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ON THE NUMBER OF REPRESENTATIONS
OF CERTAIN QUADRATIC FORMS IN 20 AND 24 VARIABLES

B. RAMAKRISHNAN, BRUNDABAN SAHU

Abstract: In this paper, we find the number of representations of certain quadratic forms in
20 and 24 variables. We get this as an application of the evaluation of certain triple convolution
sums of the divisor functions. Further, by comparing our formulas with that of Lomadze, we get
expressions of certain cusp forms in terms of some finite sums involving the solution set of the
quadratic form representation.

Keywords: convolution sums of the divisor functions, representation numbers of quadratic
forms, modular forms of one variable.

1. Introduction

For positive integers a, b, s, t, define the convolution sum W;;(n) by

Wep(n):= Y os(Dor(m). (1)

1,meN
al+bm=n

When s = ¢ = 1, it is denoted by W, (n), and Wy 1(n) = Wi 4(n) is denoted
by W,(n). These type of sums were evaluated as early as the 19th century. For
example, the sum Wi (n) was evaluated by M. Besge, J. W. L. Glaisher and S. Ra-
manujan |2, 4, 14]. Some of the convlotution sums of the above type have been
obtained by several authors (see for example [5, 15, 12, 17] and also the works of
K. S. Williams and his co-authors ([16] and the references therein)).

We now define the triple convolution sums of the divisor functions by

Woptn) = > or(Dou(m)o(p), (2)
all’l}”’ﬁb’ifﬁl:n

where a,b,c,r,s,t € N. We write W;blcl(n) = Wape(n) for a,b,c € N. In [1],
Alaca et al. evaluated the convolution sums Wi 3 2(n), W1 1.2(n) and Wy g 4(n)
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by expressing the product of Eisentein series in terms of their derivatives. In [7,
p.11], Kim et al. have treated the convolution sum W 1 1(n) and as an application,
they prove that certain g-series satisfy a particular differential equation. Using the
theory of modular forms and quasimodular forms, in this article, we evaluate the
convolution sums Walbgf’(n), where (a,b,¢) € {(1,1,1),(1,1,3),(1,3,3),(3,1,1),

(3,3,1)} and W>>2(n), where (a,b,c) € {(1,1,1),(1,1,3),(1,3,3)}. As an appli-

a,b,c
cation, we find formulas for the number of representations of the quadratic forms

Fy: 23 + 2129+ 25 + ...+ 2551 + Tok_1Tok + T3k,
when k = 10,12. Let
sok(n) = card {(:rl,xQ, cee L Xok) € 73 . Fy(z1, 20, ,x9k) = n}

be the number of representations of a positive integer n by the quadratic form
Fy. For k = 2,4,6,8 formulas for so; are known due to the works of J. Liouville
[9], J. G. Huard et al. [5], O. X. M. Yao and E. X. W. Xia [17] and the authors
[13]. In [10], G. A. Lomadze gave formulas for sor(n) for 2 < n < 17, which
involves the divisor functions and certain finite sums which involve the solution
set of the representation of same quadratic forms of lower variables. However,
the other formulas mentioned above are in terms of divisor functions and Fourier
coefficients of certain cusp forms. Like in the works of [17] and [13], by comparing
the formulas of Lomadze with our results, we also obtain identities connecting the
Fourier coeflicients of certain cusp forms in terms of finite sums (see Corollary 2.5).

2. Preliminaries and statement of the results

Let My (N) be the space of modular forms of weight & for the congruence subgroup
I'o(N) and Si(N) be the subspace of cusp forms of weight & for the congruence
subgroup T'g(N). For k > 4, let Ej denote the normalized Eisenstein series of
weight k in M (1) given by

where ¢ = €2* and Bj, is the k-th Bernoulli number defined by

o0
x Bmxm
et —1 Z m! "
m=0

The first few Eisenstein series are given as follows:

E4(z) =1+ 240 Z a3(n)q"”, Es(z) =1—504 Z o5(n)q"”,

n>1 n>1
Es(2) =1+480) o7(n)q",  Eio(z) =1—-264» oo(n)q", 3)
n=1 n>1
65520
Elg(Z) =1+ W Ull(n)q".
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The following identity is well-known from the fact that Eg = E3:

W (n) = 3s07(n) — 1y 0s(n). (4)

)

In order to evaluate the convolutions sums W; W ﬁ(n), we use the structure
theorem on quasimodular forms of weight k& and dei)th < k/2. For details on
basics of modular forms and quasimodular forms, we refer the reader to [3, 6, 11].
The Eisenstein series Ey, which is a quasimodular form of weight 2, depth 1 on

SLy(Z) is given by

Ey(z)=1—24 Z o(n)e*™n=

n>1

and this fundamental quasimodular form will be used in our results. The space of
quasimodular forms of weight k, depth < k/2 on I'g(NN) is denoted by M,fkm(N).
We need the following structure theorem (see [6, 11]). For an even integer k with
k > 2, we have

k/2—1
MM (N) = @ DI Mj—a;(N) & CD?71 By, (5)
j=0
where the differential operator D is defined by D := ﬁd—dz Using this one can ex-

press each quasimodular form of weight k& and depth < k/2 as a linear combination
of j-th derivatives of modular forms of weight k — 2j on I'o(N), 0 < j < k/2—1
and the (k/2 — 1)-th derivate of the quasimodular form FE,.

We need the following newforms for our results. Let A(z) =3, 5, 7(n)¢" =

n?4(2) be the well-known unique normalized cusp form of weight 12, level 1, studied
by Ramanujan. Here 7(z) is the Dedekind eta function given by

n(z) — q1/24 H(l _ qn>.

n>1

Let {Ag,n,; : 1 < j < d} be the basis (of dimension d) of normalized newforms of
weight k, level N, having Fourier expansion

Agnj(2) = ZTk,N,j(n)qn~

n>1

If d = 1, then we write the function as Ay n and its Fourier coefficients as 7 y(n).
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The following are the main theorems of this section.
Theorem 2.1. Let n € N, then

Wit (n) = o 02 [110g(n) + 10(2 — 3n)o7(n) — 4205(n)
+20(3n — 1)os(n) + o(n)],

Wlllgg’(n) = fl()Q l6971109(n) + %ag (%) - %mﬁ(n) - %nw (%)
B+ 0y (3) o 0, (2) s
+ 30n03 (%) — 1003(n) + 100 (3) +o(n) — 26810710,3,1(n)
+115710,3,2(n) — %m’s,s(n) + %7—8,3(71) 127'6 3(n )]

0= [0 300 () 0 % (3}

)it + 200 (2

JEH
Y
ww

20 n
10(2 -3 —
~137es(n) +10( ”)07(3 T 671
+@T (n) + 707’ (n)|,
549 10,3,1 99 10,3,2
1 n 60 486 n
W311313(n) = 2402 la (g) +20(n — 1)o3(n) — Eas(n) - T3<T5 (g)
60 890 6561 n
+1f37'6,3(n) + 10(2 — n)a7(n) + ﬁgg (n) + 671 09 (g)
480 210
+6T7'10,3,1( n) — iﬁo 3, 2(n) |,
1 516 n
Wit () = 5105 la (5) + 100 = D)o (5) + 10(n = os(n) = o5 (%)
30 30 10 — 5n 810 — 405n n
- EUS( n) + 376 3(n) + 1 o7(n) + —q (g)
+ @T (n) + Eo (n) + 773710 (E) — @T (n)
41 %3 671°° 671 °\3/) 183 '03!
115 200

777’107372(’0) — 41717'8,3(71)] .

33
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Theorem 2.2. Let n € N, then

1 1 91 1

3,3,3 . _ -
WL () = 15500730 ~ 560077 + 326720071 W * 321127

.. A1 6561 n 7
W333 (1) — (7) _

113 (") = 1953800 ™ * 9685056007 \3) ~ 19630077

_ 9 (ﬁ) n 1 (n) " 1 (n) _ 133 (n)
13120077 \3) T 288007° 57600°°\3) 7 720 x 11747 "

4507 (%) Lt )
160 x 11747 \3/ ~ 20520 %\ T 16 % 124112\
19200 x 691 x 6643 19200 x 691 x 6643 \ 3

1 (n) 61 (n) n 1 (n) + 1 (n)
————0 ———07 | = ——0 ——03 | =
1180800 " 590400 " \3/ " 24027 28800 °\3

199 (n) — 1197 (ﬁ) _ 1 (n)
1440 x 11747 " 80 x 11747 \3) ™ 120 x 246 >
1
T zar 2

We apply the above convolution sums to derive the following theorems.

Theorem 2.3. The number of representations of a positive integer n by the
quadratic form Fig is given by

12 648

s20(n) = ﬁgg(n) + fﬁo,s,z(n),

where o§(n) = og(n) — 3°09 (%).

Theorem 2.4. The number of representations of a positive integer n by the
quadratic form Fig is given by

6552
1 (n) +

B . 402624 293512896 (n) 46656
T 50443 1

T BRI TEIT, 3) T 1241

S924 (n) 3

7'1273(71),
where o}, (n) = o11(n) + 35011 (%).

Corollary 2.5. Comparing our formulas in Theorem 2.3 and Theorem 2.4 with
the formulas (IX) and (XI) in p. 12 of [10], we get the following identities:

1
T10,3’2(’I’L) = m Z (425(}411 — 27”.’17% + TLZ), (6)

Fg(z1,,x12)=n
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402624T(n) n 293512896 (ﬁ) @7— )
291096 A , ,
= e Z (13527 — 54na? + 2n?) )
Fs(z1,,x16)=n
864
+ 50443 (1629 — 162na:‘1L +36n%z? —n?)
Fe(z1,,x12)=n
30
+ o Do (12152% — 2268naf + 12600 — 210n%a] + 5n).
Fy(z1, ,w8)=n

Remark 2.1. It would be interesting to get individual expressions for the cusp
forms appearing in (7), which will give an explicit expression for the Ramanujan
Tau function.

3. Proofs

For the proofs of our theorems, we need the newforms Ay y(2), (k,N) € {(6,3),
(8,3),(12,3)}, A1g,3,1(2), A10,3,2(2). Below we give their expressions in terms of
Eisenstein series and eta products. We have used the L-functions and modular
forms database [8] to get these expressions. (The expression for Ag 3(z) appeared
in [13, Eq.(10)].)

Ag3(2) = 1°(2)n°(32),
As3(2) = 0" (2)n" (32) 4+ 810° (2)n* (32)n°(92) + 18n° (2)n* (32)n°(92),
Avosa() = %EZL(Z)A&?,(Z) + §E4(32)A673(2),

1 9
Aio3,2(2) = EEAL(Z)AGB(Z) + EE4(3Z)A6,3(Z),

98 17
A 3(2) = 8—1A(z) — 3402A(3z) — gEﬁ(Z)A&g(Z).

3.1. Proof of Theorem 2.1
We need the following convolution sums (see [13, 17]).

Proposition 3.1. Let n € N. Then

1 1 n 1 81 n 1
W33(n) = — b yn ny 1
15 (n) = 5350800 = 5558 (3) + 982077 * 982077 (3) + 55573
7 1
WL ) = oan) — inos(n) + g7o8(n) — a0 ().
1 81 n 1—n 1 n 1
Wi = B n oL my L
51 () = 15775(7) ~ 1540 (3) TRyl (3) 103763

130y = 1 9y =3 my o L L
lei"(”)_1040‘75(”)+104‘75(3)“L 24 03(3) 5107 (M) + 315 768(0):
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The vector space Mio(3) is of dimension 4 with a basis { F19(z), F10(32), A10.3.1(2),
Aq03,2(%)}, the vector space Mg(3) is of dimension 3 with a basis {Es(z), Es(3z),
Ag3(2)}, the vector space Mg(3) is of dimension 3 with a basis {Es(z), E¢(32),
Ag 3(%)}, and the space M4(3) has dimension 2 with a basis {E4(z), E4(32)}. Now
using the structure theorem of quasimodular forms and using the above basis, we
get the following.

F2(2)B3(2) = Fuo(2) + S DFi(2),

91 7290 6720
E2(Z)E4(Z)E4(3Z) = ﬁElo(Z) + @Elo(fﬂz) + WAM’?’J(Z)
2760 3 243
- —A —DE, —DE,
1 10,3,2(2) + 61 s(2) + 64 s(32)
14400
+ TZ)A&:;(Z)7
1 7380 1280
E2(Z)E§(3Z) = ﬁEIO(z) + ﬁElo(?’Z) — 1783 10,371(2)
560 3
— §A1073’2(2) —+ §DE8(3Z),
820 6561 11520
E2(3Z)Ez(z) = ﬁEw(z) + ﬁEw(Sz) - TAlo,?;,l(z)
5040 1
+ TA10,3,2(2) + §DE8(Z)7
10 7371 2240
E2(3Z>E4(Z)E4(3Z) = ﬁEIO(«Z) + ﬁEIO(?)Z) + 61 AIO,S,I(Z)
920 1 81
—A —DE, —DE.
oy A0a2(2) + a7 DEs(2) + 157 DEs(32)
4800
——DA .
+ = DAsa(2)

By comparing the n-th Fourier coefficients and using the convolution sums
Wf’f’ ; Wf’g’ , Wllf’ , Wll,’g’ from Proposition 3.1 we get the required triple convolution
sums.

3.2. Proof of Theorem 2.2

The vector space Mi2(1) has dimension 2 with a basis { E12(z), A(z)}, where A(z)
is the unique normalized newform of weight 12 and level 1. Now E3(z) € Mi2(1)
and writing as linear combination of basis, we have

432000
691
The dimension of the space M12(3) is 5 having a basis {E12(2), E12(32), A(2),

A(3z),A12.3(%)}, where Ajg3(2) is the unique normalized newform of weight 12
and level 3.

E3(2) = Bia(2) + A(z).
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Now E3(2)E4(32), E4(2)E3(32) € Mia(3). Writing as linear combination of the
above basis, we get

2 6561 2553600
Eqo(2) + —_—

8

=22 T E5(32) —

6643 6643 12(32) 11747
12534134400 86400
_ ———A1z3(2)

A
11747 (32) + o0

E2(2)E4(32) = A(z)

and

6642 1910400

—_—_E ey 5

6643 12(2) + 6643 12(32) + 11747
206841600 96000

- ——Aja3(2).

e A6+ o

Ey(2)E7(32) = A(z)

By comparing the n-th Fourier coefficients and using convolution sums W13 f’ from

(4) and W13 5’ from Proposition 3.1 we get the required convolution sums.

3.3. Proof of Theorem 2.3
Let Ng = NU {0}. For n € N we know that (see [5], [10])

sdn)z]QaOU-—360(%), (8)

and n
ss(n) = 2403(n) + 21603 (5) . (9)

Then so0(n) is given by

sq(n) = Y oo > 1 > 1

li:’b’iii% F2(r1,---,r4):a F4(I5,---7I12):b F4(Z13,---7120):C
= s4(n) + 2ss(n) + Z sg(a)sg(b) + 2 Z s4(a)sg(b)
a,beN a,beN
a+b=n a+b=n
+ ) sala)ss(b)rs(c)
a,b,ceEN
a+btc=n

— 120(n) — 360 ( ) + 4803 (n) + 4320 (3) + 242 WP 4 48 x 2167
+ 216 W () + 242 + 9 x 242 — 48 x 36}
=36 x 216W, 7 (5) +12x 242,79 + 9 x 24w
+12 x 2162W, 5 — 36 x 242W, 77 — 128 W s — 12062 W PP (%) :

Now, we substitute the expressions for the covolution sums using (4) and Theo-
rem 2.1, the required formula follows.
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3.4. Proof of Theorem 2.4

We proceed as in the case of 20 variables. We have

s24(n) = Z Z 1 Z 1 Z 1

;fbifigl Fy(x1,,x8)=a Fy(x9, - ,x16)=b Fy(z17, ,w24)=C
=3ss(n)+3 > ss(a)ss(b)+ Y ss(a)ss(b)ss(c)
a,beN a,b,ceN
a+b=n a+btc=n

= 7203 (n) + 64803 (5 ) +3 > (2as(a) + 21603 (5))

a,beN
a+b=n

)
(2403 + 216073 (g)) abceN 2403(a)+216"3(§)>
(

a+b+c=n

(2403 + 21604 g)) 2405 (c +21603(3>)

= 7203 (n) + 64803 (5) +3 % 22W3 () + 54 x 2423 (n)
+35 x 2423 (3) + 243 W23 (n) + 37 x 243 W23 (n)
+ 3% x 24 WP () + 216° WP ().

Substituting the convolution sums using (4), Proposition 3.1 and Theorem 2.2, we
get the required formula for sq4(n).

We give below a table giving the first 15 values of s19(n) and sq24(n).

n s90(n) s24(n)

1 60 72
2 1620 2376
3 25980 47592
4 275460 646344
5 2040552 6305904
6 10965780 45821160
7 44559840 255215808
8 145963620 1125009864
9 417830460 4097478600
10 1091417976 12975540336
11 2573551440 37101202848
12 5569628100 96867424872
13 | 11570383560 232791251760
14 | 22593025440 526183909056
15 | 41415305832 | 1128351033648
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