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ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC
Z2-EXTENSION OF Q(

√
p), III

Takashi Fukuda, Keiichi Komatsu, Manabu Ozaki, Takae Tsuji

Abstract: In the preceding papers, two of authors developed criteria for Greenberg conjecture
of the cyclotomic Z2-extension of k = Q(

√
p ) with prime number p. Criteria and numerical

algorithm in [5], [3] and [6] enable us to show λ2(k) = 0 for all p less than 105 except p =
13841, 67073. All the known criteria at present can not handle p = 13841, 67073. In this paper, we
develop another criterion for λ2(k) = 0 using cyclotomic units and Iwasawa polynomials, which
is considered a slight modification of the method of Ichimura and Sumida. Our new criterion fits
the numerical examination and quickly shows that λ2(Q(

√
p )) = 0 for p = 13841, 67073. So we

announce here that λ2(Q(
√
p )) = 0 for all prime numbers p less that 105.

Keywords: Iwasawa invariant, cyclotomic unit, real quadratic field.

1. Introduction

Let k = Q(
√
p ) be a real quadratic field with prime number p and k∞ the cyclo-

tomic Z2-extension of k. It is very important to study Greenberg conjecture for
k∞/k, namely to consider whether the Iwasawa λ-invariant λ2(k) = λ(k∞/k) is
zero or not. First approach on this problem was made by Ozaki and Taya [14] in
which they proved that λ2(k) = 0 if p satisfies p 6≡ 1 (mod 16) or 2(p−1)/4 6≡ 1
(mod p). After Ozaki and Taya, the authors developed criteria for λ2(k) = 0
when p satisfies p ≡ 1 (mod 16) and 2(p−1)/4 ≡ 1 (mod p) (cf. [5], [3], [6]). Our
criteria are described by units in kn, which is the intermediate field of k∞/k with
[kn : k] = 2n, and numerical calculations in kn (0 6 n 6 8) show that λ2(k) = 0 for
all prime number p less than 105 except p = 13841, 67073. All the known criteria
accompanied with calculation in k8 failed to show λ2(k) = 0 for p = 13841, 67073.
It seems necessary to calculate at least in k13 in order to show λ2(k) = 0 using
those criteria. Such a calculation is far beyond the ability of current computer.
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In this paper, we develop one more criterion using cyclotomic units, which is
considered a slight modification of the method of Ichimura and Sumida [10], and
verify that λ2(k) = 0 for p = 13841, 67073 by using cyclotomic units and Iwasawa
polynomials in k8. Namely, we prove the following theorem:

Theorem 1.1. We have λ2(Q(
√
p )) = 0 for all prime number p less than 105.

2. Preliminaries

From now on, we assume that p is a prime number satisfying p ≡ 1 (mod 16) and
2(p−1)/4 ≡ 1 (mod p). Let kn be the n-th layer of the cyclotomic Z2-extension
k∞ of k as above, Okn the integer ring of kn, En = O×kn the unit group of kn,
An the 2-part of the ideal class group of kn, ln a prime ideal of kn lying above 2.
We put Bn = Q(cos 2π

2n+2 ) and B∞ = ∪∞n=0Bn. Then kn = kBn and k∞ = kB∞.
Moreover, let ∆ = G(k∞/B∞) the Galois group of k∞ over B∞ with a generator
τ and Γ = G(k∞/k) the Galois group of k∞ over k with a topological generator γ.

Then we have 2Okn = (lnl
τ
n)2n . Let kn ln be the completion of kn at ln and put

cn = 1 + 2 cos 2π
2n+2 . Then we have kn ln = Q2(cn), where Q2 is the 2-adic field.

Let I ′n be the group of fractional ideals in kn generated by ideals which are prime
to 2. We put E′n = {α ∈ kn | (α) ∈ I ′n } and Un = O×kn ln

×O×kn ln
.

We embed E′n in Un by the injective homomorphism ϕ : E′n 3 α 7→ (α, ατ ) ∈
Un. We put (α, ατ )τ

∗
= (ατ , α) for (α, ατ ) ∈ ϕ(E′n). Since the topological closure

ϕ(E′n) of ϕ(E′n) is Un, we can extend the mapping τ∗ to Un continuously.
Now we develop a quadratic version of [15, Theorem 3.3] by following the

arguments in [9, §2]. We put U = lim←−Un, where the projective limit is taken with
respect to the relative norms. Let u = (un)∞n=1 be an element in lim←−O

×
knln

. Then
there exists a unique power series fu(X) ∈ Z2[[X]] satisfying

fu(1− ζ2n+2) = un,

where ζm means exp(2π
√
−1/m). Let D = (1−X) d

dX be a derivative operator on
Z2[[X]]. We put Λ = Z2[[T ]] and let 1 +T act on U as γ ∈ Γ. Let s be a primitive
root modulo p and put ξ =

∑(p−1)/2
i=1 (ζs

2i

p − ζs
2i+1

p ), which we regard as the image
of the embedding Ok ↪→ Okl = Z2. Then there exists a unique element Gu(T ) of
Λ such that

Dν(log fu(X)− 1
2 log fu(1− (1−X)2))|X=0 = Gu((1 + 4p)ν − 1)ξ.

We note that the correspondence U1−τ∗ 3 (u, u−1) 7→ 1
2Gu(T ) ∈ Λ defines

a Λ-isomorphism Ψ : U1−τ∗ −→ Λ. Now, we put

ηn = ζ
(p−1)/4
2n+2

(p−1)/2∏
i=1

(
ζ−1
2n+2 − ζs

2i

p

)
,

and η = (ηn)∞n=1. A straightforward calculation, which was presented in [6] for
instance, shows that

η2
n = NQ(ζ2n+2p)/kn (1− ζ2n+2ζp) .
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From now on, we specify the topological generator γ of Γ by the relation

(ζ2n+2 + ζ−1
2n+2)γ = ζ1+4p

2n+2 + ζ−1−4p
2n+2 (n > 0) .

Then Iwasawa’s construction of 2-adic L-function associated to k varies now into
the following form.

Theorem 2.1. Let χ be the non-trivial character modulo p associated to k and
1
2G(T ) the image of the element (η1−τ , ητ−1) in U1−τ∗ by the above isomorphism
U1−τ∗ ∼= Λ. Then we have

G((1 + 4p)ν − 1) = −(1− 2ν−1)
Bν,χ
ν

for ν ≡ 0 (mod 2).

Here Bν,χ is a generalized Bernoulli number.

Since the Iwasawa µ-invariant µ2(k) = µ(k∞/k) is known to be zero by
Ferrero-Washington [2], there exist a unique unit element u(T ) ∈ Λ× and a unique
distinguished polynomial g(T ) ∈ Z2[[T ]] such that

G(T ) = 2u(T )g(T ). (2.1)

The distinguished polynomial g(T ), which is called Iwasawa polynomial, plays
essential role in our arguments. We fix the notation g(T ) throughout the paper.

3. Criterion

In this section, we work in abelian extensions of Q. So Leopoldt conjecture is valid
in our situation (cf. [1]). Let L∞ is the maximal unramified abelian 2-extension of
k∞ and M∞ the maximal abelian 2-extension of k∞ unramified outside 2. Then
the Galois groups I∞ = G(M∞/L∞), X∞ = G(M∞/k∞) and X∞ = G(L∞/k∞)
are finitely generated Λ-modules (cf. [12]). For a finitely generated Λ-module X,
ch(X) denotes the characteristic polynomial of X. Then we have the following:

Lemma 3.1. The tensor product X∞ ⊗Z2[∆] Z2 is pseudo-isomorphic to X1−τ
∞ ,

where τ acts on Z2 by τa = −a for a ∈ Z2.

Proof. Let ψ be a ∆-homomorphism of X∞ ⊗Z2[∆] Z2 to X1−τ
∞ defined by

ψ(x⊗a) = (xa)1−τ . Then ψ is surjective. Now, we assume ψ(x⊗a) = 1. Then we
have (xa)1−τ = 1, which means (xa)τ = xa. Hence x⊗ a = xa ⊗ 1 = (xa)τ ⊗ 1 =
xa ⊗ (−1) = (xa ⊗ 1)−1, which shows (x⊗ a)2 = 1. Since X∞ ⊗Z2[∆] Z2 is finitely
generated Z2-module, the kernel of ψ is finite. �

Hence we have the following (cf. [18, Theorem 6.2]):

Lemma 3.2. We have ch(X1−τ
∞ ) = g(T ).
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Moreover, we have the following:

Lemma 3.3. Λ-modules X1−τ
∞ ∩ I∞ and I1−τ

∞ are pseudo-isomorphic. Namely,
ch(X1−τ

∞ ∩ I∞) = ch(I1−τ
∞ ).

Proof. Let x be an element in X1−τ
∞ ∩ I∞. Since xτ = x−1, we have x2 = x1−τ ,

which means x2 ∈ I1−τ
∞ . Since I1−τ

∞ ⊂ X1−τ
∞ ∩ I∞ and since X1−τ

∞ ∩ I∞ is a finitely
generated Z2-module, the index (X1−τ

∞ ∩ I∞ : I1−τ
∞ ) is finite. �

Since X1−τ
∞ = X1−τ

∞ I∞/I∞ is isomorphic to X1−τ
∞ /X1−τ

∞ ∩ I∞, we have the
following:

Lemma 3.4. We have

g(T ) = ch(X1−τ
∞ )ch(X1−τ

∞ ∩ I∞).

Now, we put En = O×kn . Then ϕ(En) = { (ε, ετ ) | ε ∈ En }. Moreover, we
put En = ϕ(En) ⊂ Un and E = lim←−En. Then I∞ is isomorphic to U/E by class
field theory, which shows I1−τ

∞ is isomorphic to U1−τE/E . Let P (T ) be a monic
irreducible polynomial in Λ which divides g(T ) and put

Q(T ) =
g(T )

P (T )
.

Assume that P (T ) divides ch(X1−τ
∞ ). Then ch(I1−τ

∞ ) divides Q(T ), which shows
(U1−τ )Q(T ) ⊂ E , because X∞ has no finite Λ-submodule (cf. [8, Theorem 1]). Since
P (T ) and ωn(T ) = (1 + T )2n − 1 are mutually prime in Λ, which is a consequence
of Leopoldt conjecture, there exist elements qn(T ), rn(T ) ∈ Λ with

P (T )qn(T ) + rn(T )ωn(T ) = 2an ,

where an is a non-negative integer. Hence we have

(η1−τ
n , ητ−1

n )qn(T ) = Ψ−1(u(T ))P (T )Q(T )qn(T ) ∈ E2an
n

with u(T ) define by (2.1). Now we follow the arguments in [4] and [16] noting that
Leopoldt conjecture is valid in our situation to establish the following theorem.

Theorem 3.5. Assume that for any monic irreducible polynomial P (T ) dividing
g(T ), there exists n > 1 which satisfies

η(1−τ)q(γ−1)
n 6∈ E2a

n . (3.1)

Here q(T ) is a polynomial in Λ and a is a non-negative integer satisfying

P (T )q(T ) ≡ 2a (mod ωn(T )).

Then we have λ2(k) = 0.



On the Iwasawa λ-invariant of the cyclotomic Z2-extension of Q(
√
p ), III 11

The condition (3.1) in Theorem 3.5 guarantees P (T ) 6| ch(X1−τ
∞ ), from which we

deduce λ2(k) = 0. In the practical computations, we are often aware of an upper
bound d of λ-invariant. If P (T ) satisfies degP (T ) > d, then we immediately
conclude P (T ) 6 | ch(X1−τ

∞ ) because deg ch(X∞) 6 d. Hence we are able to
transform Theorem 3.5 to the following effective form.

Corollary 3.6. Assume that λ2(k) 6 d with positive integer d. Moreover, as-
sume that for any monic irreducible polynomial P (T ) dividing g(T ) which satisfies
degP (T ) 6 d, there exists n > 1 which satisfies

η(1−τ)q(γ−1)
n 6∈ E2a

n . (3.2)

Here q(T ) is a polynomial in Λ and a is a non-negative integer satisfying

P (T )q(T ) ≡ 2a (mod ωn(T )). (3.3)

Then we have λ2(k) = 0.

We note here that we verify the condition (3.2) by a congruence relation.
Namely, let α be an integer in kn and ` a prime number which satisfies χ(`) = 1,
` ≡ 1 (mod 2n+2) and ` ≡ 1 (mod 2a). Then ` splits completely in kn/Q and we
find x = xl ∈ Z satisfying α ≡ x (mod l) for each prime ideal l of kn lying above
`. If we find ` and l such that

x
`−1
2a 6≡ 1 (mod `),

then we see that

α 6∈ k2a

n .

4. Bound of Iwasawa invariants

In this section, we discuss an upper bound of Iwasawa invariants in a general
situation. Let F be a finite algebraic extension of Q, ` a prime number and K
a Z`-extension of F . Let Fn be the intermediate field of K/F with [Fn : F ] = `n

and denote by `en the `-part of the class number of Fn. Then there exist integers
λ(K/F ) > 0, µ(K/F ) > 0 and ν(K/F ) which satisfy

en = λ(K/F )n+ µ(K/F )`n + ν(K/F )

for all sufficiently large n (cf. [12]).
In some situations, a few practical values of en estimate explicitly upper bounds

of λ(K/F ) and µ(K/F ) and enables us to apply Corollary 3.6 to k = Q(
√
p ).

A similar estimate is also given in [11, Lemma 5].

Theorem 4.1. Notations being as above, assume that all the ramified primes in
K/F are totally ramified. Furthermore we assume that inequality en+1 − en <
`n+1 − `n holds for some n > 0. Then we have λ(K/F ) 6 en+1 − en and
µ(K/F ) = 0.
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Proof. Let An be the `-part of the ideal class group of Fn. Then |An| = `en .
Put en+1 − en = b. Let X = G(L∞/K) and Y = G(L∞/KL0) ⊆ X, where L∞
and L0 are the maximal unramified abelian `-extensions of K and F , respectively.
Then Γ = G(K/F ) acts on X by inner automorphism. If we fix a topological
generator γ of Γ and associate γ with 1 + T , then we are able to regard X as
a Λ = Z`[[T ]]-module. We put

νn =
(1 + T )`

n − 1

T
, νn+1,n = νn+1/νn.

Then we have the isomorphism

An ' X/νnY (4.1)

from our assumption on the ramification in K/F and [12, Theorem 6]. It follows
from (4.1) and our assumption on the class numbers that

|νnY/νn+1Y | = `b

Hence if we put M = νnY , then we have

|M/νn+1,nM | = `b. (4.2)

Here we note that λ(K/F ) = rankZ` X = rankZ`M because X/νnY ' An is finite.
Also, the triviality of the µ-invariant of the Λ-module M implies that of µ(K/F )
by the same reason. Therefore it is enough to show that dimF`M/`M 6 b, because
rankZ`M 6 dimF`M/`M holds in general and the finiteness of M/`M implies the
vanishing of the µ-invariant ofM by Nakayama’s lemma. Since F`[[T ]] is a discrete
valuation ring and M/`M is a finitely generated F`[[T ]]-module, we have

M/`M ' F`[[T ]]⊕r ⊕

(
s⊕
i=1

F`[[T ]]/(T ai)

)
(4.3)

for some integers r > 0 and a1 > . . . > as > 0. Then we get

M/(`, νn+1,n)M = M/(`, T `
n+1−`n)M

'
(
F`[[T ]]/(T `

n+1−`n)
)⊕r

(4.4)

⊕

(
s⊕
i=1

F`[[T ]]/(Tmin{ai, `n+1−`n})

)
,

because νn+1,n ≡ T `
n+1−`n (mod `). By using our assumption, (4.2) and (4.4),

we derive

`n+1 − `n > b > dimF` (M/(`, νn+1,n)M)

= r(`n+1 − `n) +

s∑
i=1

min{ai, `n+1 − `n},
(4.5)
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from which we find immediately r = 0 and ai < `n+1 − `n for all i. Therefore, we
get inequality dimF`M/`M =

∑s
i=1 ai 6 b by (4.3) and (4.5), which implies the

assertion of the theorem as mentioned above. �

5. Calculation

In this section, we return to the case ` = 2 and recall Λ = Z2[[T ]]. Let k = Q(
√
p )

with prime number p satisfying p ≡ 1 (mod 16) and 2(p−1)/4 ≡ 1 (mod p). Let
kn be the intermediate field of the cyclotomic Z2-extension of k with [kn : k] = 2n

and An the 2-part of the ideal class group of kn. We put |An| = 2en .

First of all, we explain how to compute en. Straightforward calculation using
several software packages developed for number theory handles e1, e2 and e3. But
it fails to compute e4 because the degree [kn : k] = 2n increases rapidly. So
a custom algorithm specialized to k is needed. Thanks to [6, Proposition 3.5], the
integer ar in the table in [3], which is expected to be equal to er, is now actually
equal to er. Hence we can calculate en (1 6 n 6 8) by using the method in [5].

Let χ be the character of k and ω the Teichmüller character modulo 4. Then
χ∗ = ωχ−1 is the character of Q(

√
−p ). We define the integer s so that p ≡ 1

(mod 2s) and p 6≡ 1 (mod 2s+1). Then the Stickelberger element ξn is defined by

ξn =
1

qn

qn∑
a=1

(a,qn)=1

aχ∗(a)−1

(
Bn/Q
a

)−1

∈ Z2[G(Bn/Q)],

where qn = p2n+2 and
(

Bn/Q
a

)
is the Artin symbol. It is known that 1

2ξn also

has integral coefficients. So we associate
(

Bn/Q
1+q0

)−1

with 1+T
1+q0

and construct the

polynomial Gn(T ) ∈ Λ from 1
2ξn. Weierstrass preparation theorem guarantees the

decomposition

Gn(T ) = un(T )gn(T )

with the unit element un(T ) ∈ Λ and the distinguished polynomial gn(T ) ∈ Λ,
where gn(T ) is constructed explicitly by an algorithm in [17, Proposition 7.2].
Then we know the congruence relation

g(T ) ≡ gn(T ) (mod 2n−s+2),

where g(T ) is the distinguished polynomial defined by (2.1).
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Now we see

1

2
ξn =

1

2n+3p

2n+2p∑
a=1

(a,2p)=1

aχ∗(a)−1

(
Bn/Q
a

)−1

=
1

2n+3p

2n+2−1∑
j=0

(j,2)=1

p−1∑
i=0

(2n+2i+ j)χ∗(2n+2i+ j)

(
Bn/Q

2n+2i+ j

)−1

=
1

2p

2n+2−1∑
j=0

(j,2)=1

(
Bn/Q
j

)−1 p−1∑
i=0

iχ∗(2n+2i+ j)

+
1

2n+3p

2n+2−1∑
j=0

j

(
Bn/Q
j

)−1 p−1∑
i=0

χ∗(2n+2i+ j)

=
1

2p

2n+2−1∑
j=0

(j,2)=1

(
Bn/Q
j

)−1 p−1∑
i=0

iχ∗(2n+2i+ j),

because, for odd j, we have

p−1∑
i=0

χ∗(2n+2i+ j) =

p−1∑
i=0

(−1)2n+1i(−1)
j−1
2

(
2n+2i+ j

p

)

= (−1)
j−1
2

p−1∑
a=0

(
a

p

)
= 0.

Put G = (Z/2n+2Z)× and H = 〈 1 + q0 + 2n+2Z 〉. Then G = H ∪ (−H) and
hence

Gn(T ) =
1

2p

2n−1∑
j=0

(
1 + T

1 + q0

)j p−1∑
i=0

i
{
χ∗(2n+2i+ ((1 + q0)j mod 2n+2))

+ χ∗(2n+2i+ (−(1 + q0)j mod 2n+2))
}
,

where a mod 2n+2 means rational integer x satisfying

x ≡ a (mod 2n+2) and 0 6 x < 2n+2.

Now we show two examples, from which we derive Theorem 1.1. Let p = 13841.
Then s = 4 and we see

g(T ) ≡ 44128 + 126772T + 30644T 2 + T 3 (mod 217)

≡ (2616 + T )(74772 + 28028T + T 2) (mod 217) (5.1)
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from ξ19. Proposition 2 in [13, Chapter II ] with the fact g19(−2616) ≡ 0 (mod 217),
g′19(−2616) 6≡ 0 (mod 23) implies that g(T ) has a factor P1(T ) = α+ T (α ∈ Z2)
with α ≡ 2616 (mod 213) and (5.1) implies that g(T )/P1(T ) is irreducible modulo
213. Hence g(T )/P1(T ) is irreducible in Λ and we see

g(T ) = P1(T )P2(T )

with irreducible polynomial P2(T ) of degree two.
Now we get en as follows:

n 1 2 3 4 5 6 7 8
en 2 4 5 6 7 8 9 10

Hence it follows that λ2(k) 6 1 by Theorem 4.1 and it suffices to verify the
condition (3.2) only for P (T ) = P1(T ) in order to prove λ2(k) = 0. When n = 10,
we see that a = 13 in the expression (3.3) and the condition (3.2) holds. Hence
we have λ2(k) = 0.

Next we treat p = 67073. In this case, s = 9. We calculate ξ28 and find that

g(T ) = P1(T )P2(T )P3(T ),

where P1(T ), P2(T ) and P3(T ) are monic irreducible polynomials with degree 1,2
and 124 respectively by factoring g28(T ) modulo 221 and using Hensel’s lemma.
We also see

P1(T ) ≡ 1000 + T (mod 211),

P2(T ) ≡ 1392 + 796T + T 2 (mod 211),

and

n 1 2 3 4 5 6 7 8
en 3 6 9 12 14 16 18 20

Hence it follows that λ2(k) 6 2 by Theorem 4.1 and it suffices to verify the
condition (3.2) only for P (T ) = P1(T ) and P (T ) = P2(T ) in order to prove
λ2(k) = 0. Actually we verify the condition (3.2) for P1(T ) with n = 8 and for
P2(T ) with n = 3. So we conclude λ2(k) = 0.

6. Comparison of criteria

We would like to compare criteria of λ2(k) = 0. Most fundamental criterion
is Theorem 2.1 in [3]. The condition (C) was first verified in our all practical
calculations. Theorems 2.1 and 2.2 in [6] are considered the improvement of that
in special situations. At the present time, we are abel to check these criteria in kn
(1 6 n 6 8). On the other hand, Corollary 3.6 is a criterion of different type. We
are abel to check this criterion for larger n.
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In the following table, we show n where we verified λ2(k) = 0 under the
calculations in kn. The sign × means that the criterion can not be applied for
such p. The inequality > 13 or > 12 means that we need at least n = 13 or n = 12
to apply [3, Theorem 2.1]. For p where the sign ? is marked, we failed to factorize
Iwasawa polynomial g(T ) which has degree 2047, 1022 or 16383. So all the criteria
should be considered complementary to each other.

p [3, Theorem 2.1] [6, Theorem 2.1] [6, Theorem 2.2] Corollary 3.6
1201 2 × × 10
3361 5 × × 3
12161 4 2 × 11
13121 4 × 2 6
13841 > 13 × × 10
67073 > 12 × × 8
14929 5 × 4 2
15217 3 × × 3
20353 1 × 4 7
61297 8 × 7 2
40961 1 2 × ?
61441 2 × × ?
65537 7 × × ?
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