and only
if

imP = Span 〈Uλej〉 = Span 〈(a∗ − λ̄)jcλ〉, λ ∈ C, j = 0, 1, . . . . (21)

Among them minima are projections on

Span 〈Uλe0〉 = Span 〈cλ〉, j = 0 (22)

i.e., all one-dimensional BPS-solutions. There are no maxima.

5. Infinite-dimensional BPS-solutions

Here we construct the class K of projections that are BPS-solutions with infinite-
dimensional kernel (their admissibility will be proved). The most part of them will
have also infinite-dimensional image and it will be clear which of them have this
property. Here we will work only in the Bargmann-Fock space Fz (see Section 3).

Description of the class K. Let φ(z) be an exponential polynomial (i.e., φ(z) =∑
λ pλ(z)eλz , where pλ(z) are polynomials and

∑
λ is finite). Define the projec-

tion Pφ. Let {α0, α1, . . . } be the set of zeroes of φ(z) (possibly finite). Let ni be
the multiplicity of zero αi. Then

imPφ := Span 〈{eᾱiz, zeᾱiz, . . . , zni−1eᾱiz}∞i=0〉. (23)

A projection P belongs to K if and only if there exists an exponential polynomial
φ such that P = Pφ.

Using the property of Fz (7), we see that

kerPφ = {g(z) ∈ Fz ; g(z) = f(z)φ(z), wheref(z) ∈ O(C)}. (24)

So this kernel is infinite-dimensional. It is evident that Pφ has infinite-dimensional
image if and only if φ(z) has infinite number of zeroes. For proving admissibility
of Pφ we use the criterion of admissibility (Proposition 2). It is evident that D ∩
imP is dense in imP (because zneαz ∈ D). To prove that D ∩ kerP is dense in
kerP , it is sufficient to check that the system of functions {eαzφ(z)}α∈C is dense
in kerPφ (because eαzφ(z) ∈ D). This fact was proved in [6]. So Pφ is admissible
and looking at formula (23) for imPφ, we see that Pφ is a BPS-solution.
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Example 11. φ is a usual polynomial. Then dim(imPφ) < ∞. E.g., if φ(z) =
z2(z + 1 − i), then

imPφ = Span 〈1, z, e−(1+i)z〉. (25)

Example 12. φ(z) = sin πz. Then

imPφ = Span 〈{enz}n∈Z〉 = Span 〈{cn}n∈Z〉. (26)

Example 13. φ(z) = z(z − i) sin2 z. Then

imPφ = Span 〈{eπnz}n∈Z, {zeπnz}n∈Z, z2, e−iz〉. (27)

Remark 14. By now it is unknown whether any projection of finite energy with
infinite-dimensional image and kernel exists. We try to find such projection among
BPS-solutions, in particular, among of projections from the class K. Unfortu-
nately, all projections for that we managed to compute the energy turned out to
have infinite energy. (E.g., Psinπz from Example 12 is such projection.)
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