Functiones et Approximatio
54.1 (2016), 7-17
doi: 10.7169/facm/2016.54.1.1

ON THE IWASAWA AINVARIANT OF THE CYCLOTOMIC
Z2-EXTENSION OF Q(,/p), III

TakAsHI FUKuDA, KEIICHI KOMATSU, MANABU OZzAKI, TAKAE TSuJi

Abstract: In the preceding papers, two of authors developed criteria for Greenberg conjecture
of the cyclotomic Zz-extension of k& = Q(,/p) with prime number p. Criteria and numerical
algorithm in [5], [3] and [6] enable us to show A2(k) = O for all p less than 10° except p =
13841,67073. All the known criteria at present can not handle p = 13841, 67073. In this paper, we
develop another criterion for A2(k) = 0 using cyclotomic units and Iwasawa polynomials, which
is considered a slight modification of the method of Ichimura and Sumida. Our new criterion fits
the numerical examination and quickly shows that A2(Q(y/p)) = 0 for p = 13841,67073. So we
announce here that A2(Q(y/p)) = 0 for all prime numbers p less that 10°.
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1. Introduction

Let k£ = Q(\/p) be a real quadratic field with prime number p and ks, the cyclo-
tomic Zs-extension of k. It is very important to study Greenberg conjecture for
koo /k, namely to consider whether the Iwasawa A-invariant \a(k) = A(kso/k) is
zero or not. First approach on this problem was made by Ozaki and Taya [14] in
which they proved that \o(k) = 0 if p satisfies p #Z 1 (mod 16) or 2P~1/4 =£ |
(mod p). After Ozaki and Taya, the authors developed criteria for As(k) = 0
when p satisfies p = 1 (mod 16) and 2°~1/* = 1 (mod p) (cf. [5], [3], [6]). Our
criteria are described by units in k,,, which is the intermediate field of k. /k with
[kn : k] = 2™, and numerical calculations in &, (0 < n < 8) show that A2 (k) = 0 for
all prime number p less than 105 except p = 13841,67073. All the known criteria
accompanied with calculation in kg failed to show A2(k) = 0 for p = 13841, 67073.
It seems necessary to calculate at least in k3 in order to show A2(k) = 0 using
those criteria. Such a calculation is far beyond the ability of current computer.
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In this paper, we develop one more criterion using cyclotomic units, which is
considered a slight modification of the method of Ichimura and Sumida [10], and
verify that Ay (k) = 0 for p = 13841,67073 by using cyclotomic units and Iwasawa
polynomials in kg. Namely, we prove the following theorem:

Theorem 1.1. We have A2(Q(y/p)) = 0 for all prime number p less than 10°.

2. Preliminaries

From now on, we assume that p is a prime number satisfying p =1 (mod 16) and
2(P=1/4 = 1 (mod p). Let k, be the n-th layer of the cyclotomic Zs-extension
ks of k as above, Oy, the integer ring of k,, E, = (9,~C the unit group of k,,
A, the 2-part of the ideal class group of k,, [, a prime ideal of k, lying above 2.
We put B,, = Q(cos 2,L+2) and By, = U2 B,,. Then k, = kB, and ko = kB
Moreover, let A = G(ks/Boo) the Galois group of k., over B, with a generator
7 and I' = G(koo /k) the Galois group of ko over k with a topological generator .

Then we have 20y, = (1,I7)%". Let k,, be the completion of k,, at [,, and put
¢n = 1+ 2cos 2,%% Then we have k1, = Qz(cy,), where Qg is the 2-adic field.
Let I! be the group of fractional ideals in k,, generated by ideals which are prime
to2. Weput E}, = {a €k, |(a) €L} and U, = O; | x O | .

We embed E’ in U,, by the injective homomorphism ¢ : E/, 3 o+ (o, a7) €
U,. We put (o, ™)™ = (a7, a) for (a,a”) € p(E"). Since the topological closure
o(E!) of o(E!) is U,, we can extend the mapping 7 to U, continuously.

Now we develop a quadratic version of [15, Theorem 3.3] by following the
arguments in [9, §2]. We put U = @ U,,, where the projective limit is taken with

respect to the relative norms. Let u = (u,,)52, be an element in lim O} | . Then
. . . o < finin
there exists a unique power series f,(X) € Zs[[X]] satisfying

fu(l - 42"‘*'2) = Un,
where ¢, means exp(2my/—1/m). Let D = (1— X)-% be a derivative operator on
Zs[[X]]. We put A = Zs[[T]] and let 1 +T act on Uasy eI Let s be a primitive
root modulo p and put & = Z(p v/ 2( C s’ ), which we regard as the image
of the embedding Oy — Ok, = Zo. Then there exists a unique element G, (T) of
A such that

D (log fu(X) = glog fu(1 — (1 = X)?))|x=0 = Gu((1 +4p)” — 1)&.

We note that the correspondence U'™"" > (u,u™!) — 1G,(T) € A defines
a A-isomorphism ¥ : U'~7" — A. Now, we put

(p—1)/2

_ - $2i
= C2(€+21)/4 H (anl+2 - Cp ) )

=1

and 7 = (1,)22,. A straightforward calculation, which was presented in [6] for
instance, shows that

M = No(yuiz,)/kn (1= Cont2p) -
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From now on, we specify the topological generator v of I' by the relation
-1 144 —1-4
(Con+2 + <2n+2)ﬂY = C2n+2p + an+2 P (n>0).

Then Iwasawa’s construction of 2-adic L-function associated to & varies now into
the following form.

Theorem 2.1. Let x be the non-trivial character modulo p associated to k and
%G(I:) the image of the element (n'=7,n7~') in U'="" by the above isomorphism
U'="" = A. Then we have

G(1+4p) -1)=-(1- 2"*1)% for v=0 (mod 2).

Here B, is a generalized Bernoulli number.

Since the Iwasawa p-invariant ps(k) = u(keo/k) is known to be zero by
Ferrero-Washington [2], there exist a unique unit element u(7") € A* and a unique
distinguished polynomial ¢g(T') € Zs[[T]] such that

G(T) = 2u(T)g(T). (2.1)

The distinguished polynomial ¢(7"), which is called Iwasawa polynomial, plays
essential role in our arguments. We fix the notation ¢g(T") throughout the paper.

3. Criterion

In this section, we work in abelian extensions of Q. So Leopoldt conjecture is valid
in our situation (cf. [1]). Let Ly is the maximal unramified abelian 2-extension of
ko and M, the maximal abelian 2-extension of k., unramified outside 2. Then
the Galois groups I, = G(My/Loo); oo = G(Myo/kso) and Xoo = G(Loo /kso)
are finitely generated A-modules (cf. [12]). For a finitely generated A-module X,
ch(X) denotes the characteristic polynomial of X. Then we have the following:

Lemma 3.1. The tensor product Xoo ®z,(a] Z2 15 pseudo-isomorphic to xLo,
where T acts on Zo by Ta = —a for a € Zs.

Proof. Let ) be a A-homomorphism of Xo ®z,(a] Zz to X1J7 defined by
P(z®a) = (x*)1~7. Then 9 is surjective. Now, we assume 1)(z ®a) = 1. Then we
have (2%)'~7 = 1, which means (2%)” = 2%. Hence r @ a=2°® 1 = (2%)" ® 1 =
2% ® (—1) = (z* ® 1)~!, which shows (z ® a)? = 1. Since Xoo ®z,(a] Z2 is finitely
generated Zs-module, the kernel of 4 is finite. |

Hence we have the following (cf. [18, Theorem 6.2]):

Lemma 3.2. We have ch(X;7) = g(T).
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Moreover, we have the following:

Lemma 3.3. A-modules X157 N I, and 117 are pseudo-isomorphic. Namely,
ch(XL"NIy) = ch(ILT).

1 2 1—7
)

Proof. Let z be an element in X157 N I. Since 27 = 271, we have 2% = x
which means x? € I'177. Since I';7 C X157 NI and since X157 N1 is a finitely
generated Zs-module, the index (X157 NI : I177) is finite. [ ]

Since X7 = X171, /I is isomorphic to X177/X1>7 N I, we have the
following:

Lemma 3.4. We have
g(T) = ch(X ") ch(X 7N 1),

Now, we put E, = O, . Then p(E,) = {(c,¢7) | ¢ € E,}. Moreover, we

put &, = ¢(E,) C U, and & = 1'&1&1. Then I is isomorphic to U/E by class
field theory, which shows I1;7 is isomorphic to U'=7€ /€. Let P(T) be a monic
irreducible polynomial in A which divides g(7") and put

o) = 4.

Assume that P(T) divides ch(X1: 7). Then ch(I17) divides Q(T'), which shows
(U'=7)QT) &, because X, has no finite A-submodule (cf. [8, Theorem 1]). Since
P(T) and w,,(T) = (1+T)?" — 1 are mutually prime in A, which is a consequence
of Leopoldt conjecture, there exist elements ¢, (7T'), r,(T) € A with

P(T)Qn (T) + Tn(T)Wn (T) =2,
where a,, is a non-negative integer. Hence we have
(k=7 pr @D = gL (yy(T)) PR (T) ¢ g2

with w(T") define by (2.1). Now we follow the arguments in [4] and [16] noting that
Leopoldt conjecture is valid in our situation to establish the following theorem.

Theorem 3.5. Assume that for any monic irreducible polynomial P(T) dividing
9(T), there exists n > 1 which satisfies

O ¢ B2 (31
Here q(T) is a polynomial in A and a is a non-negative integer satisfying
P(T)q(T) =2 (mod wy,(T)).

Then we have Aa(k) = 0.
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The condition (3.1) in Theorem 3.5 guarantees P(T') |/ch(X17), from which we
deduce A\3(k) = 0. In the practical computations, we are often aware of an upper
bound d of A-invariant. If P(T) satisfies deg P(T) > d, then we immediately
conclude P(T) /| ch(X1 ™) because degch(X.) < d. Hence we are able to
transform Theorem 3.5 to the following effective form.

Corollary 3.6. Assume that \o(k) < d with positive integer d. Moreover, as-
sume that for any monic irreducible polynomial P(T) dividing g(T') which satisfies
deg P(T') < d, there exists n > 1 which satisfies

pl=790-D g B2 (3.2)
Here q(T) is a polynomial in A and a is a non-negative integer satisfying
P(T)q(T) =2* (mod wy(T)). (3.3)
Then we have Aa(k) = 0.

We note here that we verify the condition (3.2) by a congruence relation.
Namely, let « be an integer in k,, and ¢ a prime number which satisfies x(¢) = 1,
¢=1 (mod 2"*2?) and £ = 1 (mod 2%). Then / splits completely in k,/Q and we
find z = z; € Z satisfying @ = x (mod [) for each prime ideal I of k,, lying above
£. If we find ¢ and [ such that

zT #%1 (mod ¥),
then we see that

ad k.

4. Bound of Iwasawa invariants

In this section, we discuss an upper bound of Iwasawa invariants in a general
situation. Let F' be a finite algebraic extension of QQ, £ a prime number and K
a Zs-extension of F. Let F, be the intermediate field of K/F with [F,, : F| = {"
and denote by £°" the {-part of the class number of F),. Then there exist integers
MK/F) >0, u(K/F) 2 0 and v(K/F) which satisfy

en = ANK/F)n+ p(K/F){" +v(K/F)

for all sufficiently large n (cf. [12]).

In some situations, a few practical values of e,, estimate explicitly upper bounds
of A(K/F) and pu(K/F) and enables us to apply Corollary 3.6 to k& = Q(\/p).
A similar estimate is also given in [11, Lemma 5.

Theorem 4.1. Notations being as above, assume that all the ramified primes in
K/F are totally ramified. Furthermore we assume that inequality e i1 — e, <
L — " holds for some n > 0. Then we have N(K/F) < eni1 — e, and
u(K/F) = 0.
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Proof. Let A,, be the £-part of the ideal class group of F,,. Then |A,| = (.
Put epy1 — e, =b. Let X = G(Loo/K) and Y = G(Loo/KLg) C X, where Lo,
and Lo are the maximal unramified abelian /-extensions of K and F', respectively.
Then I' = G(K/F) acts on X by inner automorphism. If we fix a topological
generator v of I' and associate v with 1 + 7', then we are able to regard X as
a A = Z[[T]]-module. We put

1+T)"" —
Vp = % s Undln = Vn+1/Vn~

Then we have the isomorphism
~ X/v,Y (4.1)

from our assumption on the ramification in K/F and [12, Theorem 6]. It follows
from (4.1) and our assumption on the class numbers that

|UnY /vp Y| = £°
Hence if we put M = v, Y, then we have
|M /vy 1o M| =0 (4.2)

Here we note that A(K/F') = rankz, X = rankg, M because X/v,,Y ~ A, is finite.
Also, the triviality of the p-invariant of the A-module M implies that of u(K/F)
by the same reason. Therefore it is enough to show that dimy, M /¢M < b, because
rankz, M < dimp, M /¢M holds in general and the finiteness of M /¢M implies the
vanishing of the p-invariant of M by Nakayama’s lemma. Since F,[[T]] is a discrete
valuation ring and M /¢M is a finitely generated Fy[[T]]-module, we have

M /(M ~ F,[[T (@JF@ J(T%) ) (4.3)

for some integers r > 0 and a1 > ... > as > 0. Then we get

n

M/l vpgr,0)M = M/(6, T =" )M
nt+1l_ gm0\ OT
~ (F[T])/(T" ) (4.4)

because Vi1, = T =" (mod ¢). By using our assumption, (4.2) and (4.4),
we derive

L — " > b > dimp, (M) (6, Vng10) M)

4.5
="t — —l—Zmln{a oty (4:5)
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from which we find immediately 7 = 0 and a; < £*+! — ¢* for all i. Therefore, we
get inequality dimg, M/¢M = >°7_, a; < b by (4.3) and (4.5), which implies the
assertion of the theorem as mentioned above. |

5. Calculation

In this section, we return to the case £ = 2 and recall A = Z[[T']]. Let k = Q(,/p)
with prime number p satisfying p = 1 (mod 16) and 2?~1/4 = 1 (mod p). Let
ky, be the intermediate field of the cyclotomic Zs-extension of k with [k, : k] = 2™
and A,, the 2-part of the ideal class group of k,,. We put |A,,| = 2.

First of all, we explain how to compute e, . Straightforward calculation using
several software packages developed for number theory handles e, e5 and e3. But
it fails to compute e4 because the degree [k, : k] = 2" increases rapidly. So
a custom algorithm specialized to k is needed. Thanks to [6, Proposition 3.5], the
integer a, in the table in [3], which is expected to be equal to e,, is now actually
equal to e,. Hence we can calculate e,, (1 < n < 8) by using the method in [5].

Let x be the character of £ and w the Teichmiiller character modulo 4. Then
x* = wx ! is the character of Q(,/—p). We define the integer s so that p = 1
(mod 2%) and p # 1 (mod 2°1). Then the Stickelberger element &, is defined by

-t > oc (22) ezlcmaol

where ¢, = p2"*t2 and (%) is the Artin symbol. It is known that %fn also

-1
has integral coeflicients. So we associate (?’;_/q ?) with % and construct the

polynomial G,,(T) € A from %gn. Weierstrass preparation theorem guarantees the
decomposition

with the unit element u,(7T) € A and the distinguished polynomial g,(T) € A,
where g, (T") is constructed explicitly by an algorithm in [17, Proposition 7.2].
Then we know the congruence relation

9(T) = gu(T) (mod 2"7F2),

where g(7T') is the distinguished polynomial defined by (2.1).
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Now we see

1 1 2n+2p IB /Q _
- * -1 n
ign* 2"+3p ; ax (a) ( a )
(a,2p)=1
2n+2_1p 1 1
o B,/Q
— n+2 n+2 _Pn/
“ g o L) ()
(J 2) 1
ont2_1 —1p—1
=% Z < j/ > ix*(2"%0 + §)
G =0
ont2_q —1p-1
1 (B,/Q cront2.
+ iy Z J ( J ) X (2% + )
j=0 i=0
ont2_q —1p-1
1 B, ok L
=% > ( ]-/Q> ix* (2" %+ ),
3=0 i=0

(7,2)=1

because, for odd j, we have

p—1 p—1 . .
el i on+2
S @i ) = (P ) (“)

gt Pt P
= (-7 pi (Z) — 0.

Put G = (Z/2"*"2Z)* and H = (1 + qo + 2"*?Z). Then G = HU (—H) and
hence

e (T):izi1 1+7 J%:lz{ (2727 4+ (1 + qo)’ mod 2"+2))
" 2p i 1+ qo P 0

272+ (~(1+ go)? mod 2"2)) },
where @ mod 2”2 means rational integer z satisfying
r=a (mod 2"2) and 0<a <2t

Now we show two examples, from which we derive Theorem 1.1. Let p = 13841.
Then s = 4 and we see

g(T) = 44128 + 1267727 + 3064472 + T% (mod 2'7)
= (2616 + T)(74772 + 280287 + T?) (mod 2'7) (5.1)
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from £19. Proposition 2 in [13, Chapter 11| with the fact g19(—2616) =0 (mod 217),
g19(—2616) #£ 0 (mod 23) implies that g(T) has a factor Py(T) = a+ T (a € Zs)
with a = 2616 (mod 2'3) and (5.1) implies that g(T")/P;(T) is irreducible modulo
213, Hence g(T)/Py(T) is irreducible in A and we see

g9(T) = P (T)P(T)

with irreducible polynomial P»(T") of degree two.
Now we get e, as follows:

n|1[2]3]4]5]6|7] 8
en | 214567 ]8(9]10

Hence it follows that Ae(k) < 1 by Theorem 4.1 and it suffices to verify the
condition (3.2) only for P(T') = Py(T) in order to prove Aa(k) = 0. When n = 10,
we see that a = 13 in the expression (3.3) and the condition (3.2) holds. Hence
we have Ag(k) = 0.

Next we treat p = 67073. In this case, s = 9. We calculate &35 and find that

g(T) = PA(T) P(T) P5(T),

where Py (T), P»(T) and P5(T) are monic irreducible polynomials with degree 1,2
and 124 respectively by factoring geg(7T") modulo 22! and using Hensel’s lemma.
We also see

Pi(T)=1000+T (mod 2'),
Py(T) = 1392 + 7967 + T2 (mod 2'),

and

n|1]2|3] 4] 5| 6] 7| 8
en | 316]9]12]14 |16 | 18| 20

Hence it follows that Ay(k) < 2 by Theorem 4.1 and it suffices to verify the
condition (3.2) only for P(T) = Pi(T) and P(T) = P»(T) in order to prove
A2(k) = 0. Actually we verify the condition (3.2) for P;(T) with n = 8 and for
P, (T) with n = 3. So we conclude \z(k) = 0.

6. Comparison of criteria

We would like to compare criteria of Aa(k) = 0. Most fundamental criterion
is Theorem 2.1 in [3]. The condition (C) was first verified in our all practical
calculations. Theorems 2.1 and 2.2 in [6] are considered the improvement of that
in special situations. At the present time, we are abel to check these criteria in k,,
(1 < n < 8). On the other hand, Corollary 3.6 is a criterion of different type. We
are abel to check this criterion for larger n.
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In the following table, we show n where we verified A\y(k) = 0 under the

calculations in k,. The sign X means that the criterion can not be applied for
such p. The inequality > 13 or > 12 means that we need at least n = 13 or n = 12
to apply [3, Theorem 2.1]. For p where the sign ? is marked, we failed to factorize
Iwasawa polynomial g(T") which has degree 2047, 1022 or 16383. So all the criteria
should be considered complementary to each other.

P [3, Theorem 2.1] | [6, Theorem 2.1] | [6, Theorem 2.2] | Corollary 3.6
1201 2 X X 10
3361 5 X X 3

12161 4 2 X 11
13121 4 X 2 6
13841 > 13 X X 10
67073 >12 X X 8
14929 5 X 4 2
15217 3 X X 3
20353 1 X 4 7
61297 8 X 7 2
40961 1 2 X ?
61441 2 X X ?
65537 7 X X ?
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