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MEAN SQUARE OF THE ERROR TERM IN THE ASYMMETRIC
MULTIDIMENSIONAL DIVISOR PROBLEM

Xiaodong Cao, Yoshio Tanigawa, Wenguang Zhai

Abstract: Let a = (a1, · · · , ak) denote a k-tuple of positive integers such that a1 6 a2 6
· · · 6 ak. We put d(a;n) =

∑
n
a1
1 ···n

ak
k

=n
1 and let ∆(a;x) be the error term of the corresponding

asymptotic formula for the summatory function of d(a;n). In this paper we show an asymptotic
formula of the mean square of ∆(a;x) under a certain condition. Moreover, when k equals 2 or
3, we give unconditional asymptotic formulas for these mean squares.

Keywords: asymmetric multidimensional divisor problem, mean square of the error term,
Dirichlet series, functional equation, the Tong-type representation.

1. Introduction and the statement of results

Let k be a fixed positive integer and x > 1. We put a := (a1, . . . , ak), where
aj (j = 1, . . . , k) are positive integers such that a1 6 · · · 6 ak. By d(a;n) we
denote the number of representations of an integer n in the form n = na11 · · ·n

ak
k ,

namely,
d(a;n) =

∑
n
a1
1 ···n

ak
k =n

1. (1.1)

We define
∆(a;x) :=

∑′

n6x

d(a;n)−H(a;x),

where H(a;x) is the main term of the summatory function of d(a;n) given by the
sum of residues of

∏k
j=1 ζ(ajs)

xs

s , and
′ in the summation symbol means that the

last term d(a;x) should be counted with weight 1/2 when x is an integer. The
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asymmetric multidimensional divisor problem (or the general divisor problem) is
to study the behaviour of ∆(a;x). See also Ivić [7] and Krätzel [10], or the survey
paper [9].

When a1 = a2 = 1, d(1, 1;n) =
∑
d|n 1, ∆(1, 1;x) =

∑
n6x d(1, 1, ;n) −

x(log x + 2γ − 1), (γ is the Euler constant), the above problem is the classical
Dirichlet divisor problem. Dirichlet proved ∆(1, 1;x) = O(x1/2) by his famous
hyperbola method. The exponent 1/2 was later improved by many researchers.
The latest result is

∆(x) = O(x131/416(log x)26947/8320)

due to Huxley [6]. For the lower bounds, it is known that

∆(1, 1;x) = Ω+

(
x

1
4 (log x)

1
4 (log log x)

3+log 4
4 exp(−c

√
log log log x)

)
(c > 0)

and

∆(1, 1;x) = Ω−

(
x

1
4 exp(c′(log log x)

1
4 (log log log x)−

3
4 )
)

(c′ > 0),

which are due to Hafner [5] and Corrádi and Kátai [3], respectively. Many corre-
sponding upper bounds and Ω-results for the asymmetric multidimensional divisor
problem can be found in [7] and [10].

The mean square estimate is one of the main topics in the theory of divisor
problem. Let R(T ) be the error term defined by the following formula

R(T ) =

∫ T

1

∆2(1, 1;x)dx− cT 3/2,

where c = 1
6π2

∑∞
n=1

d(1,1;n)2

n3/2 is a positive constant. Cramér [4] first proved that

R(T ) = O(T 5/4+ε).

Cramér’s estimate of R(T ) was improved to

R(T ) = O(T log5 T ) (1.2)

by Tong [12] and recently to R(T ) = O(T log3 T log log T ) by Lau and Tsang [11].
Tong’s method of proving (1.2) is the initial motivation of our previous paper [2].

Ivić [8] studied the upper bound and Ω-result of the mean square of ∆(a;x)
for general k. As for the upper bound, he proved that if∫ T

1

∆2(a;x)dx� T 1+2βk (βk > 0)

then βk > gk, where

gk =
r − 1

2(a1 + · · ·+ ar)
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and r is the largest integer such that

(r − 2)ar 6 a1 + · · ·+ ar−1 (2 6 r 6 k)

[8, (1.5)]. Moreover, he showed that if the estimate∫ T

1

|ζ(1/2 + it)|2k−2dt� T 1+ε

holds, then βk = gk. In particular, βk = gk holds for k = 2 and 3. For the lower
bound, he showed that∫ T

1

∆2(a;x)dx = Ω(T 1+2gk logA T )

with some constant A > 0. Inspired by these facts, Ivić conjectured that the
asymptotic formula∫ T

1

∆2(a;x)dx = (Ek + o(1))T 1+2gk logAk T (1.3)

holds for general k > 2 with some constants Ek > 0 and Ak > 0 [8, (5.7)].
When k = 2, Ivić’s conjecture (1.3) was confirmed by Cao and Zhai [13]. More

precisely they proved that∫ T

1

∆2(a;x)dx = c(a)T
1+a1+a2
a1+a2 +O

(
T

1+a1+a2
a1+a2

− a1
2a2(a1+a2)(a1+a2−1) log

7
2 T
)
, (1.4)

where a1 and a2 are integers such that 1 6 a1 6 a2, a = (a1, a2) and c(a) is some
constant. Their method is based on the transformation formula of the exponential
sum and the Chowla and Walum type representation of ∆(a;x) (see also [1]).
When a1 = a2 = 1, the error term in (1.4) becomes O(T

5
4 log

7
2 T ). Hence (1.4) is

an analogue of Cramér’s result for ∆(1, 1;x).
In this paper we shall study the mean square estimate of the error term ∆(a;x)

more closely by means of the Tong method [2, 12]. For this purpose, we need an
auxiliary divisor function defined by

d̂(a;n) =
∑

n
a1
1 ···n

ak
k =n

na1−1
1 · · ·nak−1

k , (1.5)

which is a dual function of d(a;n). For convenience, we write

b(n) = π2α−k/2d̂(a;n) and µn = π2αn,

where
α := (a1 + · · ·+ ak)/2.
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From (1.1) and (1.5), we have

ϕ(s) :=

∞∑
n=1

d(a;n)

ns
=

k∏
j=1

ζ(ajs) (Re s > 1/a1)

and

ψ(s) :=

∞∑
n=1

b(n)

µsn
= π2α−k/2−2αs

∞∑
n=1

d̂(a;n)

ns

= π2α−k/2−2αs
k∏
j=1

ζ(ajs− aj + 1) (Re s > 1). (1.6)

Let 1/2 6 σ∗ < 1 be a real number defined by

σ∗ := inf

{
σ
∣∣∣ ∫ T

0

|ψ(σ + it)|2dt� T 1+ε

}
. (1.7)

From (1.6) it is easy to check that

σ∗ > 1− 1

2ak
. (1.8)

In this paper we assume that σ∗ satisfies the condition

σ∗ < 1− k − 1

4α
. (1.9)

This condition plays an important role in Tong’s method. From (1.8), we note
that (1.9) implies, as a necessary condition, that

(k − 2)ak < a1 + · · ·+ ak−1. (1.10)

We first prove a conditional asymptotic formula of the mean square of ∆(a, x).

Theorem 1. Suppose that (1.9) and (1.10) hold. Then we have∫ T

1

∆2(a;x)dx = c(a)T 1+ k−1
2α +O

(
T 1+ k−1

2α −η(a)+ε
)
, (1.11)

where c(a) is a certain positive constant and

η(a) :=
2(1− σ∗)− k−1

2α

2α(3− 2σ∗ − 1
ak

)− 1
> 0. (1.12)

It is an important problem to determine the exact value of σ∗. Generally it is
a very difficult problem, but it is easy to see that if the Lindelöf hypothesis for
ζ(s) is true, then σ∗ = 1− 1/2ak. Hence from Theorem 1 we have
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Corollary 1. Suppose that (1.10) holds. If the Lindelöf hypothesis is true, then
we have ∫ T

1

∆2(a;x)dx = c(a)T 1+ k−1
2α +O

(
T

1+ k−1
2α −

2α−(k−1)ak
2α(2α−1)ak

+ε

)
,

where c(a) is a certain positive constant.

When k = 2, we find that σ∗ = 1 − 1/2a2 holds unconditionally, which is
a consequence of the fourth power moment of ζ(s) on the critical line. Hence
(1.11) gives

Theorem 2. Suppose a1 6 a2. Then we have∫ T

1

∆2(a1, a2;x)dx = c2T
1+ 1

a1+a2 +O
(
T

1+ 1
a1+a2

− a1
a2(a1+a2)(a1+a2−1)

+ε
)
, (1.13)

where c2 is a certain positive constant.

Theorem 2 improves the error term of (1.4). We note that if we take a1 =
a2 = 1, the error term in (1.13) is O(T 1+ε). So (1.13) is an analogue of (1.2)
modulo term T ε.

Another interesting case is k = 3. In this case we can prove the following
Theorem 3.

Theorem 3. Let k = 3. If a1 6 a2 6 a3 and a3 < a1 + a2, then we have∫ T

1

∆2(a1, a2, a3;x)dx = c3T
1+ 2

a1+a2+a3 +O(T 1+ 2
a1+a2+a3

−η3+ε),

where

η3 =



1
(a1+a2+a3)(3+2(a1+a2+a3)(1−1/a3)) if 3(a2 + a3) 6 7a1,

4a1a3

(a1+a2+a3)
(

(a1+a2+a3)(a1+3a2+3a3)(a3−1)+a3(5a1+3a2+3a3)
)

if 3(a2 + a3) > 7a1, 3a3 + a1 6 5a2 and 3a3 < a1 + 3a2,
a1+a2−a3

a3(a1+a2+a3)(a1+a2+a3−1) otherwise,

and c3 is a certain positive constant.

We shall prove Theorem 3 in Section 4.

2. The truncated Tong-type formula of ∆(a;x)

In [12], Tong studied the mean square of ∆(1, . . . , 1︸ ︷︷ ︸
k

;x). By using the functional

equation of ζk(s) he derived a very useful formula of ∆(1, . . . , 1;x), which we call
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the truncated Tong-type formula, where the first finite sum is the same as that of
the truncated Voronoï formula, while its error term is represented by the integrals
like (2.6) below.

In our case, using the functional equation of the Riemann zeta function

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s),

we find easily that the functional equation of ϕ(s) and ψ(s) has a form

∆1(s)ϕ(s) = ∆2(1− s)ψ(1− s), (2.1)

where

∆1(s) :=

k∏
j=1

Γ
(ajs

2

)
(2.2)

and

∆2(s) :=

k∏
j=1

Γ

(
ajs− aj + 1

2

)
. (2.3)

Note that d̂(a;n) does not satisfy the Ramanujan conjecture and also the gamma
factors on the left and right hand side of (2.1) are not the same for general a, so
the pair of Dirichlet series ϕ(s) and ψ(s) is not contained in the so-called Selberg
class. In our previous paper [2], we developed the theory of the truncated Tong-
type formula of the error term for such a pair of Dirichlet series. Obviously ϕ(s)
and ψ(s) satisfy the conditions therein.

In order to write the truncated Tong-type formula for ∆(a;x) in the present
case, we use the same notations as in [2]. From (2.2) and (2.3), we have (we repeat
the definion of α for its importance)

α =
a1 + · · ·+ ak

2
, r = 1,

µ =
1− k

2
, µ′ =

∑
j

(
−aj

2

)
+

1

2
= −α+

1

2
,

ν = −1

2

∑
j

log aj , ν′ = −1

2

∑
j

aj log aj ,

λ =
∑
j

aj log aj = λ′, h = 2αe−
λ+λ′
2α = 2α

k∏
j=1

a
−aj/α
j

and
θ% =

r

2
− 1

4α
+ %

(
1− 1

2α

)
+
µ′ − µ

2α
.

In this paper we only consider the case % = 0, hence

θ0 =
1

2
− 1

4α
+
µ′ − µ

2α
=
k − 1

4α
. (2.4)
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We also put

λ0 = θ0 +
1

2α
− r − 1 =

k + 1

4α
− 2. (2.5)

In Tong’s theory, it is important to approximate ∆(a;x) by the K-th averaging
integral ∫

EK

∆(a; ỹ)dYK ,

where we use the notation∫
EK

g(ỹ)dYK =

∫ 1

0

· · ·
∫ 1

0

g(ỹ)dy1 · · · dyK ,

with
ỹ = y +

1

x
(y1 + · · ·+ yK)

for an integrable function g(y). Let ∆̂(a;x) be the error term of the asymptotic
formula of summatory function of d̂(a;n), which is defined mutatis mutandis as
for ∆(a;x). Then the averaging integral can be expressed by the function defined
by

I(λ,M,N, y) = 2πi

∫ N

M

uλ∆̂(a;u) exp
(
−ih(uy)

1
2α

)
du. (2.6)

The next lemma gives the truncated Tong-type formula of ∆(a; y). Applying
Theorem 5 of [2] directly we get

Lemma 1. Let 1 6 x 6 y 6 (1 + δ)x, N = [x4α−1−ε] and J = [(4α2r + 4α)ε−1],
where δ is a small positive constant. In every subinterval [t, t + Bt1−1/2α] ⊂
[1,
√
N ], there exists M 6= µn such that the following Tong-type formula holds:

∆(a; y) =

7∑
j=1

Rj(y),

where

R1(y) = κ0y
θ0
∑
µn6M

b(n)

µ1−θ0
n

cos(h(yµn)1/2α + c0π)

= κ0π
2α(θ0−1)yθ0

∑
n6M ′

b(n)

n1−θ0
cos(hπ(yn)1/2α + c0π)

= κ0π
2αθ0−k/2yθ0

∑
n6M ′

d̂(a;n)

n1−θ0
cos(hπ(yn)1/2α + c0π),

R2(y) = yθ0+ 1
2α Re{c00I(λ0,M,N, y)},

R3(y) =

J∑
l=0

J∑
m=0

l+m>0

Re

{
clmI

(
λ0 +

l −m
2α

,M,N, y

)}
x−ly−l+θ0+ 1

2α+ l−m
2α ,
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R4(y) =

K∑
j=0

K∑
m=0

Re

{
c′jmI

(
λ0 −

K +m

2α
,N,∞, y +

j

x

)}

× xK
(
y +

j

x

)K+θ0+ 1
2α−

K+m
2α

,

R5(y) = x
k−3
4α Mmax( k−3

4α ,0)+ε + x
k+1
4α−2M

k+1
4α +ε + x

k−1
4α −

1
2Mω1− 3

2 + k−1
4α

+ x(4α−1)(1+ω1)−2K+ k
2α+ 2K

α −6α,

R6(y) = 0,

R7(y) = ∆(a; y)−
∫
EK

∆(a; ỹ)dYK ,

where M ′ = M/π2α and κ0 6= 0, c00, clm, c
′
jm are certain constants, K is a suitably

large integer and ω1 < 1 is a certain constant.

We need one remark on R6(y). In fact in [2] R6(y) is given by

R6(y)�

{
0 if b(n) > 0,

xθ0Mω0−1+ k−1
4α , if b(n)� nω0 .

In our case we can take R6(y) = 0 since b(n) = π2α−k/2d̂(a, n) is always non-
negative.

We recall important estimates of the integral of I(λ,M,N, y) which we will
need in the next section.

Lemma 2. Let M < N < xA, where A is a fixed positive number, w be a real
number and 0 < µ < M

2 . Then we have

∫ (1+δ)x

x

I(λ,M,N, y)yw cos(h(µy)1/2α + c0π)dy

� xw+1−3/4α+ε max
M6P6N

Pλ+σ∗+1−3/4α.

Lemma 3. Let 2(λ+σ∗) 6= −1, M < N < xA, where A is a fixed positive number,
and δ > 0 with (1 + δ)1/α − 1 < 1/4. Then we have∫ (1+δ)x

x

|I(λ,M,N, y)|2dy � x1−1/α+ε max
M6P6N

P 2(λ+σ∗+1)−1/α.

Lemma 4. Let 2(λ + σ∗) 6= −1, 2(λ + σ∗ + 1) < 1/α,M > 1 and δ > 0 with
(1 + δ)1/α − 1 < 1/4. Then we have∫ (1+δ)x

x

|I(λ,M,∞, y)|2dy � x1−1/α+εM2(λ+σ∗+1)−1/α.

These lemmas are Lemmas 8, 9 and 10 of [2], respectively. See [2] for details.
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3. Mean square of ∆(a, x)

In the asymmetric multidimensional divisor problem, the number (µ′ − µ)/2 =
−α+ k/2 plays an important role. Although the proof of Theorem 1 is similar to
that of Theorem 1 in [2], we shall give all details for the sake of completeness.

Let
K1(y) = R1(y) +R2(y)

and

K2(y) =
7∑
j=3

Rj(y).

It is sufficient to evaluate the integral
∫ (1+δ)x

x
(K1(y) + K2(y))2dy for 1 6 x < T ,

where δ is some fixed small positive number.
We need the upper bound of the summatory function of d̂ 2(a, n). Moreover,

we have

Lemma 5. Let x > 1. Then we have

x2−1/ak �
∑
n6x

d̂ 2(a;n)� x2−1/ak+ε. (3.1)

Proof. By Cauchy’s inequality we get

d̂ 2(a;n) =

 ∑
n
a1
1 ···n

ak
k =n

na1−1
1 · · ·nak−1

k

2

6
∑

n
a1
1 ···n

ak
k =n

1×
∑

n
a1
1 ···n

ak
k =n

n
2(a1−1)
1 · · ·n2(ak−1)

k

� nεc(a;n),

where c(a;n) =
∑
n
a1
1 ···n

ak
k =n n

2(a1−1)
1 · · ·n2(ak−1)

k . We also note that d̂ 2(a;n) >

c(a;n). It is easy to see that the generating Dirichlet series of c(a;n) has the form

∞∑
n=1

c(a;n)

ns
=

k∏
j=1

ζ(ajs− 2(aj − 1)), Re(s) > 2− 1/ak.

This Dirichlet series has poles at points 2− 1/aj (j = 1, . . . , k), hence∑
n6x

c(a;n) = cx2−1/ak logA−1 x · (1 + o(1))

where c is some constant and A is the number of j such that aj = ak. Therefore
Lemma 5 follows. �
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Let σ∗ be the number defined by (1.7) which satisfies (1.9). The inequality
(1.9) is equivalent to

2(λ0 + σ∗ + 1) <
1

α
, (3.2)

where λ0 was defined by (2.5).

3.1. Evaluation of
∫ (1+δ)x

x
K2

1(y)dy

Let κ′0 = κ0π
2α(θ0−1) for simplicity. By using the identity

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y))

we get

R1(y)2 =
κ′0

2

2
y
k−1
2α

∑
n6M ′

∑
m6M ′

b(n)b(m)

(nm)1− k−1
4α

(
cos(hπy1/2α(n1/2α −m1/2α))

+ cos(hπy1/2α(n1/2α +m1/2α) + 2c0π)
)

=
κ′0

2

2
(W1(y) +W2(y) +W3(y)) ,

where

W1(y) = y
k−1
2α

∑
n6M ′

b(n)2

n2− k−1
2α

,

W2(y) = y
k−1
2α

∑∑
n,m6M ′

n 6=m

b(n)b(m)

(nm)1− k−1
4α

cos(hπy1/2α(n1/2α −m1/2α)),

W3(y) = y
k−1
2α

∑∑
n,m6M ′

b(n)b(m)

(nm)1− k−1
4α

cos(hπy1/2α(n1/2α +m1/2α) + 2c0π).

For the integral of W1(y), we have∫ (1+δ)x

x

W1(y)dy =
∑
n6M ′

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy.

Since (1.10) is equivalent to k−1
2α < 1

ak
, we find that the series

∑∞
n

b(n)2

n2− k−1
2α

is

convergent. So from (3.1), we have

∑
n6M ′

b(n)2

n2− k−1
2α

=

∞∑
n=1

b(n)2

n2− k−1
2α

+O(M
k−1
2a −

1
ak

+ε
).



Mean square of the error term in the asymmetric multidimensional divisor problem 183

Hence∫ (1+δ)x

x

W1(y)dy =

∞∑
n=1

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy +O(x1+ k−1

2α M
k−1
2α −

1
ak

+ε
). (3.3)

By the first derivative test, we have∫ (1+δ)x

x

W2(y)dy � x
k−1
2α +1− 1

2α

∑∑
m,n6M ′

m6=n

b(n)b(m)

(nm)1− k−1
4α

1

|n1/2α −m1/2α|

= x
k−2
2α +1 {Σ1 + Σ2} ,

where the summation conditions of Σ1 and Σ2 are given by

SC(Σ1) : |n1/2α −m1/2α| > 1

10
(nm)1/4α

and

SC(Σ2) : |n1/2α −m1/2α| 6 1

10
(nm)1/4α,

respectively. It is not hard to see that

Σ1 �
∑∑
n,m6M ′

|n1/2α−m1/2α|> 1
10 (nm)1/4α

b(n)b(m)

(nm)1− k−1
4α

1

(nm)
1
4α

�

 ∑
n6M ′

b(n)

n1− k−2
4α

2

�M
k−2
2α +ε,

where we used the trivial estimate
∑
n6x b(n) � x1+ε. Next we consider Σ2. By

Lagrange’s mean value theorem we have

n1/2α −m1/2α =
1

2α
u

1/2α−1
0 (n−m)

for some u0 between n and m. Since n � m by SC(Σ2), we find

|n1/2α −m1/2α| > (nm)1/4α−1/2|n−m|,

thus we get

Σ2 �
∑∑
n,m6M ′

n 6=m

b(n)b(m)

(nm)
1
2−

k−2
4α

1

|n−m|

�
∑∑
n,m6M ′

n 6=m

{(
b(n)

n
1
2−

k−2
4α

)2

+

(
b(m)

m
1
2−

k−2
4α

)2
}

1

|n−m|
.
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By the symmetry of n and m and then using Lemma 5 we obtain

Σ2 �
∑∑
n,m6M ′

n 6=m

b(n)2

n1− k−2
2α

1

|n−m|
�M

1− 1
ak

+ k−2
2α +ε

.

Here we note that the exponent ofM is 1−1/ak+(k−2)/2α > 0 and Σ2 is greater
than Σ1. Hence ∫ (1+δ)x

x

W2(y)dy � x
k−2
2α +1M

1− 1
ak

+ k−2
2α +ε

. (3.4)

It is easy to see that
∫ (1+δ)x

x
W3(y)dy is absorbed into the right hand side of (3.4).

From (3.3) and (3.4), we get∫ (1+δ)x

x

R2
1(y)dy =

κ′0
2

2

∞∑
n=1

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy

+O
(
x
k−1
2α +1+εM

k−1
2α −

1
ak

)
+O

(
x
k−2
2α +1+εM

k−2
2α +1− 1

ak

)
.

(3.5)

Now we consider the mean square of R2(y). By Cauchy’s inequality and
Lemma 3, we have∫ (1+δ)x

x

R2
2(y)dy � x

k−1
2α + 1

α

∫ (1+δ)x

x

|I(λ0,M,N, y)|2dy

� x
k−1
2α + 1

αx1− 1
α+ε max

M6P6N
P 2(λ0+σ∗+1)− 1

α .

From (2.5) and assumption (1.9), we have

2(λ0 + σ∗ + 1)− 1/α < −1/ak + (k − 1)/2α < 0.

Therefore ∫ (1+δ)x

x

R2
2(y)dy � x

k−1
2α +1+εM2σ∗−2+ k−1

2α . (3.6)

Finally we consider
∫ (1+δ)x

x
R1(y)R2(y)dy. From definitions of R1(y) and

R2(y), we have∫ (1+δ)x

x

R1(y)R2(y)dy

= Reκ′0c00

∫ (1+δ)x

x

y
k
2α I(λ0,M,N, y)

∑
n6M ′

b(n)

n1− k−1
4α

cos(hπ(ny)1/2α + c0π)dy

= Reκ′0c00(I1 + I2),
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where

I1 =

∫ (1+δ)x

x

y
k
2α I(λ0,M,N, y)

∑
n6M ′/2

b(n)

n1− k−1
4α

cos(hπ(ny)1/2α + c0π)dy

and

I2 =

∫ (1+δ)x

x

y
k
2α I(λ0,M,N, y)

∑
M ′/2<n6M ′

b(n)

n1− k−1
4α

cos(hπ(ny)1/2α + c0π)dy.

By Lemma 2 we have

I1 �
∑
n6M ′

b(n)

n1− k−1
4α

x
k
2α+1− 3

4α+ε max
M6P6N

Pλ0+σ∗+1− 3
4α .

By assumption (1.9), the exponent of P in the above estimate is negative. Hence
by using

∑
n6x b(n)� x1+ε again, we get

I1 � x
2k−3
4α +1+εMλ0+σ∗+1−3/4α

∑
n6M ′/2

b(n)

n1− k−1
4α

� x
2k−3
4α +1+εMσ∗−1+ 2k−3

4α . (3.7)

By applying Cauchy’s inequality to I2, we have

I2 � x
k
2α (V1V2)1/2, (3.8)

where

V1 =

∫ (1+δ)x

x

|I(λ0,M.N, y)|2dy

and

V2 =

∫ (1+δ)x

x

∣∣∣∣∣∣
∑

M ′/2<n6M ′

b(n)

n1− k−1
4α

cos(hπ(ny)1/2α + c0π)

∣∣∣∣∣∣
2

dy.

Applying Lemma 3 to V1 we get

V1 � x1− 1
α+εM2σ∗−2+ k−1

2α . (3.9)

The value of V2 can be bounded by the same approach as the mean square of
R1(y) and we get

V2 � xM
k−1
2α −

1
ak

+ε
+ x1− 1

2α+εM
1− 1

ak
+ k−2

2α . (3.10)

By (3.8), (3.9) and (3.10) we get

I2 � x1+ k−1
2α +εM

σ∗−1+ k−1
2α −

1
2ak + x1+ 2k−3

4α +εM
σ∗− 1

2 + 2k−3
4α −

1
2ak . (3.11)
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From the estimates (3.5), (3.6), (3.7) and (3.11) we get∫ (1+δ)x

x

K2
1 (y)dy =

κ′0
2

2

∞∑
n=1

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy (3.12)

+O
(
x
k−2
2α +1+εM

k−2
2α +1− 1

ak

)
+O

(
x
k−1
2α +1+εM2σ∗−2+ k−1

2α

)
,

where we used the facts 1− 1/2ak 6 σ∗ and

x1+ 2k−3
4α M

σ∗− 1
2 + 2k−3

4α −
1

2ak =
(
x
k−2
2α +1M

k−2
2α +1− 1

ak

)1/2 (
x
k−1
2α +1M2σ∗−2+ k−1

2α

)1/2

.

All error terms in (3.5), (3.7) and (3.11) are bounded by the two error terms in
(3.12).

3.2. Evaluation of
∫ (1+δ)x

x
K2

2(y)dy

We first give the upper bounds of
∫ (1+δ)x

x
R2
j (y)dy (j = 3, . . . , 7). By Cauchy’s

inequality and Lemma 3, we have∫ (1+δ)x

x

R2
3(y)dy �

∑∑
06l,m6J
l+m>0

x−4l+ k+1
2α + l−m

α

∫ (1+δ)x

x

∣∣∣∣I(λ0 +
l −m

2α
,M,N, y)

∣∣∣∣2 dy
�
∑∑
06l,m6J
l+m>0

x−4l+ k+1
2α + l−m

α x1− 1
α+ε max

M6P6N
P 2(λ0+ l−m

2α +σ∗+1)− 1
α

= Σ3 + Σ4,

where the summation conditions are

SC(Σ3) : 0 6 l 6 m 6 J, l +m > 0 and SC(Σ4) : 0 6 m < l 6 J,

respectively. Since we have assumed 2(λ0 + σ∗ + 1) < 1/α, we have

Σ3 �
∑

06m6l6J
l+m>0

x−4l+ k−1
2α + l−m

α +1+εM2(λ0+σ∗+1)− 1
α+ l−m

α

= x
k−1
2α +1+εM2(σ∗−1)+ k−1

2α

∑
06m6l6J
l+m>0

x−4l+ l−m
α M

l−m
α .

The sum over l and m in the above formula is bounded by

� (xM)−1/α + x−4 � (xM)−1/α.

So we have
Σ3 � x

k−3
2α +1+εM2(σ∗−1)+ k−3

2α . (3.13)
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Next we treat Σ4. Since

2(λ0 + σ∗ +
l −m

2α
+ 1)− 1

α
>

(ak − a1) + · · ·+ (ak − ak−1) + ak
(a1 + · · ·+ ak)ak

> 0,

we have

Σ4 �
∑

06m<l6J

x−4l+ k−1
2α +1+ l−m

α +εN2(λ0+σ∗+ l−m
2α +1)− 1

α

= x
k−1
2α +1+εN2(λ0+σ∗+1)− 1

α

∑
06m<l6J

x−4l+ l−m
α N

l−m
α .

Having in mind that N = [x4α−1−ε], the sum over l and m is O(1). So

Σ4 � x
k−1
2α +1+εN2(λ0+σ∗+1)− 1

α . (3.14)

From (3.13), (3.14) and assumption M 6
√
N we get∫ (1+δ)x

x

R2
3(y)dy � x

k−3
2α +1+εM2(σ∗−1)+ k−3

2α + x
k−1
2α +1+εM4(σ∗−1)+ k−1

α . (3.15)

By Lemma 4 we have∫ (1+δ)x

x

R2
4(y)dy �

K∑
j,m=0

x4K+ k−1
2α + 1

α−
K+m
α

×
∫ (1+δ)x

x

∣∣∣∣I (λ0 −
K +m

2α
,N,∞, y +

j

x

)∣∣∣∣2 dy
�

K∑
j,m=0

x4K+ k−1
2α + 1

α−
K+m
α x1− 1

α+εN2(λ0−K+m
2α +σ∗+1)− 1

α

= x4K+ k−1
2α +1−Kα +εN2(λ0+σ∗+1)− 1

α−
K
α

K∑
j,m=0

(xN)−m/α.

Since the sum over j and m is bounded, we get by the definition of N that∫ (1+δ)x

x

R2
4(y)dy � x4K+ k−1

2α +1−Kα +εN2(λ0+σ∗+1)− 1
αx−(4α−1−ε)Kα

� x
k−1
2α +1−Kα +εN2(λ0+σ∗+1)− 1

α . (3.16)

Now consider R5(y). By taking K large, we have

R5(y)� x
k−3
2α Mmax( k−3

4α ,0)+ε + x
k+1
4α −2M

k+1
4α +ε + x

k−1
4α −

1
2M−

1
2 + k−1

4α .

It is easy to see that

R5(y)�

{
x−1/4α if k = 2

x
k−3
4α M

k−3
4α if k > 3 and M � x2α−1.
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Hence∫ (1+δ)x

x

R2
5(y)dy �

{
x1−1/2α if k = 2

x1+ k−3
2α M

k−3
2α if k > 3 and M � x2α−1.

(3.17)

By the choice of M , R6(y) = 0, so its mean square is bounded trivially.
By the same method as in [2], we have∫ (1+δ)x

x

R2
7(y)dy � xε. (3.18)

The first error term in the right hand side of (3.15) is clearly bounded by the
term in the right hand side of (3.17). Hence from (3.15), (3.16), (3.17) and (3.18)
we get∫ (1+δ)x

x

K2
2 (y)dy � x

k−1
2α +1+εM4(σ∗−1)+ k−1

α

+

{
x1−1/2α if k = 2

x1+ k−3
2α M

k−3
2α if k > 3 and M � x2α−1.

(3.19)

3.3. Proof of Theorem 1

Choose M such that two error terms in (3.12) are of the same order, namely,

x
k−2
2α +1M

k−2
2α +1− 1

ak � x
k−1
2α +1M2(σ∗−1)+ k−1

2α . (3.20)

The above formula gives
M � x

1
2α(3−2σ∗−1/ak)−1 . (3.21)

Clearly M satisfies M � x2α−1 �
√
N. Therefore (3.12) becomes∫ (1+δ)x

x

K2
1 (y)dy =

κ′0
2

2

∞∑
n=1

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy +O

(
x1+ k−1

2α −η(a)+ε
)
,

(3.22)

where η(a) is given by (1.12).
By Cauchy’s inequality, formula (3.22) and bound (3.19) we have∫ (1+δ)x

x

K1(y)K2(y)dy �

(∫ (1+δ)x

x

K2
1 (y)dy

)1/2(∫ (1+δ)x

x

K2
2 (y)dy

)1/2

� x1+ k−1
2α +εM2(σ∗−1)+ k−1

2α +

{
x if k = 2

x1+ k−2
2α M

k−3
4α if k > 3

� x1+ k−1
2α −η(a)+ε, (3.23)

where in the last step we have used (3.20).
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We also have ∫ (1+δ)x

x

K2
2 (y)dy � x1+ k−1

2α −η(a)+ε. (3.24)

Consider the first error term in (3.19) first. Since the exponent ofM is negative, it
is bounded by the term in the right hand side of (3.24). Next consider the second
error term of (3.19). For k = 2 there is nothing to prove. For k > 3, it is enough
to show that

1

α
− k − 3

2α
· 1

2α(3− 2σ∗ − 1/ak)− 1
> η(a),

or equivalently 2− 1/ak > σ∗. This is true under assumption (1.9).
From (3.22)-(3.24) we get immediately that∫ (1+δ)x

x

∆2(a; y)dy =
κ′0

2

2

∞∑
n=1

b(n)2

n2− k−1
2α

∫ (1+δ)x

x

y
k−1
2α dy +O

(
x1+ k−1

2α −η(a)+ε
)
,

which implies Theorem 1 by a splitting argument. This completes the proof of
Theorem 1.

4. Proof of Theorem 3

In order to prove Theorem 3 we need some preparations. Define m(σ) (for 1/2 6
σ < 1) as the supremum of all numbers m such that∫ T

1

|ζ(σ + it)|mdt� T 1+ε.

It is known that m(σ) > 4 for σ > 1/2, m(7/12) > 6 and m(5/8) > 8. Ivić studied
m(σ) in great detail. Without loss of generality we can assume that m(σ) is a
continuous function of σ. One can find a lower bound of m(σ) in [7, Theorem 8.4].
Especially we have the following simpler but a little weaker form:

m(σ) >


4

3−4σ if 1
2 6 σ 6

5
8

3
1−σ if 5

8 6 σ < 1.

(4.1)

The following lemma is used essentially in Ivić’s argument [8].

Lemma 6. Let aj (1 6 j 6 k) be positive integers such that a1 6 · · · 6 ak and let
ψ(s) and σ∗ be defined by (1.6) and (1.7), respectively. Define the function H(σ)
by

H(σ) =

k∑
j=1

1

m(ajσ − aj + 1)
.

If
H(σ) 6 1/2

for some σ, we have σ∗ 6 σ.
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Proof. We write σj = ajσ − aj + 1 for simplicity. Suppose that

k∑
j=1

1

m(σj)
6

1

2
.

Then by Hölder’s inequality, we have∫ T

1

|ψ(s)|2dt =

∫ T

1

k∏
j=1

|ζ(σj + iajt)|2dt

6
k∏
j=1

(∫ T

1

|ζ(σj + iajt)|m(σj)dt

) 2
m(σj)

(∫ T

1

1dt

)1−
∑k
j=1

2
m(σj)

� T 1+ε.

Hence from the definition of σ∗, we have σ∗ 6 σ. �

We remark that since H(σ) is decreasing, if

H

(
1− k − 1

4α

)
<

1

2
,

then Theorem 1 holds.

Lemma 7. Let k = 3, a1 6 a2 6 a3 and a3 < a1 + a2. Let σ∗ be defined by (1.7).
Then we have

σ∗


6 1− 5

4(a1+a2+a3) if 3(a2 + a3) 6 7a1,

6 1− 3
a1+3a2+3a3

if 3(a2 + a3) > 7a1, 3a3 + a1 6 5a2 and 3a3 < a1 + 3a2,

= 1− 1
2a3

otherwise.
(4.2)

Proof. Let a1 6 a2 6 a3 and a1 + a2 > a3. By Lemma 6 we shall find σ such
that

1− 1

2a3
6 σ < 1− 1

a1 + a2 + a3
, H(σ) 6 1/2.

For the sake of simplicity we put σj = ajσ − aj + 1 (j = 1, 2, 3) for σ ∈ [ 1
2 , 1] as

before. It is easy to see that 1
2 6 σ3 6 σ2 6 σ1 < 1.

We shall use the weak version (4.1).
Case 1: We first consider the case 3(a2 + a3) 6 7a1 and we put

σ := 1− 5

4(a1 + a2 + a3)
.
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Clearly σ < 1 − 1/(a1 + a2 + a3). Since 3a3 6 7a1 − 3a2 6 (2a1 + 5a2) − 3a2 =
2(a1 + a2), we have σ > 1− 1

2a3
and σ1 6 5

8 . By (4.1) we have

H(σ) =

3∑
j=1

1

m(σj)
6

3− 4σ1

4
+

3− 4σ2

4
+

3− 4σ3

4
=

1

2
.

Hence we get σ∗ 6 σ.
Case 2: When 3(a2 + a3) > 7a1, 3a3 + a1 6 5a2 and 3a3 < a1 + 3a2, we put

σ := 1− 3

a1 + 3a2 + 3a3
.

It is clear that σ < 1−1/(a1 +a2 +a3) and σ > 1− 1
2a3

by the last condition. One
can check that the first two conditions imply that 5

8 < σ1 < 1 and 1
2 6 σ3 6 σ2 6 5

8
. Hence

H(σ) =

3∑
j=1

1

m(σj)
6

1− σ1

3
+

3− 4σ2

4
+

3− 4σ3

4
=

1

2
.

Hence we get σ∗ 6 σ.
Case 3: We consider the case 3(a2 + a3) > 7a1, 3a3 + a1 6 5a2 and 3a3 >

a1 + 3a2. In this case we put

σ := 1− 1

2a3
.

Note that this is the best possible choice. Using the last condition we easily check
that

3a3 > a1 + 3a2 > 4a1

and hence

σ1 = a1

(
1− 1

2a3

)
− a1 + 1 = 1− a1

2a3
>

5

8
.

Now we consider two cases.
(i) If 3a3 6 4a2, then σ2 6 5

8 . By the third condition we get

H(σ) =

3∑
j=1

1

m(σj)
6

1− σ1

3
+

3− 4σ2

4
+

1

4
=
a1 + 3a2

6a3
6

1

2
.

(ii) If 3a3 > 4a2, then σ2 >
5
8 . By the third condition we have 3a3 > a1+3a2 >

2(a1 + a2). Hence

H(σ) =

3∑
j=1

1

m(σj)
6

1− σ1

3
+

1− σ2

3
+

1

4

=
1

4
+
a1 + a2

6a3
6

1

4
+

1

6
· 3

2
=

1

2
.

Combining the two cases (i) and (ii), we have σ∗ = σ = 1− 1/(2a3).
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Case 4: Finally we consider the case 3(a2 + a3) > 7a1, 3a3 + a1 > 5a2, where
we put

σ := 1− 1

2a3
.

In this case, using the second condition, we easily check that

3a3 > 5a2 − a1 > 4a2

and hence

σ2 = a2

(
1− 1

2a3

)
− a2 + 1 = 1− a2

2a3
>

5

8
.

We have 1 > σ2 >
5
8 , 1 > σ1 >

5
8 , and σ3 = 1

2 . Hence

H(σ) =

3∑
j=1

1

m(σj)
6

1− σ1

3
+

1− σ2

3
+

1

4
6

1

8
+

1

8
+

1

4
=

1

2
.

Therefore we have σ∗ = σ = 1− 1/(2a3). �

Proof of Theorem 3. Now the proof of Theorem 3 is immediate by substituting
each value on the right hand side of (4.2) to (1.12). �

Remark. From Lemma 7 we have

σ∗(3, 4, 5) =
9

10
, σ∗(2, 3, 4) =

7

8
,

which are the best possible results . By Theorem 8.4 of Ivić[7] we also note the
following slightly better results

σ∗(4, 5, 6) 6
214

233
, σ∗(1, 2, 2) 6

41761

54522
= 0.765948 . . . .
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