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ON THE INVOLUTIONS OF THE RIORDAN GROUP
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Abstract: We give an algebraic description of involutions in the Riordan group.
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1. The Riordan group

Let F be a field of characteristic 0 and F [[x]] the formal power series ring over F .
The Riordan group is first introduced in [6]. We recall its definition. Let N =
F [[x]]× be the set of invertible formal power series over F . The set N forms
a commutative group under multiplication. Also let H = xF [[x]]× be the set of
formal power series whose constant term is zero and whose coefficient of x is non-
zero. The set H forms a non-commutative group under composition [1, Chapter 4
§4.7]. The identity element of H is x. The opposite group Hop of H acts on N
from the left by substitution: namely, for g(x) ∈ N and f(x) ∈ Hop, we have

fg(x) = g(f(x))

and if f1(x), f2(x) ∈ Hop and ◦ denotes the multiplication in Hop, then

f1◦f2g(x) = g(f2(f1(x))).

By this action, we glue N and Hop together and form a left semi-direct product

R = N oHop.

The group R is called the Riordan group and the multiplication of (g1(x), f1(x)),
(g2(x), f2(x)) ∈ R is given by

(g1(x), f1(x))(g2(x), f2(x)) = (g1(x) f1g2(x), f2(f1(x)))

= (g1(x)g2(f1(x)), f2(f1(x))).
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The identity element of R is (1, x). The inverse of (g1(x), f1(x)) ∈ R is(
1

g1(f̄1(x))
, f̄1(x)

)
, where f̄1(x) is the compositional inverse of f1(x) in Hop, namely

a power series satisfying f1(f̄1(x)) = f̄1(f1(x)) = x.
Although the Riordan group is usually defined by means of certain infinite

matrices, we do not need such a description.
Recently the Riordan group has been used to obtain sequence identities. For

example, in [7] the authors rewrote a combinatorially interesting element (g, f) ∈
R by a product of two elements to obtain sequence identities.

In this paper, we are interested in the action of R on F [[x]]. Let G(x) ∈ F [[x]]
be a formal power series and (g(x), f(x)) ∈ R. We define

(g(x), f(x))G(x) = g(x)G(f(x)).

Hence elements of order 2 in the group R acts as involutions on F [[x]]. We call
such an element of order 2 simply an involution in R.

In his paper [5], Shapiro raised some problems on the involutions in R, which
can be stated in our notation as follows.

Problem 1.1. Is every involution a conjugate to (1,−x)?

Problem 1.2. Let (f(x), g(x)) ∈ R be an involution. Is there a simple condition
for g(x) in terms of f(x)?

These problems are solved by Cheon and Kim [2] in the category of analytic
functions. In fact, they used a result on nonlinear functional equations. The aim
of this paper is to give formal algebraic solutions to these problems (Propositions
in the next section). The result and its proof are even simpler than Cheon and
Kim’s.

2. Involutions in the Riordan group

Let R = N oH = F [[x]]× o xF [[x]]× be the Riordan group as defined in the first
section.

An easy computation shows that an element (g(x), f(x)) ∈ R has order 2 if
and only if the following two identities hold:

f(f(x)) = x, (2.1)

g(x)g(x)f = 1. (2.2)

The following description of f(x) satisfying (2.1) is due to O’Farrell.

Lemma 2.1 ([4, Lemma 22]). Let f(x) ∈ H. Suppose that f(x) 6= x. If
f(f(x)) = x, then f(x) is conjugate to −x in H.

Next we consider (2.2). Let F ((x)) be the field of formal Laurent power series,
which is a quotient field of F [[x]] (see [1, Chapter 4 §4.9]).
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The following proposition gives an answer to Problem 1.2.

Proposition 2.2. Suppose that f(x) ∈ H satisfies f(f(x)) = x and f(x) 6= x.
Then g(x) ∈ N satisfies (2.2) if and only if there exists a non-zero formal Laurent
power series w(x) ∈ F ((x)) such that g(x) = w(x)/w(f(x)).

Proof. First of all, note that the group H acts also on F ((x))× by substitution.
Moreover an element of H defines an automorphism of the field F ((x)). Hence, if
f(x) ∈ H, then by Galois theory F ((x)) is a quadratic extension over the fixed field
F ((x))〈f〉. An element g(x) satisfying (2.2) is nothing but an element whose norm
is 1 in the field extension F ((x))/F ((x))〈f〉. By Hilbert’s theorem [1, Chapter 5
§11 Theorem 3], we have g(x) = w(x)/w(x)f for some w(x) ∈ F ((x))×. The
converse is obvious. �

It is easy to see that two w(x), w′(x) ∈ F ((x))× give the same g(x) if and only
if they differ by an element in F ((x))〈f〉. Hence there are infinitely possible g(x)
for a given f(x).

The following proposition answers to Problem 1.1.

Proposition 2.3. Assume that f(x) 6= x. An element (g(x), f(x)) ∈ R has
order 2 if and only if it is conjugate to (1,−x) in R.

Proof. Suppose that (g(x), f(x)) ∈ R has order 2. By Lemma 2.1, there exists
u(x) ∈ H = xF [[x]]× such that f(x) = ū(−u(x)). Also by Proposition 2.2, g(x)
can be written as g(x) = w(x)/w(f(x)) with some w(x) ∈ F ((x))×. Consider an
element

a =

(
1

w(ū(x))
, ū(x)

)
.

Then we have a−1 = (w(x), u(x)) and

a−1(1,−x)a = (w(x),−u(x))

(
1

w(ū(x))
, ū(x)

)
= (w(x)/w(f(x)), f(x))

= (g(x), f(x))

as desired. The converse is obvious. �

Example 2.4. In our previous paper [3], by an analogy of modular form, we
define an action of a lower triangular matrix

Ac =

[
−1 0
c 1

]
∈ GL2(F )

on G(x) ∈ F [[x]] of weight k ∈ Z by

G|[A]k(x) = (cx+ 1)−kG

(
−x

cx+ 1

)
. (2.3)
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This action can be interpreted in terms of involutions in R. In fact, we have

[Ac]k =

(
1

(1 + cx)k
,
−x

1 + cx

)
∈ R.

For this [Ac]k, we may take u(x) = 2x
2+cx and w(x) =

(
1 + c

2x
)k. There are many

other choices.

Let (g(x), f(x)) be an involution in R. A formal power series G(x) is called an
eigenseries of (g(x), f(x)) if it satisfies

(g(x), f(x))G(x) = ±G(x).

The explicit description of involutions given in Proposition 2.3 enables us to
prove an interesting result: any power series is an eigenseries of infinitely many
involutions in R.

Proposition 2.5. Let G(x) be any formal power series in F [[x]]. For any
element f(x) ∈ H of order 2 in H, there exist infinitely many g(x) ∈ N
such that g(x)g(f(x)) = 1 and that G(x) is an eigenseries of involutions
(g(x), f(x)) ∈ R.

Proof. By Lemma 2.1 we can write f(x) = ū(−u(x)) using some u(x) ∈ H. Let
e+(x) (resp. e−(x)) be any even (resp. odd) formal power series. We consecutively
define

v(x) = e±(u(x)), w(x) = G(x)/v(x), g(x) = w(x)/w(f(x)).

Then g(x) clearly satisfies g(x)g(f(x)) = 1 and it is obvious that there are infinitely
many such g(x). Moreover we have

g(x)G(f(x)) =
w(x)

w(f(x))
w(f(x))v(f(x))

= w(x)e±(u(ū(−u(x))))

= w(x)e±(−u(x))

= ±w(x)e±(u(x))

= ±w(x)v(x)

= ±G(x).

This completes the proof. �

In [3] we used the involutions [Ac]k to produce identities involving their eigen-
series. These involutions have very rich eigenseries such as the generating functions
of Bernoulli numbers, Fibonacci numbers, certain orthogonal polynomials and so
on. While the above proposition indicates a possibility of extending our results in
[3] to any series (or sequences), finding good simple involutions (g(x), f(x)) ∈ R
seems to be inevitable to have a good theory. Our involutions [Ac]k in Example 2.4
are surely of this kind.
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